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Abstract 
Objective: Respiratory syncytial virus (RSV) is a significant cause of pediatric hospitalizations. 
This paper aims to utilize multi-source data and leverage the tensor methods to uncover distinct 
RSV geographic clusters and develop an accurate RSV prediction model for future seasons. 
 
Materials and Methods: This study utilizes five-year RSV data from sources, including medical 
claims, CDC surveillance data, and Google search trends. We conduct spatio-temporal tensor 
analysis and prediction (TAP) for pediatric RSV in the US by designing (i) a non-negative tensor 
factorization (NTF) model for pediatric RSV diseases and location clustering; (ii) and a recurrent 
neural network tensor regression model for county-level trend prediction using the disease and 
location features. 
 
Results: We identify a clustering hierarchy of pediatric diseases:  Three common geographic 
clusters of RSV outbreaks were identified from independent sources, showing an annual RSV trend 
shifting across different US regions, from the South and Southeast regions to the Central and 
Northeast regions and then to the West and Northwest regions, while precipitation and temperature 
were found as correlative factors with the coefficient of determination 𝑅! ≈ 0.5, respectively. Our 
regression model accurately predicted the 2022-2023 RSV season at the county level, achieving 
𝑅! ≈ 0.3  mean absolute error MAE<0.4 and a Pearson correlation greater than 0.75, which 
significantly outperforms the baselines with p-values <0.05. 
 
Conclusions: Our proposed framework provides a thorough analysis of RSV disease in the US, 
which enables healthcare providers to better prepare for potential outbreaks, anticipate increased 
demand for services and supplies, and save more lives with timely interventions. 
Keywords: Respiratory syncytial virus (RSV), tensor factorization, deep learning, pediatric diseases. 
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Introduction 

Background and significance 
Respiratory syncytial virus (RSV) is the most implicated virus in bronchiolitis and is a leading 

cause of infant hospitalizations1, especially in developing countries2. Nationally, RSV bronchiolitis 
results in an estimated 58,000 hospitalizations and up to 500 deaths among children each year. 
Globally, it accounts for 1.4 million hospital admissions and 27,300 in-hospital deaths among 
infants under 6 months old annually3. The CDC reports that the RSV season in the US is typically 
from October to March, with peak activity in December4. Studies have been conducted to 
understand the risk factors causing different RSV trends in pediatric patients, and interventions to 
decrease RSV hospitalizations have been identified, including RSV immunoprophylaxis5. 
Researchers have analyzed global RSV seasonality, finding that RSV activity follows a decrease in 
temperature, and high humidity can increase activity in equatorial and tropical areas6. The timing 
and patterns of RSV transmission have also been studied using pre-pandemic datasets and various 
factors including temperature, humidity, precipitation, and maximal day-to-day temperature 
variation7,8,9,10,11,12. Recent studies have investigated the resurgence of RSV after the COVID 
pandemic in Singapore13,14, West Australia15, and New Zealand16. 

In the 2022-2023 season, RSV case counts have been exceedingly high, with a peak 
hospitalization rate of 4.9 per 100,000 in mid-November17. This rate is significantly higher than last 
year's mid-November hospitalization rate of 1.1 per 100,000 and the pre-COVID pandemic rate of 
about 0.5 per 100,000. This surge emphasizes the importance of in-depth analysis and accurate 
prediction of RSV trends, particularly in children, to develop effective prevention and intervention 
strategies. 

Existing RSV prediction models and challenges 
Most existing RSV prediction approaches are based on traditional statistical or machine 

learning methods. For example, Reis et al.18 used Bayesian inference and built a super-ensemble 
model to forecast the US outbreaks of RSV. Korsten et al.19 collected two consecutive prospective 
multicenter birth cohorts from June 2008 until February 2015 and used multivariate logistic 
regression analysis based on an existing statistical discriminative model20 for RSV hospitalization 
prediction. Gebremedhin et al.21 built a multivariable logistic regression model for predicting the 
hospitalization burden of RSV using a cohort (children younger than 5 years) collected between 
2000 to 2012 in Western Australia.  

These models showed decent performance in previous stable RSV seasons. However, the prior 
approaches face two major issues: (1) The annual RSV outbreak date and volumes have changed 
significantly during COVID15,16, while these approaches mostly model the stable and periodic time 
series information before COVID (e.g., up to 2017 in Reis et al.18). Their accuracy can be 
significantly undermined by the distribution shift associated with the COVID pandemic during 
2019-2022 since the RSV outbreak time and volume are significantly different from previous years; 
(2) Existing approaches cannot capture the underlying disparities in different regions by using only 
the past trend of RSV. The relative trends of other related infections (such as bronchiolitis due to 
parainfluenza) can also provide predictive signals. Capturing the location-based disparities and 



 3 

leveraging co-occurrence trends from other pediatric diseases can be challenging but beneficial. 
Incorporating these additional data sources into previous models might be infeasible or suboptimal. 

This study proposes a hybrid approach that combines tensor factorization with deep learning 
techniques for pediatric RSV time-series analysis and prediction, named TAP-RSV.  We address the 
above issues by utilizing non-negative tensor-based methods to extract interpretable disease and 
regional clustering features from multiple data resources, including medical claims data, 
surveillance data from CDC, and online search data from Google search trends during the past five 
years. With these extracted disease and regional features, we propose a recurrent neural network 
(RNN)-based tensor regression model that accurately estimates the county-level RSV case counts 
of the 2022-2023 RSV season, which outperforms the existing methods under various evaluations. 

Materials and Methods 

Data sources 
Our study jointly analyzes data from several resources for RSV trend analysis and prediction.  
Source 1 (Medical Claims Data) This data source contains county-level weekly count 

information for 19 pediatric diseases (RSV, bronchiolitis, adenovirus, rhinitis, viral pneumonia, 
coronavirus, COVID, hypoxia, hypoxemia, asthma, status asthmatics, parainfluenza, respiratory 
failure, respiratory distress, Upper Respiratory Infection (URI), rhinovirus, and Human 
Metapneumovirus (HMPV)). The data spans roughly five years in the US, which is structured as a 
tensor 𝑰 ∈ ℝ"×$×%&, where 𝑁 = 2,334 is the number of counties, 𝑇 = 258 is the number of weeks 
in the record (from 12/30/2017 to 12/09/2022), and the last dimension of size 19 corresponds to 19 
pediatric diseases. Each entry in tensor 𝑰 indicates the count of a particular disease in a county over 
a certain week.  

Source 2 (CDC RSV Surveillance data)1  The next data source is from CDC RSV-NET 
project22, which includes data from 58 counties in 12 states that participate in the Emerging 
Infections Program (California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New 
Mexico, New York, Oregon, and Tennessee) or the Influenza Hospitalization Surveillance Program 
(Michigan and Utah). RSV-NET covers almost 9% of the U.S. population. This data source is also 
in weekly granular and spans roughly five years from 10/16/2018 to 01/14/2023. However, this data 
source only recorded the 10/01 to 04/30 season each year. Our study only uses the data portion with 
“children younger than 18 years of age”. We formulate the data as a matrix 𝑪 ∈ ℝ%!×$!, where 𝑇! =
187 is the number of weeks the data is collected. Each entry in 𝑪 is the RSV weekly pediatric 
hospitalization rate per 100,000 people in one state.  

Source 3 (Google RSV Trends)2 The Google Trends data show changes in search interest for 
a specific region over time, expressed as a percentage of the maximum number of searches for that 
region within the selected time frame. The data is downloaded in weekly granularity for 51 US states 
over five years (from 02/04/2018 to 01/29/2023), where "Respiratory syncytial virus" is selected as 
the keyword search option. We formulate it as a matrix 𝑮 ∈ ℝ'%×$", where 𝑇( = 261 indicates the 
number of weeks over five years. The entries in 𝑮 indicate the search interest (in percentage) over 
each week in the state. 

Source 4 (County-level static Data). The static data is at county-level, corresponding to 𝑁 =
 

1 https://www.cdc.gov/rsv/research/rsv-net/dashboard.html  
2 https://trends.google.com/trends/  

https://www.cdc.gov/rsv/research/rsv-net/dashboard.html
https://trends.google.com/trends/
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2,334 counties in the claim database. It includes the distance matrix 𝑴% ∈ ℝ"×" , the mobility 
distance matrix 𝑴! ∈ ℝ"×", demographics statistics 𝑴( ∈ ℝ"×%), overall COVID, hospitalization 
and vaccination statistics 𝑴) ∈ ℝ"×(&. Here,	𝑴% is the geographical distance matrix, measured by 
the Haversine distances between 𝑁  counties. The mobility distance 𝑴!  includes the average 
mobility flows between 𝑁 counties during 2020 and 2021. The mobility flow scores are collected 
from SafeGraph23. The demographical features 𝑴( include populations of different age and race 
groups and the medical resource statistics collected from the county-level census dataset provided 
by24. The COVID, hospitalization and vaccination statistics 𝑴)  are collected from IQVIA 
databases25 and JHU CSSE COVID-19 Dashboard26. We show the feature list in Table ,  

Table . 
Source 5 (State-level Climatology Data)3 The climate date records are collected by the Iowa 

Environmental Mesonet project at Iowa State University. The webpage gives a listing of unofficial 
daily climate records for 361 national weather service (NWS) cooperative observer program (COOP) 
stations over 51 states in the US. We crawl the daily temperature (high and low in a day, in 
Fahrenheit) and the precipitation data (in Inch) from 01/02/2018 to 01/12/2023 by API4. 

