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When modelling competing risks survival data, several techniques have been proposed in both the statistical
and machine learning literature. State-of-the-art methods have extended classical approaches with more
flexible assumptions that can improve predictive performance, allow high dimensional data and missing
values, among others. Despite this, modern approaches have not been widely employed in applied settings.
This article aims to aid the uptake of such methods by providing a condensed compendium of competing
risks survival methods with a unified notation and interpretation across approaches. We highlight available
software and, when possible, demonstrate their usage via reproducible R vignettes. Moreover, we discuss
two major concerns that can affect benchmark studies in this context: the choice of performance metrics
and reproducibility.
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1 Introduction

Survival analysis comprises a collection of methods to model the time until an event of interest occurs.
Usually, the goal is to estimate the risk of observing the event by a given time or to quantify the relationship
between event risk and known covariates. Survival methods are widely used in several fields; including
medicine, social sciences, engineering and economics. Survival methods have been reviewed by Cox and
Oakes (1984), Carpenter (1997), Klein and Moeschberger (2006) and, more recently, Wang et al. (2019).

A typical element of survival data is censoring, where event times are unknown. This can occur for
several reasons, e.g. lost of follow-up. Survival methods such as the popular Cox proportional hazards
(CPH) model (Cox, 1972) often assume independent censoring: those who were censored at a specific
time are representative of all those who remained at risk.

In some cases, a subject can experience more than one type of mutually exclusive events — typically
referred to as competing risks (CR). For instance, a patient can die from different causes (e.g. cancer or non-
cancer death). If the main focus is a specific event type, others could be recorded as censored observations.
However, the independent censoring assumption does not hold in this setting: if one event occurs, the
others are no longer possible. This can lead to biased estimates in standard models (Austin et al., 2016).

The development of CR survival models is an active area of research (e.g. Ng and McLachlan, 2003;
Ishwaran et al., 2014; Lee et al., 2018; Nemchenko et al., 2018; Dauda et al., 2019; Sparapani et al., 2020),
but state-of-the-art approaches have not been widely adopted in applied settings. This may be because
papers are not aimed for practitioners, or due to lack of clear benchmarks that highlight the strengths and
drawbacks of each method. The lack of (open-source) software can also prevent wide adoption. As a result,
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2 Karla Monterrubio-Gómez et al.: A review on statistical and machine learning competing risks survival methods

real-world CR applications have primarily made use of long-established methods (e.g. Fine and Gray,
1999), leaving the application of more modern methodologies often limited only to academic exercises.

The purpose of this review is to summarise the current landscape of CR approaches, including methods
developed by two overlapping but still distinctive communities; namely, statistics and machine learning.
We aim to unify the notation and interpretation across methods, facilitating their comparison. To aid the
uptake of state-of-the-art tools, we highlight available software and, when possible, demonstrate their use
via reproducible R vignettes (see www.github.com/VallejosGroup/CompRisksVignettes).
We also discuss common issues encountered when evaluating new CR methods; such as reproducibility
and the choice of performance metrics. We highlight that this review focuses solely in traditional CR
methods for the purpose of risk prediction or to quantify the association between covariates and event risk.
Other important topics such as joint modelling of CR time-to-event and longitudinal data (e.g. Williamson
et al., 2008; Andrinopoulou et al., 2014; Hickey et al., 2018), and causal inference in the presence of CR
(e.g. Rudolph et al., 2020; Syriopoulou et al., 2022) are not covered here.

2 Background

Consider a continuous random variable, T ≥ 0, defined as the time until which an event of interest occurs.
Let f(t) be the probability density function for T . Often, survival models are specified via the survival
function S(t) = Pr(T > t) =

∫∞
t

f(t) dt or the hazard function

h(t) = lim
∆t→0

Pr(t < T ≤ t+∆t | T > t)

∆t
=

f(t)

S(t)
, (1)

i.e. the instantaneous rate, given that no event has occurred by time t. A variety of parametric and non-
parametric methods exist when a single event type can occur. In the presence of multiple event types
(e.g. cancer/non-cancer death), a composite event (e.g. all cause mortality) can be defined at the cost of
reduced data granularity. Instead, CR survival models can explicitly capture different event types. Here,
we focus on mutually exclusive events: any event prevents the others. If one event prevents others but
not vice-versa (e.g. myocardial infarction and death), If one event prevents others but not vice-versa (e.g.
myocardial infarction and death), semi-CR (Fine et al., 2001; Peng and Fine, 2007; Hsieh et al., 2008) or
illness-death models (Andersen et al., 2002; Meira-Machado and Sestelo, 2019; Xu et al., 2010) may be
used. More generally, multi-state approaches (Hougaard, 1999) may be required when multiple events (as
defined by the transition between different states, e.g. healthy to ill to relapse to death) may be observed.

2.1 Competing risks survival models

Assume K event types and let Z ∈ {1, . . . ,K} be a random variable representing the observed type of
event (as a convention, Z = 0 is also typically used to denote censoring). Different frameworks have been
used to define CR survival models. First, using the cause-specific (CS) hazard function, which quantifies
the instantaneous rate for the k-th event type for subjects that have not experienced any event:

hCS
k (t) = lim

∆t→0

Pr(t < T ≤ t+∆t, Z = k | T > t)

∆t
. (2)

The overall hazard in (1) is the sum across all CS hazards, i.e. h(t) =
∑K

k=1 h
CS
k (t).

Alternatively, CR survival models can also be defined via the cumulative incidence function (CIF):

CIFk(t) = Pr(T ≤ t, Z = k), (3)

i.e. the probability of observing the k-th event type before time t (and prior to other events) or the sub-
distribution hazard function (often referred to as the Fine-Gray hazard, Gray, 1988)

hFG
k (t) = −d log(1− CIFk(t))

dt
= lim

∆t→0

Pr(t < T ≤ t+∆t, Z = k | T > t ∪ (T < t ∩ Z ̸= k))

∆t
,
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(4)

quantifying the instant rate of the k-th event for subjects that have not had that event by time t, but including
those who experienced a competing event. Note that, the key difference between (2) and (4) is the risk set
used to define the probability. In addition, the one-to-one correspondence between hFG

k (t) and CIFk(·) (see
equation (4)) is not valid for the k-th CS hazard in (2). Indeed, CIFk(·) depends on the CS hazard functions
for all event types. This relationship is given by:

CIFk(t) =

∫ t

0

hCS
k (s)S(s) ds, where S(t) = exp

[
−

K∑
k=1

(∫ t

0

hCS
k (s) ds

)]
(5)

Finally, latent failure times CR models assume T = min{T1, . . . , TK} and Z = argmink{Tk}, where
Tk is an event-specific time which is unobserved, unless Z = k. Such models are typically defined through
the joint survival function ST1,...,TK

(t1, . . . , tK) = Pr(T1 > t1, . . . TK > tK). However, the marginal
distributions of the latent times Tk are non-identifiable, unless non testable assumptions (e.g. independence
between Tk’s (Cox, 1962; Tsiatis, 1975) or that dependency arises through a known copula (Zheng and
Klein, 1995)) are made. This non-identifiability and the usage of non-testable assumptions can make this
class of models difficult to interpret (see e.g. Andersen and Keiding, 2012).

2.2 Regression models for CR survival data

Often the aim is to quantify how a set of covariates (features) affects CR outcomes, or to use such covariates
in order to predict the risk associated to different event types. Assume we have observations {(Ti, Zi), i =
1, . . . , n}, where Ti and Zi represent the event time and event type for the i-th subject. Let xi ∈ Rp be a
p-dimensional vector of features for subject i. As in Cox (1972), a regression model can be defined via the
CS hazard functions in (2) as

hCS
k (ti | xi) = hCS

k0(ti) exp
(
x⊤
i βk

)
, k = 1, . . .K, (6)

where hCS
k0(·) is a CS baseline hazard and βk = (βk1, . . . βkp)

⊤ a vector of covariate effects such that
exp (βkj) is the relative change in the CS hazard linked to a unit change in the j-th covariate. Inference
can be done by fitting K separate CPH models where competing events are treated as censored observa-
tions. As in Cox (1972), an estimate of hCS

k0(·) is not required to infer βk (which can be derived from the
partial likelihood; Appendix A). However, hCS

k0(·) is required to perform prediction. For this purpose, the
estimator in Breslow (1972) or a parametric model (e.g. Weibull) can be used.