RSV related disease clustering  
RSV progression trends may be inferred using similar disease progressions as a reference. In 

this study, we utilized non-negative tensor factorization (NTF) to identify co-occurring trends 
among 19 pediatric diseases. Five-year trends of all diseases are shown in Supplementa (Figure 1 
(supp)). We study the similarity among these diseases by using a subset of the medical claims data 
and applying sparse non-negative tensor factorization (NTF) 27,28 method. NTF is commonly used 
for extracting the low-rank structure of real-world count-based data, which decomposes a large high-
dimensional tensor into low-rank factor matrices of each information aspect (Illustration can be 
found in Figure 1(a)). Due to space limitation, the dense mathematical formulation of NTF 
(including the detailed notations, objective functions, and optimization procedures) are presented in 
Supplementary Analysis 1. 

We apply NTF on the claims data up to 08/20/2022 as shown in Figure 1(a). Note that 
clustering analysis avoids using any test information in the prediction experiment as the later 
prediction window begins on 08/20/2022. The subset consists of data from 2,334 counties, covering 
242 weeks, and 19 diseases, formulated as a three-dimensional tensor 𝑰. The NTF method (with the 
rank equal to 8) outputs three low-dimensional matrices, representing counties (𝑨%), weeks (𝑨!), 
and diseases (𝑫), and we show the mathematical details and an ablation study of rank selection in 
Supplementa. Figure 1(b) shows the output 𝑫, which encodes the sparse representations of each 
pediatric disease and will be utilized as part of the features in the later prediction model. 

We further apply the agglomerative clustering29 with Ward algorithms30 on the disease 
representations 𝑫, resulting in a cluster hierarchy in Figure 1(c). 

 
3 https://mesonet.agron.iastate.edu/COOP/extremes.php  
4 https://mesonet.agron.iastate.edu/geojson/cli.py?dl=1&fmt=csv&dt={cur_date}  

https://mesonet.agron.iastate.edu/COOP/extremes.php
https://mesonet.agron.iastate.edu/geojson/cli.py?dl=1&fmt=csv&dt=%7bcur_date%7d
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Figure 1. Disease hierarchical clustering by NTF. a. We formulated the medical claims data as a 
county-by-week-by-disease tensor (size: 2334 × 242 × 19 ) and implemented the sparse non-
negative tensor factorization (NTF) approach. The method outputs three low-dimensional matrices, 
representing counties (𝑨%), weeks (𝑨!), and diseases (𝑫); b. The matrix 𝑫 encodes the sparse 
representations of each pediatric disease (adenovirus, asthma, bronchiolitis, etc.) as rows, with each 
disease has a sparse 8-dimensional similarity vector that indicates the similarity to one of the eight 
progression patterns (8 is the set rank of the NTF approach); c. We apply the agglomerative 
clustering algorithm with the Ward variance on the disease representations as the clustering metric, 
resulting in a disease cluster hierarchy. The x-axis is the clustering distance, and the y-axis shows 
the disease cluster hierarchy. Diseases closer in the hierarchy exhibit more similar trends across 
location and time. 
 

RSV location clustering  
Our next task is to track the RSV spread by analyzing its progression patterns from a 

geographic perspective. By identifying clusters of RSV cases in specific areas, healthcare providers 
can identify high-risk areas for potential outbreaks and take proactive steps for resource 
management in affected communities, such as appropriate stockpiling of medical services and 
supplies. 

We analyze the RSV location clusters based on the medical claims (only the RSV portion up 
to 08/20/2022 before the prediction window) and Google search trend data independently. We first 
convert both data sources into location-by-week matrices ( 2,334 × 242  for the claims and 
51 × 261 for search data). We apply the same sparse non-negative tensor factorization (NTF) 
approach (due to space limitation, details in Supplementary Analysis 2) to obtain their location 
representation matrix 𝑳. Each location becomes a 3-dimensional embedding vector. For medical 
claims data, the location matrix (of size 2,334 × 3, denoted as 𝑳) represents the embeddings of each 
county (i.e.,  𝒍*), which will be used in the later prediction model. For the Google trend data, the 
matrix 𝑳 is of size 51 × 3 and represents the embedding of 51 states. The county-level claims data 
can provide more granular clustering results, and two datasets are analyzed individually.  

In our study, we set rank 3 for NTF method (3 clusters). We observe three consistent RSV 
location clusters from both datasets, and the results are shown in Figure 2. Finer granular clustering 
results with more clusters could be achieved by increasing the size of tensor rank (i.e., number of 
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final clusters). Further analysis on finding the best number of clusters is out of the scope. 

Spatio correlation between location clusters 

To provide a quantitative explanation for the clustering effect, we have also analyzed the 
correlation between the RSV outbreak date and the central longitude and latitude of each state over 
four RSV seasons (2018-2019, 2019-2020, 2021-2022, 2022-2023), using medical claims. RSV case 
counts were very low during the 2020-2021 season, presumably due to pandemic-related quarantine 
policies. We conducted Pearson correlation testing between the linear combination of longitude and 
latitude and the outbreak date of the state. The linear coefficient was chosen based on the best linear 
regression fit for each season. We found that longitude negatively correlates with the outbreak date 
while latitude positively correlates to the outbreak date, as shown in Figure 3(a). 

Correlation between location clusters and climate factors 

We further study the climate effect of the RSV location clusters. Previous studies6,9-13 explored 
the relationship between the onset timing of RSV and the average precipitation and temperature, 
with some reporting a correlation of 𝑅! ≈ 0.5  for both factors9. However, these studies had 
limitations, as they did not cover many states in the Midwest and North, and were conducted before 
2013, which may not reflect recent trends, particularly after the COVID pandemic.  

To address these gaps, we analyzed the last five years of RSV data from a large real-world 
medical claim database encompassing 2,334 counties and 51 states. We also utilized climatology 
data from the Iowa Environmental Mesonet project. Note that we defined the outbreak date as the 
day with the highest case count in each season, as the exact onset date can be difficult to pinpoint. 
Additionally, we used the average values from observatory stations located in each state to represent 
the annual average precipitation and temperature of the state. We found these two climate factors 
are highly correlated to RSV outbreak date (especially precipitation, with an 𝑅! ≈ 0.5), shown in 
Figure 3(b)(c). 

Spatio-temporal RSV prediction 
Having examined the spatio-temporal RSV patterns, we next present the predictive value of 

these patterns in estimating future RSV case counts for each county. In the prediction phase, our 
goal is to accurately predict the recent pediatric RSV trend over the 2022-2023 winter season using 
the medical claims data before 08/20/2022 as observations. 

The predictions are based on sliding windows. During each prediction, we fix feature 
(i)(ii)(iii)(iv) and use the nearest 𝑄 weeks’ claims data from feature (v) to predict the next 𝑆 weeks’ 
RSV trends. By default, we set the observation window 𝑄 = 120 (including the past one or two 
RSV seasons), and the prediction window 𝑆 = 4 weeks (4 values predicted for each county).  

We use the following information to extract the features: (i) disease representation 𝑫 ∈ ℝ%&×+# 
(each disease has a representation 𝒅, ∈ ℝ+#)   from disease clustering; (ii) the RSV geo-spatial 
embeddings 𝑳 ∈ ℝ"×+! (each county has a representation 𝒍* ∈ ℝ+!) from location clustering; (iii) 
static features: distance matrix 𝑴% ∈ ℝ"×" , the mobility distance matrix 𝑴! ∈ ℝ"×" , 
demographics statistics 𝑴( ∈ ℝ"×%) , and the overall COVID, hospitalization and vaccination 
statistics 𝑴) ∈ ℝ"×(&; (iv) the target timing, represented by month 𝑚 ∈ [1, 2, … , 12], and (v) the 
disease history time-series 𝑯 ∈ ℝ"×%!-×%&  (𝑁  counties, 120-week observation window and 19 
diseases, which is a submatrix of claim data 𝑰), to accurately predict the future trends of RSV at the 
county level. We show how to predict the target in the next 𝑆 = 4 weeks for county 𝑗 below. We use 
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𝑑 = 32 as our hidden dimension in the TAP-RSV model. 

Feature 1: temporal disease embedding 

We encode the disease similarity information and the trend of other diseases as the first feature. 
To obtain this, we consider the self-attention technique37. Upon the disease embedding matrix 𝑫 ∈
ℝ%&×+# , we apply a linear layer 𝑲(⋅): ℝ+# → ℝ. to generate the attention key, and a linear layer 
𝑸(⋅): ℝ+# → ℝ.  to generate the attention query. The self-attention matrix is obtained by cross 
product and an additional softmax layer. 

𝑨 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑲(𝑫) ⋅ 𝑸(𝑫)′) ∈ 	ℝ%&×%& (21) 
Here, 𝑲(𝑫),𝑸(𝑫) ∈ ℝ%&×.  and 𝑲(𝑫)𝑸(𝑫)′ means the matrix cross product between 𝑲(𝑫) and 
the transposition of 𝑸(𝑫).	The weekly claims count of county 𝑗 is 𝑯(𝑗, : , : ) ∈ ℝ%!-×%& (i.e., 120 
weeks timeseries for 19 diseases). We apply the self-attention matrix to encode the interaction trends 
of 19 diseases in the interaction embedding. 

𝑬(𝑗, : , ∶) = 	𝑯(𝑗, : , : )𝑨 ∈ ℝ%!-×%& (22) 
We combine the original weekly timeseries and the interaction embedding into 𝑯/.  

𝑯/(𝑗, : , ∶) = [𝑯(𝑗, : , ∶), 𝑬(𝑗, : , ∶)] ∈ ℝ%!-×(%&1%&) (23) 
A recent work31 applied the gated recurrent unit (GRU)32, an effective type of recurrent neural 

network (RNN), to encode the longitudinal patient embedding. Inspired by this, we apply the GRU 
network with 38-dimensional input units and 𝑑-dim output units on 𝑯/  to encode the temporal 
disease information and take the last output. The GRU network runs recurrently for 120 steps. 

𝒆.,34534,* = 𝐺𝑅𝑈^𝑯/(𝑗, : , ∶)_ ∈ ℝ. (24) 

Feature 2 & 3: location and timing embedding 

By referring to Table , we know that different locations can have distinct RSV patterns and 
timing is also a decisive factor in estimating the outbreak volume of a county. According to CDC4, 
October to April are the typical RSV seasons in the north hemisphere. The target volume may be 
uniquely identified by the location clusters and the timing within a year.  

We use the county location representation 𝒍* ∈ ℝ+! from NTF results in Analysis 2 and apply 
a linear layer 𝒉(⋅): ℝ+! → ℝ. to obtain the transformed location embedding. 

𝒆7895:,8;,* = 𝒉^𝒍*_ ∈ ℝ. (25) 
We learn the month representation 𝑴 ∈ ℝ%!×. over 12 months to indicate the timing and use 

the month embedding of the prediction window to encode the month information 
𝒆:,<,;=,* = 𝑴(𝑚) ∈ ℝ. (26) 

Here, 𝑚 ∈ [1, 2, … , 12] is the target month index. 

Feature 4: static feature embedding 

Demographics and other static healthcare features are also great descriptive features for RSV 
prediction. For example, affluent neighborhood may have more hospital resources and are more 
willing to invest on clinical supply. Thus, their RSV rate might be low or decrease quickly. To 
preprocess the static features, we normalize them by subtracting out the mean signal and scaling by 
standard deviations. After processing, the numerical values of the same feature across different 
counties are normal distributed. We then concatenate the static features and devise a linear prediction 
layer 𝒔(⋅): ℝ"1"1%)1(& → ℝ. for learning hidden embeddings. 

𝒆3:5:,9,* = 𝒔([𝑴%(𝑗, : ),𝑴!(𝑗, : ),𝑴((𝑗, : ),𝑴)(𝑗, : )]) ∈ ℝ. (27) 
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Multi-faceted non-negative prediction 

In the last layer, we concatenate the previous four feature embeddings and apply a Gaussian 
Error Linear Unit (GELU)33 as the activation and design a final prediction network by a two-layer 
neural network 𝒇(⋅): ℝ). → ℝ> (4𝑑 is for the concatenation of 4 different feature embeddings and 
𝑆 = 4 is the number of future weeks in prediction). We further apply an exponential function to 
prevent the negative values. The final objective is MSE loss, measuring the gap between the 
prediction and true values. 

𝒚d* = exp𝒇 g𝐺𝐸𝐿𝑈^j𝒆.,34534,* , 𝒆7895:,8;,* , 𝒆:,<,;=,* , 𝒆3:5:,9,*k_l ∈ ℝ> (28) 

Adding the exponential function also has statistical benefits. The real target counts usually 
follow a long-tail distribution, while their log-values are usually normal distributed. A recent work46 
considered this phenomenon and predicted the log-transformed counts instead of the real target. Our 
exponential function has a similar effect, which encourages the output of function 𝒇 to follow a 
normal distribution and improves the training performance. 
 

Results 

Analysis 1: Disease clustering hierarchy 
Figure 1(c) shows the obtained disease clustering hierarchy. We observe that the results align 

with clinical knowledge, as ontologically and pathophysiologically related diseases are grouped 
together. Specifically, we note the following examples. Enterovirus is a common cause of URI and 
causes bronchiolitis. Virtually all cases of bronchiolitis begin as URI. Parainfluenza and adenovirus 
are common viral causes of bronchiolitis, and infection with such viruses is a common cause of 
acute asthma exacerbation. Respiratory failure and respiratory distress and considered degrees of 
severity of one another. Status asthmaticus, rhinitis, and viral pneumonia are much more commonly 
diagnosed in children over the age of 2 years (in contrast to bronchiolitis, which occurs by definition 
only in children under 2 years). Hypoxia and hypoxemia are physiologically distinct but often used 
interchangeably in clinical documentation. COVID-19 is caused by a variant form of coronavirus. 
This hierarchy allows us to gain a quantitative understanding of the relationship among these 
diseases. 
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Analysis 2: RSV location clusters 
Three consistent location clusters from medical claims and Google search data 

Figure 2(a) displays the learned progression patterns and their corresponding county clusters 
extracted from the claim data. The color intensity in the map is obtained from the NTF model. A 
darker color represents a higher similarity between the county’s trend and one of three NTF-
extracted trend patterns. We found that RSV always appears first in cluster 1, followed by cluster 2, 
and then cluster 3, over each season. Independently, we train another NTF model and extract state 
clusters from the Google data in Figure 2(b), and its trend patterns are shown in Figure 3 (supp) 
in Supplementa materials. Interestingly, we observe a significant alignment in the county-level 
and state-level clusters. The algorithm identifies three clusters with obvious geographical 
similarities – Southeast, Central, and Northwest regions.  

Temporal shift observed in CDC surveillance data of 12 states 

In Figure 2(c), we further line up the actual surveillance trends on the timeline roughly 
following the cluster orders. Georgia and Tennessee are in the first cluster (Southeast region); 
Colorado, Connecticut, Maryland, Michigan, Minnesota, New Mexico, and New York are in the 
second cluster (Central, Northeast, and Southwest regions); Utah, California, Oregon are in the third 
cluster (West and Northwest regions). We observe a clear outbreak date shift across areas from East 
to West and from South to North. 
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Figure 2. Three consistent RSV location clusters from different sources. a. We applied the sparse NTF 
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approach to the county-by-week claims data (size: 2334 × 242) on the RSV portion and obtained three 
location clusters, and the temporal progression patterns. A darker color indicates higher similarity to the 
clustering center. The progression patterns are shared in the same cluster, and we plotted the three clusters 
in order. The disease progression of cluster 1 occurred one to two weeks earlier than cluster 2, and three 
to four weeks earlier than cluster 3 over each season; b. The same NTF approach was independently 
applied to the Google search trend data. The extracted three clusters were similar at the state level; c. For 
the CDC surveillance data, we match the 12 states to three location clusters extracted from medical claim 
data. The red dotted line indicates the peak of each RSV hospitalization season. We observed a clear 
temporal shift of RSV curves from the top to the bottom (from cluster 1 to cluster 3) along the timeline. 
This figure independently confirms three distinct RSV patterns across the Southeast, Central, and 
Northwest regions. 
 

Correlation between shift and longitude, latitude, precipitation, and temperature 

Figure 3(a) shows the linear combination of longitude and latitude and the RSV outbreak date 
of the state. Our analysis reveals that longitude negatively correlates with the outbreak date, 
indicating that eastern regions experience outbreaks earlier than western regions. Conversely, 
latitudes positively correlate with the outbreak, suggesting that southern states are more likely to 
experience outbreaks earlier than northern regions. The best-fitting curves correlate highly with the 
outbreak dates (with an 𝑅! ≈ 0.4 for the last three seasons). 