Fine and Gray (1999) developed an alternative approach based on the sub-distribution hazard function
in (4). Analogous to (6), this is defined by

hFG
k (ti | xi) = hFG

k0(ti) exp
(
x⊤
i γk

)
, k = 1, . . .K, (7)

where γk = (γk1, . . . , γkp)
⊤ is a vector of covariate effects estimated using the inverse probability weight-

ing (Robins and Rotnitzky, 1992). The sign of γkj indicates whether an increase in the j-th covariate is
associated with an increase/decrease in the incidence of the event, but γkj does not measure effect sizes on
the probability of the occurrence of the event. Note that γk is not in the same scale as βk (which quantifies
how differences in covariate values translate to differences in the CS hazard functions); thus, one should
be cautious when comparing their values (Austin and Fine, 2017). Moreover, the proportional hazards
assumption cannot simultaneously hold in (6) and (7) (Grambauer et al., 2010).

Due to (4), (7) is often referred as a CIF regression model and can be re-written as:

log [− log{1− CIFk(ti | xi)}] = log [− log{1− CIFk0(ti)}] + x⊤
i γk, k = 1, . . . ,K, (8)
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where CIFk0(·) is the baseline CIF for the k-th event (all covariate values equal to zero). This can be
interpreted as a Generalized Linear Model (GLM) with a complementary log-log link function. The CIF
regression approach is better suited than (6) when developing risk prediction models (Austin et al., 2016).
However, one limitation is that, for certain covariate and time specifications, the sum of the K estimated
CIFs may exceed 1 (Austin et al., 2021).

Regression models based on latent failure times also exist. For example, under independence, an ac-
celerated failure time (AFT) model (Kalbfleisch and Prentice, 2011) can be used for each latent time. Let
log(Tik) be the k-th latent time for subject i. The AFT model can be defined as

log(Tik) = x⊤
i νk + εik, (9)

where νk = (νk1, . . . νkp)
⊤ is a vector of regression parameters and εik are independent and identi-

cally distributed errors. Depending on the error distribution, several parametric models can be obtained
(e.g. Weibull or log-Normal). In addition, in the case of dependent latent failure times, Heckman and
Honoré (1989) provide identifiability conditions for both PH and AFT models.

3 Recent advances on competing risks survival models

Whilst the approaches described in Section 2.2 have been successfully used in a wide range of applications,
they do not always provide the flexibility required for specific use cases. More recent, CR methods have
introduced flexibility in terms of non-linear covariate effects, time varying covariates, variable selection,
missing data, and scalability, among others. Here, we summarise such approaches. Previous reviews in
this area (e.g. Zhang et al., 2008; Haller et al., 2013) have primarily focused on the statistics literature. In-
stead, we provide a more comprehensive survey which covers recent contributions by the machine learning
community. As the boundary between these disciplines is diffuse (Bzdok et al., 2018), we do not explicitly
distinguish them. Instead, methods are grouped based on the specifications discussed in Section 2.2.

Table 1 summarises the methods included in this review where we highlight differences in terms of:

1. Type: is the model defined by a finite (small) number of parameters (parametric)? Or is it semi-
parametric (e.g. non-parametric baseline hazard and parametric covariate effects)? Or non-parametric?

2. Proportional Hazards (PH): does the method assume a PH specification in terms of either the CS
hazard function (6) or the sub-distribution hazard function (7)?

3. High dimensional: can the method be applied to datasets with high-dimensional covariates (n < p),
performing either feature selection (or regularization) or dimensionality reduction?

4. Missing data: does the method support missing covariate values and/or missing outcomes (e.g. un-
known event type)? If so, under what assumptions?

The use of a (semi-)parametric model does not guarantee a straightforward interpretation for the re-
gression coefficients; that depends on the model specification. If the model is defined via the CS hazard,
regression coefficients may be interpreted in a CS hazard scale, but their interpretation in a CIF scale is
generally complex due to the relationship in (5). The opposite is true for CIF-based models. More gener-
ally, unless a PH specification is assumed, the actual values for the regression coefficients are often difficult
to interpret in a meaningful way (e.g. only their sign may be interpreted as increases/decreases in risk).

4 Approaches based on a cause-specific hazard specification

4.1 Penalised regression

As mentioned in Section 2.2, (6) can be estimated using available software for CPH models. If p < n, but
large with respect to n, this could lead to overfitting. Moreover, this is not possible in high-dimensional

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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settings (p > n). Penalisation can alleviate these problems by shrinking regression coefficients towards
zero. This is achieved by when maximising the penalised partial likelihood, i.e. :

β̂k = argmax
βk

LCS(βk)− λπθ(βk), (10)

where LCS(βk) is the partial likelihood (Appendix A), πθ(·) is a penalty function (which may depend on
a parameter θ) and λ is a weight that controls the shrinkage strength, leading to models with varying levels
of sparsity (the penalty can comprise two of more terms and corresponding weights). Typically, cross-
validation is used to choose optimal weights (Tibshrani, 1997). Often, the value of λ that minimises a pre-
specified loss function is selected (typically referred to as λmin). However, in some cases, several values
of λ may result in similar cross-validated performance. Hence, choosing λmin may not be appropriate. An
alternative, more parsimonious, choice can be selected by using the so-called λ1se (Hastie et al., 2009). The
latter represents the highest value of λ (i.e. the strongest regularisation) such that the chosen performance
metric is within 1 standard deviation of the one associated to λmin. Several types of penalty have been
proposed, e.g. lasso (Tibshrani, 1997), adaptive lasso (Zhang and Lu, 2007), elastic net (Engler and Li,
2009) and scad (Fan and Li, 2002). Each of these leads to different properties of the algorithm (e.g. some
introduce sparsity, setting some regression coefficients to be exactly equal to zero). Related Bayesian
methods have also been proposed (e.g. Ibrahim et al., 1999).

4.2 Boosting

Boosting (Breiman, 1998; Friedman et al., 2000) methods aim to convert a weak learner (typically a simple
algorithm) into a strong learner (a composite algorithm that combines several weak learners) through iter-
ative optimisation. These ideas have been adapted to derive survival methods suitable to high-dimensional
settings. For the CPH model, boosting can iteratively infer regression coefficients whilst introducing spar-
sity; this can be also applied to CR data under the model in (6). Cox model-based boosting (Ridgeway,
1999) and Cox likelihood-based boosting (Binder and Schumacher, 2008) follow a similar procedure. At
each iteration b = 1, . . . , B, all possible marginal regression coefficient updates (i.e. one at the time) are
explored. An optimality criteria is then used to select the j∗-th covariate and to update the corresponding
coefficient as β(b)

kj∗ = β
(b−1)
kj∗ +a

(b)
j∗ , where β(b−1)

kj∗ is the previous value. However, the methods differ on the

criteria that is used to select j∗ and on how a
(b)
j∗ is calculated: for Ridgeway (1999) these are based on the

gradient of the partial log-likelihood, instead Binder and Schumacher (2008) uses the L2-norm penalised
partial log-likelihood (see De Bin, 2016, for more details). In both cases, if p < n, the final estimate con-
verges to the Cox (1972) estimator as B → ∞ (De Bin, 2016). The optimal number of boosting iterations
B can be tuned e.g. using cross-validation (Verweij and Van Houwelingen, 1993). Similar to the previous
section, B may be chosen to minimise a pre-specified metric (more parsimonious choices may also be
selected using a similar rationale to λ1se in the previous section).

The methods above introduce sparsity by permitting both mandatory and optional covariates. The first
approach incorporates mandatory features through an offset term (Boulesteix and Hothorn, 2010), where
the regression coefficients for the mandatory covariates are not updated during the boosting procedure.
In contrast, the method by Binder and Schumacher (2008) permits updating the regression coefficients of
both, mandatory and optional covariates, but the optional features may be excluded through penalisation.
De Bin (2016) pointed out how these different strategies can be reformulated in an equivalent manner.