Figure 3(b) shows the correlation between outbreak date and annual precipitation at state level. 
From the figures, we can observe that the correlation remains relatively stable during each season, 
with correlation values 𝑅! ≈ 0.5, and a higher volume of precipitation leads to an earlier timing of 
the outbreak. However, the correlation in the first and last season (𝑅! > 0.5) is higher than in the 
middle two seasons (𝑅! < 0.5), which could be due to the social distancing policies of the COVID 
pandemic16.  
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Figure 3. Correlation to latitude & longitude, precipitation, and temperature. a. We test the 
correlation between RSV and the best linear combination of raw longitude and latitude value and 
breakdown for four RSV seasons. The y-axis represents the outbreak week index (12/20/2017 as the 
first week in index), and x-axis represents the best linear combination of raw values of longitude 
and latitude. Each dot (in total 51) in the figures represents a state in the US. The outbreak date has 
regional differences with a correlation score around 𝑅! ≈ 0.4 for the last three seasons. We also 
find that the longitude is generally negatively correlated to the outbreak date, meaning that eastern 
regions will outbreak earlier than western regions. The latitude is positively correlated to the 
outbreak dates, meaning that southern regions outbreaks earlier than northern regions; b. Similar 
linear correlation test has been conducted between RSV outbreak dates and annual precipitation of 
a state. We find precipitation has an average correlation 𝑅! ≈ 0.5  to RSV. The relatively low 
correlation in 2019-2020 and 2021-2022 season might be affected by the global COVID pandemic; 
c. Correlation test between RSV outbreak dates and annual average temperature of a state. The 
correlation is not stable across the four seasons, while the 2019-2020 season has a high score 𝑅! ≈
0.47. By comparison, the temperature factor has a weaker correlation to RSV outbreak than 
precipitation. 
 

Figure 3(c) shows the correlation to annual temperature, which roughly indicates that higher 
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temperatures result in earlier outbreak dates. This can be partially explained by the fact that solar34 
and high temperature35 could inactivate many microbes including RSV. However, the correlation is 
shown to be unstable across different seasons. For example, 2019-2020 season gives a 𝑅! = 0.47 
score while the other three seasons demonstrate a weak correlation of 𝑅! < 0.34. Comparing the 
two factors, we conclude that precipitation has a stronger correlation to RSV outbreak than 
temperature. 

Prediction: Multi-faceted RSV Trend Forecasting 
In the prediction phase, our goal is to accurately predict the recent pediatric RSV trend over 

the 2022-2023 winter season using the medical claims data before 08/20/2022 as observations. 

Experimental Settings 

Note that the 2022-2023 RSV season began earlier than in previous years and spans from 
08/20/2022 to 12/09/2022, based on the medical claims. In the experiment, the season is divided 
into four prediction windows: 08/20/2022 - 09/17/2022 - 10/15/2022 - 11/12/2022 - 12/09/2022. 
Our prediction model is initially trained on the 120 training weeks up to 7/22/2022 and the best 
hyperparameters are selected using the 120 validation weeks up to 8/20/2022. The model is then 
evaluated on the first prediction window (from 08/20/2022 to 09/17/2022). Next, the training and 
validation windows are shifted forward by 4 weeks, and the model is retrained and the best 
hyperparameters are reselected to evaluate on the second prediction window (from 09/17/2022 to 
10/15/2022). This process is repeated until all four prediction windows are evaluated. An illustration 
can be found in Figure 4(a). Four predictions are conducted independently. 

To evaluate the result of prediction, we use the mean square error (MSE), mean absolute error 
(MAE), the coefficient of determination (𝑅!), and the Pearson correlation coefficient (PCC) to 
assess the prediction performance. The range of MSE and MAE are (0, +∞), lower values are better. 
The range of 𝑅! is (−∞, 1), and the range of PCC is (−1, 1), higher values are better. 

We implement the following baseline methods from different perspectives: 
• ARIMA is a popular time series analysis model used for forecasting future values based 

on past observations.  
• LSTM36 is a type of RNN architecture that is used for sequence prediction. The hidden 

dimension is set to 32. 
• Transformer37 is popular for long-range information preserving in sequence modeling. We 

set the number of attention heads to 4, the number of attention layers to 2, and the hidden 
dimension to 32. 

• XGBoost38 is commonly used for regression tasks on tabular features. In this study, we 
extract the RSV volume, and the first, second, and third-order statistics of the trend as the 
hand-crafted time-series features, combined with static features for prediction. 

• STAN39 is an RNN-based spatio-temporal prediction model, initially developed for 
COVID-19 case prediction. We adopt it for RSV prediction. This model also integrates the 
spatial map graph neural network module. We set the graph network dimension to 64, and 
the hidden dimension to 32. The SIR dynamics module of STAN does not apply to our 
prediction task, and we thus remove the SIR constraints in the final objective function. 

• HOIST25 is a recent spatio-temporal model for COVID-19 case prediction with the Ising 
dynamics constraints. We adopt it for spatio-temporal RSV prediction. The hidden 
dimension of GRU module is set to 32 and the graph neural network embedding is set to 
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64, the same hyperparameters as STAN. 
All models are trained five times with different random seeds, and the mean and standard 

deviation values are reported. The source code of all models is publicly available on GitHub5. 
We have also provided the feature sets of each model in Supplementary (Table 4 (supp)). 

 

Better performance in 2022-2023 RSV season prediction 

In Figure 4(a), we illustrate the main prediction setting for our study. We divide the four-month 
RSV period into four prediction windows (4 weeks each) and use the previous 120 weeks as the 
observation. Table 1 shows the comparison of all models over four prediction windows. Our TAP-
RSV model performs best on almost all metrics except for the PCC value against HOIST on the first 
prediction window. We report the test p-values of Table 1 under five random seeds in Supplementa 
(Table 4), which shows that our performance gain is significant in most cases with p-values <0.05. 

We find that the naïve ARIMA model gives the worst performance, with PCC values < 0.02 on 
all prediction windows. This is because ARIMA only supports the raw time-series and cannot utilize 
static features. We also find that the LSTM and Transformer baselines, which concatenate the static 
features into each time step, are relatively strong among all baselines. STAN and HOIST are two 
spatio-temporal models that have specially designed spatial graph convolutions initially for 
pandemic prediction. However, the performance of STAN is not desirable when adopted for our 
task, probably due to the differences in problem settings. Among all baselines, HOIST shows the 
best performance consistently. The poor performance of XGBoost model implies that modeling the 
raw sequences like in Transformer and LSTM is more powerful than using time-series statistical 
features. 
 

 

Figure 4. Illustration of 2022-2023 RSV season prediction. a. Broken down 2022-2023 RSV season 
 

5 https://github.com/ycq091044/TAP-RSV  

https://github.com/ycq091044/TAP-RSV
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prediction into four 4-week windows. In each window, we use the extracted features from the nearest 
120 weeks (long enough to include the past one or two RSV seasons) as prediction features to 
forecast the next four weeks at the county-level. Each window is shifted by four weeks. 𝑄 means 
the feature window length and 𝑆 means the prediction window length (unit: week); b. County-level 
true cases vs. prediction results of TAP-RSV in the 2022 – 2023 season. The left figure shows the 
true total volume of each county, and the right figure shows the total predicted volume. For both 
figures, we sum up the cases over the entire 2022 – 2023 season.  
 
 

To give a visual illustration, we further compare the true county-level RSV volume in the entire 
2022-2023 RSV season with the predicted volume over the season in Figure 4(b). We observe that 
the volume distributions across all counties are very similar in the two figures, but the true figure 
generally looks darker, indicating that it has a larger scale in volume. We show that by plotting the 
distribution of true and predicted case counts in Supplementa (Figure 6 (supp)). The scale 
discrepancy can be explained by the unprecedented case surge in the current RSV season, and the 
extracted prediction features are not strong enough to capture the unexpected volume. 
 
Table 1. Model performance comparison on 2022-2023 four prediction windows. We bold-font the 
best metric and shade our model outputs. Format of the table: mean value ± standard deviations over 
5 random seeds. Our TAP-RSV model gives the best performance on most of the metrics with 𝑝 <
0.05, except the PCC value against HOIST on the first prediction window. We show the p-values in  
Table  in Supplementa. 

Window Model MSE MAE PCC 𝑹𝟐 
 
 

08/20 
è  

09/17 

ARIMA 36.11 ± 1.3054 3.33 ± 0.0231 0.01 ± 0.0123 -0.56 ± 0.1341 
LSTM 22.02 ± 0.3721 2.45 ± 0.0438 0.77 ± 0.0081 0.35 ± 0.0113 

Transformer 22.90 ± 0.7879 2.46 ± 0.0463 0.74 ± 0.0127 0.32 ± 0.0232 
XGBoost 31.96 ± 0.0126 2.47 ± 0.0013 0.62 ± 0.0004 0.08 ± 0.0004 

STAN 35.74 ± 1.2799 2.68 ± 0.0801 0.48 ± 0.0180 -0.06 ± 0.0362 
HOIST 20.01 ± 1.9669 2.36 ± 0.0274 0.79 ± 0.0121 0.40 ± 0.0466 

TAP-RSV 19.26 ± 1.3043 2.29 ± 0.0859 0.78 ± 0.0102 0.41 ± 0.0243 
 
 

09/17 
è  

10/15 

ARIMA 45.45 ± 1.1453 3.60 ± 0.0643 0.01 ± 0.0134 -0.53 ± 0.0743 
LSTM 59.13 ± 3.2203 3.69 ± 0.1173 0.75 ± 0.0143 0.25 ± 0.0435 

Transformer 59.22 ± 1.9690 3.64 ± 0.0808 0.75 ± 0.0119 0.25 ± 0.0260 
XGBoost 82.43 ± 0.0001 4.09 ± 0.0000 0.71 ± 0.0000 -0.02 ± 0.0000 

STAN 94.88 ± 0.8759 4.47 ± 0.0390 0.50 ± 0.0176 -0.20 ± 0.0116 
HOIST 48.68 ± 5.7941 3.50 ± 0.0774 0.77 ± 0.0277 0.37 ± 0.0615 

TAP-RSV 41.66 ± 4.7963 3.26 ± 0.0722 0.79 ± 0.0079 0.46 ± 0.0494 
 
 

10/15 
è  

11/12 

ARIMA 62.94 ± 2.1096 4.74 ± 0.0589 0.02 ± 0.0432 -0.49 ± 0.0975 
LSTM 75.97 ± 3.5810 4.10 ± 0.0450 0.68 ± 0.0058 0.32 ± 0.0311 

Transformer 80.78 ± 4.4693 4.29 ± 0.0684 0.69 ± 0.0049 0.28 ± 0.0417 
XGBoost 121.8 ± 0.0104 5.38 ± 0.0004 0.71 ± 0.0004 -0.08 ± 0.0001 

STAN 138.4 ± 1.7601 5.67 ± 0.0464 0.48 ± 0.0343 -0.25 ± 0.0166 
HOIST 63.61 ± 6.8832 4.11 ± 0.0534 0.74 ± 0.0130 0.41 ± 0.0545 

TAP-RSV 53.30 ± 5.4441 3.99 ± 0.0625 0.75 ± 0.0169 0.50 ± 0.0392 
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11/12 
è  

12/09 

ARIMA 83.69 ± 3.9015 3.78 ± 0.1345 0.02 ± 0.0341 -2.23 ± 0.0132 
LSTM 38.34 ± 1.2719 3.38 ± 0.0687 0.69 ± 0.0122 0.45 ± 0.0139 

Transformer 40.25 ± 1.6947 3.32 ± 0.0759 0.69 ± 0.0100 0.40 ± 0.0320 
XGBoost 70.25 ± 0.0165 4.25 ± 0.0004 0.69 ± 0.0003 0.02 ± 0.0002 

STAN 84.57 ± 3.5291 4.49 ± 0.2036 0.43 ± 0.0443 -0.23 ± 0.0557 
HOIST 33.77 ± 5.7051 2.97 ± 0.0364 0.73 ± 0.0401 0.49 ± 0.0698 

TAP-RSV 29.80 ± 2.3285 3.09 ± 0.1531 0.75 ± 0.0163 0.52 ± 0.0463 

Discussion 
Summary: Our work introduces a comprehensive Tensor-based Analysis and Prediction (TAP) 
framework for studying the respiratory syncytial virus (RSV), utilizing multiple data sources. 
Specifically, we incorporate five-year county-level pediatric claims data with 19 pediatric diseases, 
state-level CDC surveillance data (pediatric portion) from 12 participant states, state-level Google 
RSV keyword search trends from 51 states, five-year climate observation data from Iowa State 
University covering 51 states, and county-level static features related to demographics, mobility 
distances, vaccination, hospitalization, and COVID statistics for 2334 counties.  

We use the sparse non-negative tensor factorization (NTF) method and extract a clinically 
meaningful disease hierarchy with quantitative embeddings. We also analyze RSV disease's location 
distribution and find meaningful RSV location patterns over the US. The Southeast region of the 
US tends to have the RSV peak earlier than other regions of the US. The Central and Northeast 
regions will follow up and peak one or two weeks later, while the West and Midwest regions are 
always the last to peak. The clustering results are consistent across all three data sources. Further, 
we find that the annual precipitations and temperatures are two potential correlative factors (with 
average 𝑅! ≈ 0.5 and 𝑅! ≈ 0.3 via linear correlation test) explaining the peak shift. Our finding is 
drawn from RSV data from the last five years, extending from previous works6,9 (using data up to 
2013). We predict the recent 2022 – 2023 RSV season with multi-faceted features, which gives 
decent performance in the 2022-2023 RSV season (MSE < 55, MAE < 4, PCC > 0.75, and 𝑅! ≈
0.5) at the county level. Our TAP-RSV model performs better than all baselines with 𝑝 < 0.05 in 
most cases. 
 
Limitations: Our research has some limitations that should be acknowledged. Firstly, in data 
curation, we borrowed demographic information such as pediatric population, race ratio, and income 
level from a previous study24, which collected data from different sources over several years. 
Secondly, we used claims data as our primary resource for predicting RSV severity, which may 
underestimate the true number of RSV cases. During the correlation test, we approximated state-
level climate statistics using average values from different observatory stations, which may 
introduce inaccuracies. Despite these limitations, our study results provide valuable insights, and 
our model can be applied to other high-quality RSV data if available.  

For modeling, our methodology involves extracting different feature sets separately and then 
concatenating them into a final prediction layer. This approach has already yielded promising results, 
outperforming strong baseline models. However, further improvements could be achieved by 
incorporating feature crossing or utilizing advanced techniques, such as graph neural networks. 
 
Take-aways and future works: Our proposed method can inspire follow-up works in the following 
ways. First, the main techniques mentioned in the paper – non-negative tensor factorization (NTF) 
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– can be utilized in many other applications to extract the common patterns/clusters (especially for 
location clusters or population groups) from high dimensional data sources. Also, the NTF methods 
are specifically suitable for handling problems with limited data sources compared to using deep 
learning models. Second, this paper uses other diseases time series to improve the prediction of RSV 
trend, and the same techniques can be used for the analysis or prediction of target by using rich 
information from other relevant variables. Additionally, combining Google search data as a strong 
supplementary for early-stage prediction can be a promising direction in similar applications since 
this data source is easy to access and more recent data can be available as the timely prediction 
features. However, Google search data should also be treated carefully before used in critical 
healthcare scenarios, as it does not directly reflect health information of individuals or a population. 
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Supplemental Materials  
Organization of Supplemental materials: First, we describe the model details and implementation 
procedures of NTF in disease clustering and location clustering; Then, we list the static features 
used for prediction; Next, we show additional experimental results (1 – 7), including ablation studies 
and hypothetis testing, to support claims in the main text. Note that we follow the recommendations 
set out in the Global Code of Conduct for Research in Resource-Poor Settings when designing, 
executing, and reporting the research and this research does not use individual-level data which may 
raise ethic issues. Our study complies with the recommendations of the GATHER statement. 

Analysis 1: Non-negative Tensor Factorization for Disease Clustering 
To understand the progression of RSV diseases, this paper first explores its relationship with 

other 18 pediatric diseases. We use the claims data as the resource. Non-negative tensor factorization 
(NTF) [27,28] is commonly used for extracting the low-rank structure of real-world count-based 
data and finding dominant spatio-temporal patterns. In this task, we use the sparse NTF approach to 
learn the representations of 19 diseases 𝒅, 	(𝑖 = 1, 2, … , 19).  

Sparse non-negative tensor factorization (NTF) 

Formally, given county-by-week-by-disease tensor based on claims data 𝑰 ∈ ℝ"×$#×%& (we use 
the portion up to 08/20/2022 and still use 𝑰 as the notation for convenience), the rank-𝑅%  NTF 
approach will decompose it into: a county representation matrix 𝑨% ∈ ℝ"×+#, a week representation 
matrix 𝑨! ∈ ℝ$#×+# , and a disease representation matrix 𝑫 ∈ ℝ%&×+# , following the canonical 
polyadic decomposition (CPD) model [40,41]. Here, we only care about the disease matrix 𝑫, where 
each row is 𝒅, ∈ ℝ+# 	 , and 𝑅%  is called the rank number (interpreted as the representation 
dimension). We use 𝑅% = 8 in the experiments. An ablation study of 𝑅% is provided in Supplemental 
materials (Fig. 2 (supp)). 
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Figure 2 (supp). Ablation study on	𝑅". a. We plot the change of NTF fitness loss with respect to 

different choices of 𝑅". We can observe that the fitness loss is decreasing when 𝑅" becomes larger while 
the decreasing trend slows down gradually; b. The hierarchical clustering map with 𝑅" = 2; c. The 
hierarchical clustering map with 𝑅" = 4 ; d. The hierarchical clustering map with 𝑅" = 6 ; e. The 
hierarchical clustering map with 𝑅" = 8 (the one we used in the study); f. The hierarchical clustering 
map with 𝑅" = 10. We find that given a proper 𝑅"(such as 8), the fitness loss can be reasonably low, and 
the output clustering map is also informative. 