4.3 Lunn-McNeil

Instead of modelling each event type separately, Lunn and McNeil (1995) proposed a joint model. This
can allow a more parsimonious model specification by (e.g. sharing model parameters across different
event types) which may, in turn, lead to lower sample size requirements. Inference can be performed using
standard survival analysis software after converting the data into an augmented layout which is constructed

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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as follows. For individuals that experienced one of the K event types, the data is duplicated K − 1 times,
setting the event as censored for the duplicates. For censored observations, K rows are added with the
event marked as censored (see example in Appendix B). Note that the augmented data layout also allows
the use of the penalised regression and boosting algorithms described in the previous sections.

Two frameworks for inference are introduced. First, a stratified approach, which is equivalent to sepa-
rate CPH models for each event type and where the k-th hazard is given by

hLM1
k (ti | xi) = hLM1

k0 (ti) exp

(
K∑

k=1

δikx
⊤
i βk

)
. (11)

In (11), δik = 1{Zi = k} are event type indicators, hLM1
k0 (·) is a CS baseline hazard and βk denotes a

cause-specificp-dimensional vector of regression coefficients. Unlike cases in which separate models are
fit for each event type, this approach permits the use ofsimpler models, e.g. where covariate effects are
shared across different event types (β1 = β2).

The second, unstratified, framework is defined as

hLM2
k (ti | xi) = hLM2

0 (ti) exp

(
x⊤
i θ

′ +

K∑
k=2

αkδik +

K∑
k=2

δikx
⊤
i β

′
k

)
, (12)

where the baseline hazard hLM2
0 (·) and the p-dimensional vector of coefficients θ′ relate to the first event

type (k = 1), which is used as a reference. In (12), αk and β′
k (k = 2, . . . ,K) capture event-specificdeviations

(baseline hazards and covariate effects) with respect to the reference event.Inference on those parameters
can therefore be used to compare the behaviour of different event types. However, one disadvantage of
this approach is that it assumes the shape of the baseline hazard to be the same across different event types
(except for a proportionality constant). This is not generally appropriate for all applications.

5 Approaches based on the CIF

5.1 Penalised regression

Kuk and Varadhan (2013) developed a stepwise approach (forwards and backwards) to perform variable
selection under the model in (7). Alternatively, similar to the methods described in Section 4.1, penalised
regression approaches that adapt (7) to high-dimensional scenarios (p > n) have also been proposed. In
particular, Fu et al. (2017) introduced a general penalised regression framework using a coordinate descent
algorithm that permits individual and grouped variable selection. The authors implemented four types of
penalties: lasso (Tibshrani, 1997), adaptive lasso (Zhang and Lu, 2007), scad (Fan and Li, 2002) and mcp
(Zhang, 2010), as well as their grouped variations. A related method by Ha et al. (2014) was developed
under a frailty model specification with shared or correlated random effects. More recently, Sun and Wang
(2023) introduced Random Approximate Elastic Net (RAEN) based on an split-and-merge strategy. First,
variables are split into several sets of correlated variables (p < n). Within each set, an elastic net penalised
version of (7) is used to pre-select variables based on boostrap samples. Finally, pre-selected variables are
merged into a single group prior to a final selection step (also using elastic net and boostrap).

5.2 Boosting

As in Section 4.2, Binder et al. (2009) developed a boosting approach to iteratively estimate the regression
coefficients in (7), whilst supporting high-dimensional covariate settings. More concretely, they proposed
a sub-distribution hazard boosting approach. To enable feature selection, covariates are divided into a
set of mandatory (Imand) and a set of optional (Iopt) features. At each boosting iteration, b = 1, . . . B,
regression coefficients for mandatory features γkl(∀l ∈ Imand) are estimated jointly by maximising the

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 52 (2010) 61 7

partial likelihood. Then, for optional covariates, only one regression parameter is updated. Tha latter is
selected based on penalised partial log-likelihood estimates for all possible models:

hFG
k (ti | xi) = hFG

k0(ti) exp
(
ζ
(b−1)
ki + xijη

(b)
kj

)
, ζ

(b−1)
ki = x⊤

i γ
(b−1)
k , j ∈ Iopt, (13)

where ζ
(b−1)
ki is treated as an offset. Regression coefficients are then updated as γ(b)

kj = γ
(b−1)
kj + η

(b)
kj for

the selected covariate and γ
(b)
kj = γ

(b−1)
kj otherwise.

5.3 Pseudo-values

Following Fine (2001) and Andersen et al. (2003), Klein and Andersen (2005) propose a method based on
the jackknife (leave-one-out) CIF estimator and GLMs. A regression model is directly specified in terms
of the CIF, using an arbitrary link function. Given a pre-specified time point grid τ1, . . . , τM (the authors
recommend five to ten equally spaced points for this purpose), Andersen et al. (2003) define pseudo-values
for the CIF of the i-th individual at time point τm for the k-th event type. These are given by

θimk = nCIFk(τm)− (n− 1)CIF−i
k (τm), (14)

where CIFk(τm) is the Aalen-Johansen (Aalen and Johansen, 1978) CIF estimator evaluated using all the
data and CIF−i

k (τm) is the corresponding estimate after removing the i-th observation. Then, based on
these pseudo-values, a GLM is used to estimate covariate effects on the CIF:

g(θimk) = αmk + x⊤
i γk, (15)

where αmk and γk = (γk1, . . . , γkp)
⊤ are regression coefficients estimated via generalised estimating

equations (Liang and Zeger, 1986) and g(·) is a link function. If g(·) is a complementary log-log link,
then (8) is recovered (i.e. a PH specification is assumed for the sub-distribution hazard) and γk can be
interpreted in the same way as for the Fine and Gray (1999) method. However, this is not the case for more
general link functions which induce a different (parametric) relationship between covariates and the sub-
distribution hazard. In such cases, as g(·) is monotonic, the sign of the regression coefficients is associated
with increases/decreases in the CIF, but the actual values are harder to interpret.

Finally, (15) can be extended to include time-varying covariate effects can be added as:

g(θimk) = αmk + v⊤
i ηk(ti) + u⊤

i γk, (16)

where observed covariates, xi, are split into those with time varying effects (vi) and those with constant
effects (ui), whose corresponding regression coefficients are ηk(ti) and γk, respectively.

5.4 Direct binomial

Similar to Klein and Andersen (2005), Scheike et al. (2008) propose a semi-parametric strategy that does
not rely on a PH assumption. Their approach extends (8) to a more general class that enables both, time-
varying and constant covariate effects. This includes a goodness-of-fit test to check if time-varying effects
are required. The regression model is defined as

CIFk(ti | xi) = g−1(ηk(ti),γk,xi), (17)

where g(·) is a known link function, ηk(ti) are time varying parameters, and γk captures constant covariate
effects. Both, γk and ηk(ti) are estimated through score equations. More precisely, Scheike et al. (2008)
studied an additive and multiplicative specification, defined respectively as

g{CIFk(ti | xi)} = vi
⊤ηk(ti) + f(γk,ui, ti), and (18)

g{CIFk(ti | xi)} =
[
vi

⊤ηk(ti)
]
f(γk,ui, ti), (19)
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where f(·) is a known function and xi is split as in (16). As in Section 5.3, the interpretation of γk is not
straightforward for arbitrary choices of g(·) and f(·). However, the sign of γk can be interpreted in terms
of whether changes in covariate values are linked to increases or decreases in the CIF.

More recently, Ambrogi and Scheike (2016) extended this approach to enable its use in high-dimensional
settings. Similar to the models in Section 5.1, they proposed the used of a penalised regression framework.