 
The goal of NTF decomposition is to capture the major low-rank information in the tensor 𝑰 

and treat the part that does not fit into the low-rank structure as noise and remove it. To model this, 
we ensure that each element 𝑰(𝑖, 𝑗, 𝑘) is approximated by the Einstein summation of low-rank 
factors ∑ 𝑨%(𝑖, 𝑟)

+#
?@% 𝑨!(𝑗, 𝑟)𝑫(𝑘, 𝑟). Collectively, the objective is defined by summing over the 

squared residual of every element.  
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𝓛?43,.A57 =xxxy𝑰(𝑖, 𝑗, 𝑘) −	x𝑨%(𝑖, 𝑟)
+#

?@%

𝑨!(𝑗, 𝑟)𝑫(𝑘, 𝑟)z
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(1) 

 
Additionally, we hope to extract the interpretable factors, which require (i) three factors 

containing non-negative elements (i.e., a common constraint for real count-based data); (ii) each 
disease representation being sparse (i.e., diseases have distinct temporal patterns). Thus, we add the 
non-negative constraints and the 𝐿% sparsity norm for disease representation 𝑫. 

𝓛≽-: [𝑨% ≽ 0, 𝑨! ≽ 0,𝑫 ≽ 0] (2) 
𝓛3D5?3,:E = ||𝑫||% (3) 

To form the final objective, we add ridge regularization [42] to control the scale of the factors 
for preventing numerical errors.  

𝓛?,.=4 = ||𝑨%||F! + ||𝑨!||F! + ||𝑫||F! (4) 
which is the sum of  𝐿! Frobenius norm of the factor matrices. 

The final objective is a weighted sum of the above objectives in consideration of the non-
negative constraint 𝓛≽-, 

𝓛 = 𝓛?43,.A57 + 𝜆% ⋅ 𝓛3D5?3,:E + 𝜆! ⋅ 𝓛?,.=4 
Here, 𝜆%, 𝜆! are two hyperparameters. In this study, 𝜆% is used in the proximal step (show below), 
and we find that a large 𝜆%will significantly hurt the decomposition fitness (when 𝜆% > 5 × 10G%) 
while a small 𝜆% cannot guarantee a sparse result (when 𝜆% < 1 × 10G!). Thus, we choose 𝜆% =
1 × 10G% in our study. For 𝜆!, prior CP tensor decomposition research [40,41] usually set it between 
1 × 10GH  to 1 × 10G' . We did not find obvious performance change when increasing 𝜆!	from  
1 × 10GH to 1 × 10G'. Thus, we set 𝜆! = 1 × 10G' throughout the experiments. 

NTF optimization procedure 

To optimize the overall objective function as well as the non-negative constraint, we use the 
proximal [43, 44] alternating least squares (ALS) algorithm [45] to update the factors 𝑨%, 𝑨!, 𝑫 
sequentially. The algorithm runs for several iterations to converge, and each iteration consists of 
three sub-iterations. In the beginning of the algorithm, we initialize three factors 𝑨%, 𝑨!, 𝑫 all by 
independent identically uniform ∼ [0,1]  distributed values. We describe one iteration below 
(including three sub-iterations, and they run in a sequence): 

Sub-iteration 1: we fix the value of 𝑨!, 𝑫 and only update 𝑨%. In this case, 𝑨% are the only 
parameters and the current objective function becomes: 

𝓛% =xxxy𝑰(𝑖, 𝑗, 𝑘) −	x𝑨%(𝑖, 𝑟)
+#

?@%

𝑨!(𝑗, 𝑟)𝑫(𝑘, 𝑟)z

!

+ 𝜆! ⋅ ||𝑨%||F!
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(5) 

This objective is a quadratic form with respect to 𝑨%, and we can use the closed-form solution to 
obtain a new 𝑨% by 

𝑨% ← 𝑰(%)	(𝑨!⊙𝑫)(𝑨!/ 𝑨! ∗ 𝑫/𝑫+ 𝜆!)G% (6) 
Here, 𝑰(%) is the matricized tensor along the first dimension, ⊙ is the matrix Khatri-Rao product, * 
is the matrix Hadamard product, ′ is the matrix transpose, and (⋅)G% is the matrix inverse operation. 
All the operations are well explained in this work [41]. In the end, we clip the element value of 𝑨% 
into the range [10G', +∞) to meet the non-negative constraint and prevent the zero-division issue. 
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Sub-iteration 2: we fix the value of 𝑨%, 𝑫 and only update 𝑨!. Like sub-iteration 1, currently, 
𝑨! are the only parameters and the current objective function is again a quadratic form.  

𝓛! =xxxy𝑰(𝑖, 𝑗, 𝑘) −	x𝑨%(𝑖, 𝑟)
+#

?@%

𝑨!(𝑗, 𝑟)𝑫(𝑘, 𝑟)z
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"
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(7) 

We can use the closed-form solution to obtain a new 𝑨! by 
𝑨! ← 𝑰(!)(𝑨%⊙𝑫)(𝑨%/𝑨% ∗ 𝑫/𝑫+ 𝜆!)G% (8) 

Where 𝑰(!) is the matricized tensor along the second dimension. Again, after obtaining the new 𝑨!, 
we apply the [10G', +∞) clipping. 

Sub-iteration 3: we fix the value of 𝑨%, 𝑨! and only update 𝑫. This procedure is a bit more 
complicated since the current objective is not a quadratic form. 

𝓛( =xxxy𝑰(𝑖, 𝑗, 𝑘) −	x𝑨%(𝑖, 𝑟)
+#

?@%

𝑨!(𝑗, 𝑟)𝑫(𝑘, 𝑟)z

!

+ 𝜆% ⋅ ||𝑫||% + 𝜆! ⋅ ||𝑫||F!
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(9) 

To obtain the new 𝑫, we first use the pesudo closed-form solution, 
𝑫 ← 𝑰(𝟑)(𝑨%⊙𝑨!)(𝑨%/𝑨% ∗ 𝑨!/𝑨! + 𝜆!)G% (10) 

Where 𝑰(() is the matricized tensor along the third dimension. We later apply the proximal step to 
enforce the sparsity on each disease representation separately (each row of 𝑫) 

𝒅, ← 𝒅, − 𝜆% ⋅ 𝑚𝑎𝑥(𝒅,) ⋅ 𝟏 (11)
Here, 𝑚𝑎𝑥(𝒅,) means the max value in vector 𝒅,, and 𝟏 is a constant vector with all 1 as the entry 
and has the same shape as 𝒅,. Again, we clip the new 𝑫 within the range [10G', +∞). 

Disease hierarchical clustering 

We can see in Fig. 2b (main) that the disease representation is indeed sparse, and each disease 
is only connected to one or a few patterns. For obtaining the disease hierarchical clustering, we first 
normalize the representation 𝒅, by the sum of the scores from all ranks (now the vector 𝒅, sums up 
to 1) and then apply the agglomerative clustering approach [29] to get the clustering distance. We 
hope that diseases with similar patterns can be clustered closely. Therefore, we further apply the 
Ward variance minimization algorithm [39] on the distances and group the disease one at a time to 
form the clustering hierarchy in Fig. 2c (main). 

Analysis 2: Non-negative Tensor Factorization for Location Clustering 
In this task, we want to analyze and understand the regional disparity of RSV trends. We apply 

the same NTF methods on the claim data 𝑰 (only the RSV), the CDC data 𝑪, and the google trend 
data 𝑮 separately, while the data are formatted as matrices (two-dimensional tensors) here, one 
dimension is for locations (county or state), and another dimension is for the timeline (in week 
granular). The decomposition results will reflect different RSV progression patterns as well as the 
corresponding location clusters. We use medical claims data as example below. 

NTF objective on claim data 

 Formally, given the RSV portion from disease tensor 𝑰(: , : ,1) ∈ ℝ"×$# (assume the index of 
RSV is 1 in the third disease dimension) up to 08/20/2022, the rank-𝑅!  NTF approach will 
decompose it into: a county representation matrix 𝑳 ∈ ℝ"×+!, and a week representation matrix 
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𝑩% ∈ ℝ$#×+! , following the CPD model. Here, each row of 𝑳  is the location (i.e., county) 
represenation 𝒍* ∈ ℝ+! 	, and each column of 𝑩%  is one distinct RSV progresion pattern. In the 
experiment, we use 𝑅! = 3  as the number of clusters. A large 𝑅!  would give finer granular 
clustering results with more location clusters, and we leave it for future work. 

As the objective, we ensure that each element 𝑰(𝑖, 𝑗, 1)  is approximated by the Einstein 
summation of low-rank factors ∑ 𝑳(𝑖, 𝑟)+!

?@% 𝑩%(𝑗, 𝑟) . Collectively, the objective is defined by 
summing over the squared residual of every element. 

𝓛?43,.A57 =xxy𝑰(𝑖, 𝑗, 1) −	x𝑳(𝑖, 𝑟)
+!

?@%

𝑩%(𝑗, 𝑟)z

!
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*@%

"

,@%

(12) 

Similar to Analysis 1, we hope the final factors can be interpretable, which requires (i)  𝑳,𝑩% 
containing non-negative elements; (ii) each location representation being sparse (i.e., locations have 
distinct temporal patterns). Thus, we add the non-negative constraints and the 𝐿% sparsity norm. 
Additionally, we also use the ridge regularization to control the factor scale. 

𝓛≽-: [𝑳 ≽ 0,𝑩% ≽ 0] (13) 
𝓛3D5?3,:E = ||𝑳||% (14) 

𝓛?,.=4 = ||𝑳||F! + ||𝑩%||F! (15) 
The final objective is a weighted sum of the above objectives in consideration of the non-

negative constraint 𝓛≽-, 
𝓛 = 𝓛?43,.A57 + 𝛼% ⋅ 𝓛3D5?3,:E + 𝛼! ⋅ 𝓛?,.=4 (16) 

Here, 𝛼%, 𝛼! are two hyperparameters. Similar to the setting of Analysis 1, we set 𝛼% = 1 × 10G%,  
𝛼! = 1 × 10G' in the experiments. 

NTF optimization procedure 

The optimization procedures are similar to Analysis 1 as well. In the beginning of the algorithm, 
we initialize three factors 𝑳,𝑩% all by independent identically uniform ∼ [0,1] distributed values. 
One iteration is described below (including two sub-iterations, run in a sequence): 

Sub-iteration 1: we fix the value of 𝑳 and only update 𝑩%. Then, 𝑩% are the only parameters 
and the current objective function becomes: 

𝓛% =xxy𝑰(𝑖, 𝑗, 1) −	x𝑳(𝑖, 𝑟)
+!

?@%

𝑩%(𝑗, 𝑟)z
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+ 𝛼! ⋅ ||𝑩%||F!
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(17) 

This objective is a quadratic form with respect to 𝑩%, and we can use the closed-form solution to 
obtain a new 𝑩% by 

𝑩% ← 𝑰(: , : ,1)𝑳(𝑳/𝑳 + 𝛼!)G% (18) 
In the end, we clip the element value of 𝑩% into the range [10G', +∞) to meet the non-negative 
constraint and prevent the zero-division issue. 

Sub-iteration 2: we fix the value of 𝑩% and only update 𝑳. The objective is not quadratic. 

𝓛! =xxy𝑰(𝑖, 𝑗, 1) −	x𝑳(𝑖, 𝑟)
+!

?@%

𝑩%(𝑗, 𝑟)z
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+ 𝛼% ⋅ ||𝑳||% + 𝛼! ⋅ ||𝑳||F!
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(18) 

To obtain the new 𝑳, we first use the pseudo closed-form solution, 
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𝑳 ← 𝑰(: , : ,1)′𝑩%(𝑩%/𝑩% + 𝛼!)G% (19) 
Later, we apply the proximal step to enforce the sparsity on each location representation separately 
(each row of 𝑳) 

𝒍* ← 𝒍* − 𝛼% ⋅ 𝑚𝑎𝑥^𝒍*_ ⋅ 𝟏	 (20)
Here, 𝑚𝑎𝑥^𝒍*_ means the max value in vector 𝒍*, and 𝟏 is a constant vector with all 1 as the entry 
and has the same shape as 𝒍*. Again, we clip the new 𝑳 within the range [10G', +∞). 

Arguments of the maxima clustering 

After the NTF optimization, we select the arguments of the maxima (argmax) index of each 
location representation 𝒍, to get the location clustering. In total, three location clusters and three 
distinct progression patterns are identified, shown in Fig. 3a (main). For the Google search data 
𝑮 ∈ ℝ'%×$" and the CDC survillance data 𝑪 ∈ ℝ%!×$!, we apply the same methods to obtain the 
clusters and the progression patterns, independently, provided in Supplemental materials (Fig. 3 
(supp), Fig. 4 (supp)). It is interesting that the location clusters and three RSV trend patterns are 
aligned across three different data sources.  

 

 

Figure 3 (supp).  RSV progression location clusters (12 states from CDC surveillance data).  The 
values in the upside map are the clustering intensity. The y-axis in the downside plot shows the 
hospitalization rate per 100,000 pediatric patients for RSV.  
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Figure 4 (supp).  RSV progression location clusters (51 states in Google RSV search trends). The 
values in the upside map are the clustering intensity. The y-axis in the downside plot shows the relative 
popularity of RSV search.  

 

The Lists of Static Features 
We provide a detailed list of static feature matrices 𝑴( ∈ ℝ"×%) and 𝑴) ∈ ℝ"×(& in Table 1 

(supp) and Table 2 (supp). For the distance matrix 𝑴% ∈ ℝ"×" and the mobility distance matrix 
𝑴! ∈ ℝ"×", their rows and columns both refer to the 𝑁 counties. 

 
 
Table 1 (supp). All dimensions (14) in demographics matrix 𝑴# ∈ ℝ$×"&. 

1 Overall population 
2 0 – 17 age group population 
3 18 – 64 age group population 
4 65 plus age group population 
5 Black-skin group population 
6 White-skin group population 
7 Asian population 
8 Hispanic population 
9 Non-Hispanic population 
10 Number of Physicians 
11 Number of Hospitals 
12 Number of ICU Beds 
13 Average amount of income per family 
14 Unemployment rate 

 
 
Table 2 (supp). All dimension (39) in COVID, hospitalization and vaccination matrix 𝑴& ∈ ℝ$×#'. 

1 Total vaccine shots  21   Total booster shots rate 
2 Total 1st shots  22   Total Pfizer 1st shots rate 
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3   Total 2nd shots  23 Total Pfizer 2nd shots rate 
4   Total booster shots  24 Total Pfizer booster shots rate 
5   Total Pfizer 1st shots  25   Total Moderna 1st shots rate 
6 Total Pfizer 2nd shots  26 Total Moderna 2nd shots rate 
7 Total Pfizer booster shots  27 Total Moderna booster shots rate 
8   Total Moderna 1st shots  28 Total Johnson 1st shots rate 
9 Total Moderna 2nd shots  29 Total Johnson booster shots rate 
10 Total Moderna booster shots  30   Total Pfizer TS 1st shots rate 
11 Total Johnson 1st shots  31 Total Pfizer TS 2nd shots rate 
12 Total Johnson booster shots  32 Total Pfizer TS booster shots rate 
13   Total Pfizer TS 1st shots  33   Total Pfizer TS10 1st shots rate 
14 Total Pfizer TS 2nd shots  34 Total Pfizer TS10 2nd shots rate 
15 Total Pfizer TS booster shots  35 Total COVID counts up to 05/01/2022 
16   Total Pfizer TS10 1st shots  36 Total of in beds patients up to 05/01/2022 
17 Total Pfizer TS10 2nd shots  37 Total of in beds COVID patients up to 05/01/2022 
18 Total vaccine shots rate  38 Total of ICU patients up to 05/01/2022 
19 Total 1st shots rate  39 Total of ICU COVID patients up to 05/01/2022 
20   Total 2nd shots rate    

 
 

Feature Sets of Each Model 
To provide more information on how the baseline model is implemented, we list the feature sets 
each model used in Table 3 (supp). 
 
 

Table 3 (supp). Feature sets of each baseline models. Basically, all models have the same amount 
of data for fairness (except ARIMA model which cannot use the static features). Our model outperforms 
other baselines due to that we explicitly extracted disease and location embeddings from the disease 
trends and input the prediction month as timing information.  

ARIMA RSV disease trends 
 

LSTM County level static features 
RSV and other disease trends 

 
Transformer County level static features 

RSV and other disease trends 
 

XGBoost County level static features 
RSV and other disease trends 

 
STAN County level static features 

RSV and other disease trends 
 

HOIST County level static features 
RSV and other disease trends 

 
Our TAP-RSV County level static features 

RSV and other disease trends 
Timing of prediction (our new features) 
Disease tensor representation (our new features, can be extracted 
from disease trends in (2)) 
County tensor representation (our new features, can be extracted 
from disease trends in (2)) 
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Additional Experimental Results 
Additional result 1: five-year trends of 19 pediatric diseases 

We aggregate the disease data over all counties and plot their overall trend on the timeline. 
Different diseases present distinct trends, while many diseases share a similar pattern, such as 
Bronchiolitis, Cold, Hypoxemia, RSV. The results are shown in Figure 1 (supp). 