5.5 Parametric constrained CIF

A related approach was proposed by Shi et al. (2013), which extended (8) as

gk{CIFk(ti | xi)} = gk{CIFk0(ti)}+ x⊤
i γk, k = 1, 2;

where the link functions gk{·} are the generalised odds rate model by Jeong and Fine (2006):

gk(u) = log
[
{(1− u)−αk − 1}/αk

]
, with 0 < αk < ∞. (20)

To ensure that CIF1(t | xi) + CIF2(t | xi) = 1 as t → ∞, Shi et al. (2013) treat both events differently.
For the primary event (k = 1), CIF1(t) is set using a modified three-parameter logistic function (Cheng,
2009) for the baseline hazard:

CIF10(ti) =
p1[exp{b1(ti − c1)− exp(−b1c1)}]

1 + exp{b1(ti − c1)}
, (21)

where pk is the log-term probability of the k-th event (CIFk(t) → pk as t → ∞), bk > 0 dictates how fast
CIFk(t) approaches pk, and ck ∈ R. Instead, for the competing event (k = 2), they do not specify direct
covariate effects and the CIF is given by:

CIF2(ti | xi) =
p2(xi)[exp{b2(ti − c2)− exp(−b2c2)}]

1 + exp{b2(ti − c2)}
, (22)

with p2(xi) = (1 − p1)
exp(x⊤

i γ1) and, where b2 and c2 as in (21). Inference is performed via maximum
likelihood, and can be extended to allow for right, interval and left censoring. In this context, γk can be
interpreted in a similar way as discussed in Sections 5.3 and 5.4.

5.6 Dependent Dirichlet processes (DDP)

For K = 2, Shi et al. (2021) introduced a Bayesian non-parametric approach based on infinite mixtures of
Weibull distributions (Kottas, 2006). For each mixture component, CIF1(t | xi) is defined as in (8), i.e. it
assumes a PH specification for the sub-distribution hazard. In turn, the baseline CIF is parametrized in
terms of a normalised baseline CIF D01(t), such that CIF10(t) = c ×D01(t) and c = limt→∞ CIF10(t).
The CIF for the second event type follows the specification by Fan (2008), which ensures that CIF1(t |
xi) + CIF2(t | xi) = 1 as t → ∞. This leads to

CIF2(ti | xi) = (1−c)exp(x
⊤
i γ1)

[
1− {1−D02(ti)}exp(x

⊤
i γ2)

]
, D02(t) = CIF20(t)/(1−c). (23)

Finally, assuming that D01(t) and D02(t) correspond to Weilbull distributions, the DDP model defines
the i-th subject likelihood contribution as a Dirichlet Process mixture model (Escobar and West, 1995)
which permits clustering of observations. As in Gelman et al. (2008), a weekly informative Cauchy prior
is assigned to regression coefficients assuming that covariates are standardized to have mean equal to zero
(with 0.5 standard deviation for continuous covariates; binary variables are coded such that there is a
difference of 1 the levels). The DDP approach scales linearly with the sample size and with the number of
features. Moreover, it permits inference with interval censored data and time-dependent covariates.

Note that, although a PH assumption is specified for the sub-distribution hazard of the first event type
within each mixture component, the latter does not hold for the overall mixture. As such DDP may be
applied to datasets for which the PH assumption is not appropriate.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 52 (2010) 61 9

5.7 Survival Multitask Boosting (SMTBoost)

SMTBoost (Bellot and van der Schaar, 2018a) is a non-parametric method that combines boosting (Breiman,
1998; Friedman et al., 2000) and multi-task learning (Caruana, 1993) to jointly estimate the CIF associated
to all event types, assuming they share a common structure. The aim is to minimize the difference between
the observed and predicted survival status via the following loss function:

L =
1

K

K∑
k=1

Lk, with Lk = 1
K

K∑
k=1

E
[
1
τ

∫ τ

0

(1{Ti ≤ t, Zi = k} − CIFk(t | xi))
2dt

]
(24)

SMTBoost uses binary partitioned trees as weak learners to recursively split individuals into homogeneous
groups (nodes) with similar time-to-event outcomes. Following Ishwaran et al. (2014), the splitting rule is
based on the Gray’s log-rank test (Gray, 1988): this compares CIFk between nodes and defines a composite
rule via a weighted sum of the test’s statistic across all event types. At each terminal node m, the Aalen-
Johansen estimator (Aalen and Johansen, 1978) for the k-th CIF, CIFAJ

k,m(ti), is calculated. Let Cm be the
index set of observations in node m, the CIF is then computed as

CIFk(ti | xi) =
∑
m

1{i ∈ Cm}CIFAJ
k,m(ti). (25)

The boosting procedure is used to iteratively construct the trees based on weighted versions of the training
data, were a higher weight is given to samples with higher prediction error in the previous iteration. Final
predictions are calculated as a weighted average across all trees.

To quantify the influence of each feature, SMTBoost uses a variable importance measure (computed per
event type). The authors demonstrated the performance of SMTBoost for event types with low incidence, in
datasets with a large number of observations as well as cases in which not all covariates were informative.

5.8 Derivative-based neural network modelling (DeSurv)

Danks and Yau (2022) proposed a flexible, non-parametric approach that can be seen as a continuous time
version of the work by Lee et al. (2018) (DeepHit) or as a CR generalisation of DeepSurv (Katzman et al.,
2018). Similar to the mixture models in Section 7.1, DeSurv factorises the CIF as

CIFk(ti | xi) = Pr(T ≤ ti | Zi = k,xi) Pr(Zi = k | xi)

≡ F̃k(ti | xi)πik(xi), with
K∑

k=1

πik(xi) = 1. (26)

In turn, F̃k(ti | xi) (a proper cumulative density function) is defined as F̃k(ti | xi) = tanh(uk(ti | xi)),
where uk(ti | xi) is a strictly monotonic function whose derivative is parametrised as a neural network
with positive output range (the authors note that any strictly monotonic cumulative density function can be
use in place of tanh). πik(xi) is also modelled as a neural network, using a softmax activation function
to satisfy the sum constrain in (26). In this setting, training is performed using the log-likelihood as a loss
function and the Adam optimisation algorithm (Kingma and Ba, 2015).

6 Approaches based on a latent survival times specification

6.1 Deep Multi-task Gaussian Processes (DMGPs)

Alaa and van der Schaar (2017) proposed a Bayesian non-parametric method using deep Gaussian Pro-
cesses (GPs) (Damianou and Lawrence, 2013), which provide a flexible approach to capture complex
relationships between covariates and outputs. DMGPs build upon a hierarchical construction which resem-
bles a two-layers neural network, but within a fully probabilistic model. Given known covariate values,
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10 Karla Monterrubio-Gómez et al.: A review on statistical and machine learning competing risks survival methods

DMGPs can be used to infer a posterior distribution for the survival times and to estimate an individual-
specific CIF. Let Ti = (Ti1, . . . , TiK)⊤ be a vector of latent survival times for subject i. DMGPs assume
Ti = g(xi) + ϵi, where g(·) is a multi-output random function and ϵi is an error term. In turn, g(·) is
defined via a two-layer hierarchical model which enables non-Gaussian outputs:

Ti|ζi ∼ N
(
fT (ζi), ω

2
T IK

)
, (27)

ζi ∼ N
(
fζ(xi), ω

2
ζIq
)
. (28)

where Iq is a q-dimensional identity matrix and ζi a q-dimensional latent variable (q = 3 was used in
the original publication). Moreover, fT (·) : Rq → RK and fζ(·) : Rp → Rq are independent zero cen-
tred vector-valued GPs whose covariance functions (kernels) Cθζ (·, ·) and CθT (·, ·) depend on parameters
θζ and θT , respectively. These are defined using the intrinsic coregionalization model, which has been
previously used in the context of multi-task learning (Álvarez et al., 2012, Section 4.2). These control
the smoothness of fT (·) and fζ(·). Inference is obtained via a variational framework (Blei et al., 2017),
combined with the inducing points approach of Titsias (2009) to derive a tractable algorithm. The im-
plementation allows the presence of right censored observations. Note that, conditional on fT (ζi), (27)
assumes independence among the latent survival times. This cannot be verified.

6.2 Deep Survival machines (DSM)

Introduced by Nagpal et al. (2021), DSM combines a parametric model for the survival times with a deep
learning framework. The approach is initially introduced for a single event type and then extended to a CR
setting. For each event type, the latent survival times are modelled as a finite mixture of L distributions,
whose parameters (and mixture weights) are linked to covariates via a neural network:

Tik|Zik = l ∼ P(λ̃kl + h(Φθ(xi)
Tλk), α̃kl + h(Φθ(xi)

Tαk)), (29)

Zik ∼ Discrete(softmax(Φθ(xi)
Tωk)), (30)

where P(·, ·) denotes either a Weibull or log-normal distribution; h(·) is an activation function; λk,αk and
ωk are cause-specific vectors of parameters, and λ̃kl, α̃kl act as component/cause-specific intercepts. Φθ(·)
is modelled as a multilayer perceptron (Hastie et al., 2009) which creates a non-linear map between input
covariates and a low-dimensional space. The latter is shared across all event types.