 

 

Figure 1 (supp). The progression trends of all 19 diseases. We aggregate the disease count over 
all counties and plot their progression trends on the timeline. Different diseases present distinct trends, 
while many diseases share a similar pattern, such as Bronchiolitis, Cold, Hypoxemia, RSV. 

 

Additional result 2: varying the rank 𝑹𝟏 in disease hierarchical clustering 

The NTF approach can factorize the claim tensor 𝑰 into three low-dimensional matrices, and 
the rank choice of 8 is justified below. We conduct ablation studies on 𝑅% for Analysis 1. We plot 
the change of NTF fitness loss in Figure 2 (supp)(a). The fitness loss is decreasing when 𝑅% 
becomes larger while the decreasing trend slows down gradually. We also show the hierarchical 
clustering results given 𝑅% = 2, 4, 6, 8, 10 in Figure 2 (supp)(b)-(f), while 𝑅% = 8 is used in our 
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experiments (Figure 2 (supp)(e)). We find that the clustering results of 𝑅% = 2, 4 are of low quality 
(for example, Bronchiolitis and RSV are not the nearest) compared to 𝑅% = 6, 8, 10. One possible 
reason is that 19 diseases can present more than 4 general patterns (thus, 𝑅% ≤ 4 can fail), as shown 
in Figure 1 (supp). While 𝑅% = 6, 8, 10 seem to capture all typical trends, and their clustering maps 
make clinical sense to some extent without major differences. Note that since we are clustering for 
19 diseases, 𝑅% should be kept smaller than 19. We choose 𝑅% = 8 in the experiments because it has 
a relatively low fitness loss, and the output clustering are informative. 

Additional result 3: location clusters and patterns for Google and CDC data 

Location clusters and patterns for Google and CDC data are shown in Figure 2 (supp), Figure 
3 (supp). 

Additional result 4: better performance on longer prediction window 

To evaluate the performance capacity of baselines and our model, we fix the observation 
window up to 08/20/2022 and change the prediction window size to 4 weeks, 8 weeks, 12 weeks, 
and 16 weeks. We want to show that our model is still advantageous in longer window prediction 
(up to the entire 4-month season prediction at once). In this experiment, we do not include the 
ARIMA model, as it trains very slowly (using the pmdarima.auto_arima implementation) and is not 
comparable to other baseline models. We illustrate the prediction setting illustrations in Figure 4 
(supp). 

For this new setting, we use the same four metrics and plot the comparison in Figure 5 (supp). 
Each plot represents one metric, and each curve (associated with the error bar) represents one model. 
Based on the results, we can tell that the performance of all models degrades with longer prediction 
window, and our model consistently outperforms the baselines in all scenarios. LSTM appears to be 
a very strong and stable baseline. Note that we find Transformer model gives abnormal behaviors 
once the prediction window becomes 08/20 -> 10/15. Although it seems to have decent MSE and 
MAE metric, we can analyze from the extremely low PCC values (< 0.1) that in these scenarios, the 
Transformer model actually outputs random results (which may likely to be all near 0).  

 

 

Figure 5 (supp).  Illustration of longer window prediction for 2022-2023 season (4, 8, 12, 16 weeks 
ahead) 

 

Additional result 5: distribution of true and predicted county-level case counts 

To support our statement in Figure 4 (main)(b) that “the relative scale of the prediction is 
generally smaller than the true scale”. We plot the x-log distribution of the true and predicted county-
level case counts in Figure 6 (supp). As we can observe that the predicted distributions are more 
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towards the left compared to the true case count distribution, which verifies our statement.  
 

 
Figure 6 (supp). Performance comparison in longer window prediction. The performance of all 

models degrades with longer prediction window, and our model consistently outperforms the baselines 
in all scenarios. The Transformer model fails starting at the second prediction. Its PCC values are close 
to 0, which means that the output becomes random. 

 
 

Additional result 6: ablation study on model feature components 

Given the performance, we analyze the contributions of different feature components (i.e., 
disease embedding, location embedding, month embedding, static features, and the observation 
time-series) in our TAP-RSV model. We consider the following model variants: 
• TAPRSV-No-Disease-Emb: our model without the disease embedding 𝒅, 	(𝑖 = 1,… ,19); 
• TAPRSV-No-Static-Feature: our model without the static features 𝑴%,𝑴!,𝑴(,𝑴);  
• TAPRSV-No-Location-Emb: our model without location embedding 𝒍* 	(𝑗 = 1,… , 2334); 
• TAPRSV-No-Timing: our model without the month embedding 𝑴(𝑚); 
• TAPRSV-No-Time-series: our model without the disease time-series. 

 
For each model variants, we retrain them from scratch under five initializations with different 

random seeds. We compare our full TAPRSV model with the variants on the prediction window 
10/15/2022 – 11/12/2022 since this window includes the peak of RSV. The performance is shown 
as bar charts in Figure 7 (supp). The first model is our full TAPRSV, and we roughly sort the model 
variants by their feature importance order (same for all figures). Obviously, the time-series sequence 
is the most important feature by default. The model will degrade a lot without time-series on all 
metrics. We also find that the timing (i.e., the month representation) and the location embeddings 
are two other important factors in the prediction, which can be explained from the location clustering 
perspective. Refer to the clustering map in Figure 2 (main)(a), Figure 2 (supp), Figure 3 (supp), 
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we can tell that the future RSV progression pattern of a county or a state might be uniquely identified 
by the location cluster and the timing. 

 
Figure 7 (supp) | x-log distribution of true and predicted county-level case counts | We can 

observe that the predicted distributions are more towards the left compared to the true case count 
distribution. 

 

Additional Results 7: p-values of one-sided T-test for Table 1 (main) 

The p-values of one-sided T-test for Table 1 (main) is shown in Table 4 (supp). 
 
Table 4 (supp). P-values of one-sided T-test of Table 1 (main). Format: 4 decimal precisions in 

scientific notation. The results are generated under 5 random seeds. We can observe that most of the p-
values are smaller than 0.05, meaning that the performance gain of our TAP-RSV model is generally 
significant over the baselines. Among all baselines, the HOIST model shows the best performance. There 
are some cases that our TAP-RSV model shows better performance over the baselines, however, the p-
values are larger than 0.05. We mark them by shade. “/” means that HOIST model is better than TAP-
RSV in this metric. 

Window Model MSE MAE PCC 𝑹𝟐 
 
 

08/20 
è  

09/17 

ARIMA 7.1887E-09 1.0164E-09 1.2598E-14 5.0936E-08 
LSTM 4.7233E-04 1.6080E-03 4.5601E-02 2.5594E-04 

Transformer 1.6685E-04 1.2140E-03 1.3864E-04 7.6581E-05 
XGBoost 4.3296E-09 3.9258E-04 9.8868E-11 3.0978E-10 

STAN 7.9293E-09 1.6716E-05 1.8372E-10 1.9347E-09 
HOIST 2.2492E-01 4.4111E-02 / 3.2351E-01 

 
 

09/17 
è  

10/15 

ARIMA 2.7831E-01 1.1002E-05 9.1656E-15 1.5390E-09 
LSTM 3.2731E-05 2.6077E-05 1.4142E-04 2.2312E-05 

Transformer 1.4479E-05 1.1229E-05 5.6260E-05 6.6992E-06 
XGBoost 1.2640E-08 1.1622E-09 3.1737E-09 4.4004E-09 

STAN 1.7523E-09 1.6079E-10 1.3792E-10 4.3610E-10 
HOIST 2.3959E-02 2.3559E-04 6.0403E-02 1.0702E-02 

 
 

10/15 
è  

11/12 

ARIMA 1.6544E-03 1.0217E-08 9.5779E-11 5.6173E-09 
LSTM 1.1905E-05 3.6428E-03 4.9555E-06 9.3181E-06 

Transformer 5.1119E-06 2.0060E-05 1.3783E-05 5.7073E-06 
XGBoost 5.6750E-10 6.0760E-12 1.7774E-04 1.5647E-10 

STAN 1.5008E-10 7.7191E-12 5.4203E-08 3.8955E-11 
HOIST 9.3976E-03 3.2501E-03 1.3736E-01 5.0287E-03 

 
 

11/12 
è  

12/09 

ARIMA 9.0695E-10 1.4510E-05 1.8718E-11 3.2344E-15 
LSTM 2.0936E-05 1.2723E-03 3.9307E-05 3.3909E-03 

Transformer 8.7420E-06 4.9299E-03 2.5154E-05 3.5115E-04 
XGBoost 4.3591E-11 3.1213E-08 7.8752E-06 1.9077E-09 

STAN 4.5037E-10 3.7976E-07 7.4526E-08 2.6607E-09 
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HOIST 7.2957E-02 4.6526E-02 1.4069E-01 1.9835E-01 
 
 