All model parameters are jointly learned during training,optimising a loss function which down-weights
censored observations to reduce potential biases towards long-tails in the survival distribution. In their
experiments, the authors use cross-validation to inform hyperparameter choices (e.g. L).

6.3 Bayesian Lomax delegate racing (LDR)

LDR (Zhang and Zhou, 2018) can be seen as a generalisation of exponential racing in which latent times
are assumed to be independent and exponentially distributed, leading to T = min{T1, . . . , TK} also being
exponentially distributed. LDR extends exponential racing in two ways. First, a Lomax distribution (Lo-
max, 1954) is assigned to the latent survival times. This has heavier tails and can be interpreted as a scale
mixture of exponential distributions. Subsequently, Zhang and Zhou (2018) assumed that each latent time
is determined by a potentially infinite number of sub-risks (e.g. different etiologies of a disease), leading
to a generalisation of a Gamma process (Wolpert and Ickstadt, 1998). To facilitate implementation, Zhang
and Zhou (2018) truncated the Gamma process to L sub-risks (L = 10 was used in their experiments). The
L sub-risks play a similar role to CRs, but nested within each event type. Let Tik = min{Tik1, . . . , TikL}
and x′

i = (1, xi1, . . . , xip)
⊤, the LDR model is based on the following hierarchical formulation:

Tikl|λikl ∼ Exp(λikl exp(x
′
i
⊤
νkl))

λikl|αkl,νkl ∼ Gamma (αkl, 1) , (31)
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where νkl = (νkl0, . . . , νklp)
⊤ are regression coefficients specific to the l-th sub-risk within the k-th event

type. Prior distributions for αkl and νkl are discussed in Zhang and Zhou (2018, Appendix B). After
marginalisation of λikl, inference uses a Gibbs sampler (Geman and Geman, 1984) for moderate n, and
maximum a posteriori through stochastic gradient descent (Kiefer et al., 1952) for larger datasets.

LDR assumes independence across cause-specific latent survival times, which cannot be verified. In the
presence of censored observations or missing event types, LDR uses a data augmentation strategy impute
these values whilst performing inference. The latter assumes a missing-at-random mechanism.

7 Other approaches for continuous time CR data

In this section we introduce methods that do not fall in any of the previous categories or that can accom-
modate more than one specification. For instance, Ishwaran et al. (2014) enable, both, a CS hazard and a
CIF formulation for covariate effects.

7.1 Mixture models

These models decompose the joint distribution of the event time and event type into marginal probabilities
πik(xi) = Pr(Zi = k | xi) of each event type (mixing proportions) and the conditional survival distri-
bution Sk(ti | xi) = Pr(T > ti | Zi = k,xi). This assumes that each individual will experience an
specific event type, which is chosen randomly (Larson and Dinse, 1985). Mixture models typically need
large sample sizes and long follow ups to avoid identifiability issues (Haller et al., 2013). In addition,
these methods have been pointed out as difficult to interpret due to the number of parameters (Haller et al.,
2013), and its reliance on conditioning on the future when decomposing the joint distribution (Andersen
and Keiding, 2012). In general, the CR model is set as a K-component mixture

S(ti | xi) =

K∑
k=1

πik(xi)Sk(ti | xi), with
K∑

k=1

πik(xi) = 1. (32)

In this context, several model specifications have been proposed. In particular, Larson and Dinse (1985)
assumed the number of events across types to be multinomial with probabilities:

πik(xi) =
exp

(
ak + x⊤

i bk

)
1 +

∑K−1
l=1 exp

(
al + x⊤

i bl

) , k = 1, . . . ,K, (33)

where ak and bk are regression coefficients. In addition, they assume

Sk(ti | xi) = exp

{
−
∫ ti

0

hk0(u) exp(x
⊤
i θk) du

}
, (34)

where the baseline hazards, hk0(ti), are piecewise constant functions within L disjoint intervals. This for-
mulation implicitly introduces covariate effects via the CIF via CIFk(ti | xi) = πik(xi) {1− Sk(ti | xi)}.

Maximum likelihood estimates can be obtained using expectation-maximisation (EM, Dempster et al.,
1977). One challenge is to select L: a large L may lead to an overparametrised model; a small L may
cause poor fitting (Kuk, 1992). To overcome this, Kuk (1992) propose a semi-parametric model with
arbitrary baseline hazards and suggests to infer ak, bk and θk using a Monte Carlo approximation of the
marginal likelihood. These estimates are subsequently used within EM to infer hk0(ti). Similarly, Ng and
McLachlan (2003) propose a semi-parametric approach that uses expectation-conditional maximisation
(Meng and Rubin, 1993). In this case, multiple initialisations may be required to ensure convergence of
the algorithm. Furthermore, Chang et al. (2007) propose a different algorithm for maximum likelihood
estimation along with asymptotic properties of the estimators.
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7.2 Tree-based mixture models

Using the same decomposition as in Section 7.1, Bellot and van der Schaar (2018b) introduced a Bayesian
semi-parametric tree-based mixture model. It uses generalised gamma distributions (Cox et al., 2007) to
model the conditional survival distributions in (32), such that Sk(ti | xi) := GGamma(ti | θik, σi, λi),
where θik is scale parameter and σi, λi control the shape of the distribution (all strictly positive). Note
that the generalised gamma distribution contains the Weibull (λi = 1), Gamma (σi = λi) and log-normal
(λi = 1) distributions as specific cases. Let θi := (θi1, . . . θiK)⊤ and πi := (πi1, . . . πiK)⊤ be subject-
specific parameter vectors. Dependency on covariate values xi is introduced as follows:

θi | xi = gθ(xi) + ϵβi, ϵθi ∼ N(0, ω2
θ)

πi | xi = l(gπ(xi) + ϵπi), ϵπi,∼ N(0, ω2
π),

(35)

where gθ(·) and gπ(·) are Rp → RK functions defined by Multivariate Random Forests (Segal and Xiao,
2011), l(xi) = xi/

∑
i xi, and (ω2

θ , ω
2
π) are fixed hyperparameters. Shape parameters (σi, λi) are con-

strained to be shared by subjects that experience the same event type, capturing cause specific risk profiles.
Gamma and Gaussian priors are then assigned to the associated cause-specific parameters. Inference is
performed via an adaptive Metropolis-within-Gibbs scheme (Hasting, 1970; Roberts and Rosenthal, 2009).
Moreover, a permutation approach (Ishwaran, 2007) is used to obtain a measure of variable importance for
the absolute risk of observing a given event type and for the cause specific conditional survival distribution.

7.3 Vertical modelling

Nicolaie et al. (2010) propose to decompose the joint distribution of the event time and type to first estimate
the overall probability of event occurrence and then the probability of a specific event type given that the
event occurred at a given time. This decomposition is unlike the one used by the models in Section 7.1,
which are formulated in the opposite manner. The vertical modelling approach requires to fit two models,
one for the overall hazard function and one for the relative CS hazard defined as rk(ti) = hk(ti)/h(ti).

To estimate the overall hazard function h(t), all event types are considered as events, regardless of their
cause. It can be estimated using a PH approach or with a Nelson-Aalen estimator for a single categorical
covariate. Instead, the CS relative hazard can be fitted via a multinomial logistic regression, with spline
basis functions to smooth the function over time. Nicolaie et al. (2010) discussed two specifications for
rk(ti | xi), one that incorporates interaction effects and one with an additive structure which is given by

rk(ti | xi) =
exp

(
b(ti)

⊤ηk + x⊤
i θk

)∑K
l=1 exp(b(ti)

⊤ηl + x⊤
i θl)

, (36)

where θk denotes a p-dimensional vector of covariate effects, b(ti) introduces smooth dependency on t via
q spline basis functions and ηk represents the regression coefficients associated to them. For identifiability,
all entries of θ1 and η1 are set equal to one. The model in (36) can be extended to allow for interactions
between covariates and splines. While interpretability of the regression coefficients in the relative CS haz-
ard can be challenging, a graphical representation of the estimated relative hazards over time can provide
relevant insights. For instance, one can infer the contribution of the different event types to the overall rate
of failure along time. Note that this approach is implicitly modelling covariate effects via a CS hazard,
hk(t); however, the method does not follow a PH assumption.

Nicolaie et al. (2015) have extended this approach to deal with missing event types under a missing-at-
random mechanism. In such case, all observations are used when inferring the overall hazard function h(t)
but observations with missing event types are ignored when estimating hk(t).

7.4 Random survival forests (RSF)

Ishwaran et al. (2014) introduced a non-parametric approach using an ensemble of random forests (Breiman,
2001). RSF can handle right censored observations, high-dimensional and large data problems, several
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competing events, and permits non-linear/interaction covariate effects. RSF uses a pre-specified number
of boostrap samples (B) to grow B trees using a random selection of covariates when deciding how to
split each node. The tree is iteratively grown until a stopping rule is satisfied (e.g. the terminal nodes have
at least n0 individuals). To divide each node, the j-th covariate is selected and subjects are divided into
daughter nodes based on its value (xj ≤ c or xj > c). Different splitting rules can be used to select j and c.
Two event-specific splitting rules were proposed by Ishwaran et al. (2014): one based on the log-rank test
(Mantel et al., 1966) and one related to a modification of the Gray’s test (Gray, 1988). The former aims
to maximise the difference of CS hazard rates between daughter nodes and its therefore better suited to
identify covariates that influence the CS hazard. Instead, the second rule aims to maximise CIF differences
for the selected event. In addition, a combined splitting rule was proposed for cases where the objective is
to select covariates that affect any cause or when the goal is to predict the CIF of all causes. The splitting
rules are detailed in Ishwaran et al. (2014, Section 3.3).

For each individual i, RSF computes a tree-specific estimate for the k-th CIF using the Aalen-Johansen
estimator. This is denoted as CIF(b)AJ

k (t | xi) and the calculation is based on the terminal node to which the
individual was assigned based on the value of their covariates. Alternatively, RSF also report a measure of
the expected amount of time (e.g. life years) lost due to the k-th cause before time τ :

M
(b)
k (τ | xi) =

∫ τ

0

CIF(b)AJ
k (ti | xi) dt, (37)

where τ is such that the probability of being uncensored is bounded away from zero. Final estimates for
each individual are calculated as an average across all trees.

RSF can perform variable selection based a measure of variable importance (VIMP) and a minimal
depth metric. For each variable, VIMP quantifies the change in predictive accuracy after adding random
noise to the variable. VIMP is calculated in an event-specific or non-event-specific manner using a random
node assignment strategy (Ishwaran et al., 2008). Instead, minimal depth (Ishwaran et al., 2010) is non-
event-specific and measures the depth of the first node in which a variable was selected by the splitting rule.
As illustrated by Ishwaran et al. (2014), both metrics can be combined to select a final set of variables.

In the presence of missing values (covariates or outcomes), the adaptive tree imputation algorithm (Ish-
waran et al., 2008) can be applied. The latter, iteratively splits the nodes whilst imputing missing values
by randomly drawing from non-missing observations within their node. Tang and Ishwaran (2017) shown
that the performance of this approach (and related ones) depends on a variety of factors, including the
missingness mechanism (e.g. missing-at-random) and the correlation amongst covariates.

8 Competing risks survival models for discrete time-to-event data

Note that Janitza and Tutz (2015) proposed another approach based on random forests using a discrete
scale for the survival times.

So far, the models included in this review focus on continuous survival times. However, time-to-event
outcomes are often recorded in a discrete scale (e.g. weeks, months). Recently, Schmid and Berger (2021)
provided an overview for approaches developed in this context. The predominant method is a CR extension
for the proportional odds model (Cox, 1972). This introduces covariate effects through a discrete-time
version of the cause-specific hazard function:

hD
k (t) =

Pr(T = t, Z = k)

Pr(T ≥ t)
. (38)

The CR proportional odds model (Tutz, 1995) is then defined as:

log

(
hD
k (ti | xi)

hD
0 (ti | xi)

)
= λkti + x⊤

i Ωk, k = 1, . . . ,K, (39)
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where hD
0 (ti | xi) = 1 −

∑K
k=1 h

D
k (ti | xi), λkti are baseline log-odds (k-th event versus no event) and

Ωk = (ωk1, . . . , ωkp)
⊤ regression coefficients. This model can be estimated in most statistical software

as a multinomial logistic regression. For this purpose, the data is transformed into a person-period format
(Scott and Kennedy, 2005), using binary indicators Yitk = 1{Ti = t, Zi = k} to capture whether an event
of type k is observed at time t for subject i. In this context, the k-th CIF can be then estimated as

CIFk(ti | xi) =

ti∑
t=0

q(t, k | xi), (40)

where q(t, k | xi) = Pr(Ti = t, Zi = k | xi).
The person-period representation of discrete time CR datasets has enabled several extensions for the

model in (39) based on statistical and machine learning approaches developed for binary or multino-
mial outcomes (see Schmid and Berger, 2021, for an overview). For example, to perform feature se-
lection, a penalised multinomial logistic regression (e.g. as implemented in glmnet) could be employed.
Other approaches specifically developed for discrete time CR datainclude SSPN (Nemchenko et al., 2018)
and DeepHit (Lee et al., 2018), both using neural networks. Another recent approach, by Sparapani
et al. (2020), is based on Bayesian additive regression trees (BART, Hill et al., 2020). BART permits
non-linear/interaction effects, non-proportional hazards, missing data and uses a sparse prior for high-
dimensional covariate spaces. For completeness, as the method by Sparapani et al. (2020) is implemented
within the popular BART R package (Sparapani et al., 2021), we decided to include it in this review.

Sparapani et al. assume that the binary indicators Yitk follow a multinomial distribution with event
probabilities πitk = Pr(Ti = t, Zi = k | Ti ≥ t,xi), which can be seen as a discrete hazard (if the
survival times are not discrete, a discretised scale is adopted with each observed/censored time treated as
a distinct time-point). As multinomial implementations of BART are not widely available, the authors
propose two formulations using BART probit models, focusing on K = 2. In the fist formulation, one
model is used for the time until any event occurs and a second model for the conditional probability of the
event being of type k = 1 given that an event occurred. In contrast, the second formulation employs one
model for the conditional probability of experiencing event type k = 1 at time t given that the subject is
still at risk. A second model is then used for the conditional probability of a type k = 2 event at time t
given that the subject is still at risk and that it has not experience a type k = 1 event. Prior distributions for
the required parameters in the models are discussed in detail in Sparapani et al. (2020, Section 2).

In the presence of missing covariate values, the existing BART implementation (Sparapani et al., 2021)
enables the use of record-level hot-decking imputation (De Waal et al., 2011). The latter imputes miss-
ing values by randomly sampling from non-missing values, regardless of their event time or type. Such
approach may not be appropriate if the number of missing values is high.

9 Software and reproducibility

Provision of open-source and well documented software is critical to ensure wide adoption of new statis-
tical or machine learning methods. Towards this goal, Sonabend et al. (2021) developed the mlr3proba
R library, providing a common interface for several survival models, including some of the CR approaches
here presented (removed from CRAN on May 2022, but actively maintained and available in GitHub).
Another software resource was implemented by Mahani and Sharabiani (2019), supporting Bayesian and
non-Bayesian inference for cause-specific hazard models.

Here, we summarise available software for the methods described in the previous Sections. While some
implementations are available as R or Python packages, other methods are only accessible through ad
hoc source code in public repositories or, in the worse case scenario, there is no code available for the
method’s implementation. Table 2 summarises this. Note that some methods (e.g. Lunn and McNeil,
1995) can be applied using standard survival analysis software (e.g. the survival R package Therneau,
2023), without the need for bespoke implementations. To facilitate adoption, for the methods which have
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Table 1 Summary of the available methods for survival regression with CR.

Model Type
Proportional High Missing
hazards (PH) dimensions (p) data

Approaches based on a cause-specific hazard specification

Cox proportional CS hazard Semi-parametric1 ✓ ✗ ✗

Lunn-McNeil Semi-parametric ✓ ✗ ✗

Penalised Cox PH Semi-parametric ✓ ✓ ✗

Cox model-based boosting Semi-parametric ✓ ✓ ✗

Cox likelihood-based boosting Semi-parametric ✓ ✓ ✗

Approaches based on the CIF
Fine-Gray Semi-parametric ✓ ✗ ✗

Penalised proportional sub-distribution hazard Semi-parametric ✓ ✓ ✗

Sub-distribution hazard boosting Semi-parametric ✓ ✓ ✗

Pseudo-values Semi-parametric ✗2 ✗ ✗

Direct binomial Semi-parametric ✗2 ✓9 ✗

Parametric constrained CIF Parametric ✗2 ✗ ✗

Dependent DP Non-parametric ✗ ✗ ✗

SMTBoost Non-parametric ✗ ✓3 ✗

DeSurv Non-parametric ✗ ✗ ✗

Approaches based on a latent survival times specification
Deep multi-task GPs Non-parametric ✗ ✗ ✗

DSM Non-parametric7 ✗ ✓ ✗

Bayesian LDR Non-parametric ✗ ✗ ✓4

Others approaches for continuous time-to-event data
Mixture models Several ✗ ✗ ✗

Tree-based Bayesian mixture model Semi-parametric ✗ ✓3 ✗

Vertical modelling Semi-parametric ✗ ✗ ✓5

RSF Non-parametric ✗ ✓ ✓6

CR survival models for discrete time-to-event data

BART Non-parametric ✗ ✓ ✓8

1 This and related methods can be parametric if e.g. a Weibull model is used for the baseline hazard.
2 Depends on the choice of link function (PH holds for complementary log-log link).
3 Reports a variable importance measure. Original publication only considered n > p cases.
4 A data augmentation scheme (e.g. within a Gibbs sampler) is used in the presence of censoring (unknown

event time) or missing event types (missing-at-random). Missing covariate values are not permitted.
5 Nicolaie et al. (2010) does not permit missing data. The extension by Nicolaie et al. (2015) allows missing

event types (missing-at-random). Missing covariate values are not permitted.
6 Adaptive tree imputation (Ishwaran et al., 2008) can be used to impute missing covariates or outcomes. See

Tang and Ishwaran (2017) for an evaluation in different settings (e.g. missing-not-at-random).
7 Parametric survival model but a neural network learns a lower-dimensional covariate representation.
8 Missing covariate values are imputed using record-level hot-decking imputation (De Waal et al., 2011). Only

recommended when the number of missing values is small.
9 Not in the original model, but supported when using the extension by Ambrogi and Scheike (2016).
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available R libraries, we provide vignettes to illustrate their usage using publicly available data (Pintilie,
2006). Vignettes are available at www.github.com/VallejosGroup/CompRisksVignettes.

Even when there are software packages accompanied with documentation and when analysis code is
publicly available, reproducibility of an existing analysis is not guaranteed e.g. due to differences in the
computational environment (Beaulieu-Jones and Greene, 2017). Moreover, static vignettes or code in-
cluded as part of a paper are not always updated as the associated software changes. This may introduce
challenges when applying or benchmarking new methods. To ensure reproduciblity of the vignettes pro-
vided here, we also prepared a Docker image (Boettiger, 2015) with all software requirements. The latter
is available at: https://github.com/VallejosGroup/CompRisksVignettes/pkgs/con
tainer/comprisksvignettes.

10 Practical considerations

When deciding on a suitable CR method to employ, the user needs to carefully consider several aspects.
First, from a practical point of view, it is likely that only those approaches with available and well doc-
umented software can be efficiently adopted by practitioners (see software availability in Table 2). The
scalability of such software is also critical, as some (e.g. those that use Markov Chain Monte Carlo algo-
rithms such as Roberts and Rosenthal, 2009, to perform inference) may only be suitable for moderate size
data sets. Second, as there is no single approach that works well for all applications, the specific research
question at hand plays a key role in the choice. For instance, Austin et al. (2016) highlight that methods
based on a CIF formulation are more appropriate for the development of risk prediction models; whereas,
CS formulations are better suited to resolve etiological questions. Moreover, in some cases, applying both
types of methods can provide useful insights of the covariate effects on, both, the incidence and the rate of
occurrence of the event — despite model misspecification (Grambauer et al., 2010; Latouche et al., 2013).

The specific characteristics of the available data can help also to guide the user to make a suitable choice.
The summary presented in Table 1 can help to inform this choice. For instance, in the presence of high-
dimensional covariate spaces some methods perform feature selection or dimensionality reduction; while
others require the user to provide a reduced low-dimensional set of covariates that should be pre-selected.
For example, Austin et al. (2017) reported that the number of (primary) events can substantially affect
estimation performance for the Fine and Gray (1999) model, with data requirements varying depending
on the type of covariates (e.g. 10 events per covariate may be enough for continuous covariates; but 40-50
events may be required in more general cases). More flexible methods likely have higher data requirements
but, in the absence of systematic benchmarks, the guidelines above may provide a rough reference.

If the goal is to understand how different covariates affect an event’s risk, methods that infer paramet-
ric (generally linear in terms of a log-hazard function) covariate effects may be preferable, despite their
reduced flexibility. Alternatively, post-hoc variable importance metrics such as Shapley values (Lundberg
and Lee, 2017) may be used for more complex approaches (e.g. those based on neural networks). When se-
lecting a model, one should also consider the bias-variance trade off between parametric, semi-parametric
and non-parametric approaches (see e.g. Wey et al., 2015). Finally, in the context of risk prediction, en-
semble approaches which combine the predictions generated by different models (e.g. van der Laan et al.
(2007)) can be used to bypass the need to select a single method and improve predictive performance.

11 Application to cancer data

Here, we use a publicly available dataset to demonstrate two common tasks performed in the context of CR
analyses: (i) inference on hazard ratios (cause-specific or sub-distribution hazards) and (ii) risk prediction.
We focus solely on those methods that have well documented and up-to-date R software (Table 2). All
analysis code is available at www.github.com/VallejosGroup/CompRisksVignettes.
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Table 2 Software available for survival regression with CR.

Model CRAN mlr3proba Github (username/repository)

Approaches based on a cause-specific hazard specification
Cox proportional CS hazard riskRegression, ✓

survival, rms
Lunn-McNeil Same as above ✓

Penalised Cox PH glmnet ✓

Cox model-based boosting mboost ✓

Cox likelihood-based boosting CoxBoost1 ✓ binderh/CoxBoost

Approaches based on the CIF
Fine-Gray riskRegression, ✓

cmprsk, crrstep2

Penalised proportional sub-distribution hazard RAEN3 ✗

Sub-distribution hazard boosting CoxBoost1 ✓ binderh/CoxBoost

Pseudo-values pseudo+GEEPACK4 ✗

Direct binomial timereg ✗

Parametric constrained CIF5 ✗ ✗ ✗

Dependent DP DPWeibull6 ✗ ✗

SMTBoost ✗ ✗ alexisbellot/SurvBoost7

DeSurv ✗ ✗ djdanks/DeSurv (Python)

Approaches based on a latent survival times specification
Deep multi-task GPs ✗ ✗

DSM ✗ ✗ autonlab/auton-survival (Python)
Bayesian LDR ✗ ✗ zhangquan-ut/

Lomax-delegate-racing-for-survival-analysis-with-competing-risks

Others approaches for continuous time-to-event data

Mixture models8 NPMLEcmprsk9 ✗

Tree-based Bayesian mixture model ✗ ✗ alexisbellot/HBM7

Vertical modelling10 splines+survival ✗

RSF randomForestSRC ✓

CR survival models for discrete time-to-event data
BART BART ✗

1 Removed from CRAN on Nov 11, 2020 (https://CRAN.R-project.org/package=CoxBoost)
2 To perform forwards/backwards stepwise variable selection.
3 Removed from CRAN on Jan 25, 2023 (https://CRAN.R-project.org/package=RAEN
4 K = 2 only.
5 Example code as supplementary material in Shi et al. (2013).
6 Removed from CRAN on April 26, 2022 (https://CRAN.R-project.org/package=DPWeibull)
7 Bespoke R functions only.
8 See example R code in Haller et al. (2013). For Ng and McLachlan (2003), Fortran code is available upon request.
9 This library implements the approach by Chang et al. (2007).
10 Example code as supplementary material in Haller et al. (2013)
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The data corresponds to the Hodgkin’s disease (HD) study described in Pintilie (2006), and which is
also available in the randomForestSRC package. Hodgkin’s disease is a type of cancer in the lymphatic
system that is often diagnosed in early adulthood. When diagnosed early, the disease is categorised either
in stage I or stage II depending on how much the disease has spread. In both cases, the treatment includes
radiation and/or chemotherapy. Relapse is considered as the primary event of interest. Naturally, some
subjects will die before relapse, and therefore death from any cause constitutes a competing event for
relapse. Table 3 summarises the available data. The latter was randomly split into training and testing sets
(80% / 20% split), using stratified sampling to ensure a similar number of events is present in both sets.

First, we considered the (semi-)parametric approaches listed in Sections 4 and 5 and compared pa-
rameter estimates obtained for the training set (Figure 1). Generally, all approaches agreed in terms of
the sign of the effects: e.g. radiation therapy increases the hazard of relapse (both in the CS-hazard and
sub-distribution hazard scale). However, different methods disagreed in terms of the magnitude of effect
sizes. In particular, for approaches based on a CS specification, lasso penalised regression and model-
based boosting approaches led to lower estimates (in absolute value) than the Cox model in (6). This can
be expected due to the shrinkage/sparsity that is introduced by such methods. Cox-lasso with λ set as λ1se

led to the most parsimonious model with several effect sizes set to be exactly equal to zero.

Finally, for those approaches that enable risk prediction, we estimated the risk of observing a relapse
before t = 5 years for all individuals in the test set (Figure 2). Overall, the predictions obtained by the
different approaches were highly correlated. As it may be expected, predictions were nearly identical when
comparing the more traditional approaches (CS-Cox, Fine and Gray and direct binomial). With respect to
those methods, the strongest discrepancies were observed for RSF and dependent DP. To further explore
these discrepancies, we considered the behaviour of the predicted probabilities as a function of age, sex
and treatment (Figure 3). Generally, we observed that the predicted risk was higher for older individuals.
However, whilst the Fine and Gray approach led to a clear separation of risk scores according to sex and
treatment, a more complex pattern was observed for RSF.
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Figure 1 Parameter estimation. Parameter estimates for covariate-specific effects for the primary event
type (relapse) are compared across methods. A shows estimates obtained for models defined under a CS-
hazards specification: cause-specific Cox (Cox), Cox-lasso using λ1se (lasso 1se; λ = 0.034), Cox-lasso
using λmin (lasso min; λ = 0.002), model-based Cox boosting where B is chosen to minimise the negative
cross-validated likelihood (mboost min, B = 292) and model-based Cox boosting with B = 250 (mboost
other). B shows estimates obtained for models defined under a CIF specification. In both cases, due to
differences in scale, an inset shows parameter estimates associated to age.
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Table 3 Descriptive statistics for the HD dataset. Age is given in years. For sex, F=female and M=Male.
For treatment given (trtgiven), RT=Radiation, CMT=Chemotherapy and radiation. Fos size of mediastinum
involvement (medwidsi), N=No, S=Small, L=Large. For extranodal disease (extranod), Y=Extranodal
disease, N=Nodal disease. For clinical stage (clinstg), 1=Stage I, 2=Stage II. Continuous variables are
described by using mean ± SD, and categorical variables are described as frequencies and percentages.

Characteristic
Overall Relapse Dead Censored
n = 865 n = 291 n = 135 n = 439

Age 35.3 (15.5) 37.6 (17.2) 47.5 (17.3) 30.0 (10.4)
Sex

F 402 (46.5%) 132 (45.4%) 47 (34.8%) 223 (50.8%)
M 463 (53.5%) 159 (54.6%) 88 (65.2%) 216 (49.2%)

Treatment (trtgiven)
CMT 249 (28.8%) 61 (21.0%) 42 (31.1%) 146 (33.3%)
RT 616 (71.2%) 230 (79.0%) 93 (68.9%) 293 (66.7%)

Mediastinum involvement (medwids)
L 113 (13.1%) 36 (12.4%) 10 (7.4%) 67 (15.3%)
N 464 (53.6%) 171 (58.8%) 92 (68.1%) 201 (45.8%)
S 288 (33.3%) 84 (28.9%) 33 (24.4%) 171 (39.0%)

Extranodal disease (extranod)
N 786 (90.9%) 263 (90.4%) 125 (92.6%) 398 (90.7%)
Y 79 (9.1%) 28 (9.6%) 10 (7.4%) 41 (9.3 %)

Clinical stage (clinstg)
1 296 (34.2%) 97 (33.3%) 58 (43.0%) 141 (32.1%)
2 469 (65.8%) 184 (66.7%) 77 (57.0%) 298 (67.9%)

12 Evaluating performance

When proposing a new method, researchers are often interested in evaluating and comparing its perfor-
mance. For example, for (semi-)parametric models, one may use synthetic data to assess whether param-
eter estimates are unbiased. For approaches that include variable selection, one may evaluate their ability
to identify a correct set of input variables. When the goal is to perform risk prediction, the emphasis is on
evaluating how well a method is able to predict whether and/or when specific event types will occur. To
evaluate predictive performance, an external (or test) dataset that was not used to fit the model could be
used. However, internal validation (e.g. via boostrapping or cross-validation) is also important, particularly
for small datasets or when the number of observed events is small (Steyerberg and Harrell, 2016).

Recently, Van Geloven et al. (2022) discussed how to evaluate predictive performance in competing
risks settings, providing examples in R (see https://github.com/survival-lumc/Valida
tionCompRisks). They focused on cases in which the goal is to predict whether the event of interest
will occur within a given time-frame (e.g. 5-year survival). Van Geloven et al. (2022) emphasised the
need to evaluate different aspects of predictive performance including calibration, something that is often
overlooked when developing risk prediction models (Van Calster et al., 2019). A well calibrated model
will assign the correct event probability at all levels of predicted risk. In practice, calibration is often
assessed graphically, but numerical summaries are also available (see e.g. Van Calster et al., 2019; Huang
et al., 2020). Another important aspects are discrimination, i.e. whether the model assigns a higher risk to
individuals who experience the event earlier. Measures for discrimination include the concordance index
(Wolbers et al., 2014; Ahuja and der Schaar, 2019), and time-dependant receiver operating characteristic
(ROC) curves (Blanche et al., 2019; Saha and Heagerty, 2010). Here, we briefly describe some of the
metrics that can be used to evaluate these aspects.
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Figure 2 Out-of-sample predictions. Comparison of individual-level predictions (test set) for the risk
of observing a relapse (primary event of interest) before t = 5 years. For the CS-Cox model, predictions
were calculated using the riskRegression R package which takes into account competing events
when calculating predictions. The first column uses an exponential approximation, such that S(t) =
exp(−H(t)1 − H(t)2), where H(t)j denotes the cumulative hazard for cause j at time t. The second
column uses a product limit estimator that ensures CIF1(t|X) + CIF2(t|X) = 1, as t → ∞. For random
forests (RF), two splitting rules were considered: a modified Gray’s criteria focusing on the first event
type (relapse), and considering the average between the first and second (death) event types. DPWeibull
denotes dependent DP. BART (1) and BART (2) denote the first and second formulation of the BART
model, respectively. DART (1) is a variation of the first BART formulation which enables feature selection.

Concordance. A popular metric to assess discrimination in the context of survival models is via a con-
cordance index (also referred to as C-index, Harrell et al., 1982). Generally, higher C-index indicates better
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Figure 3 Out-of-sample predictions with respect to age, sex and treatment. Individual-level predic-
tions (test set) for the risk of observing a relapse (primary event of interest) before t = 5 years as a function
of age, sex and treatment. A: Fine and Gray, B: dependent DP, C: RSF with a splitting rule based on a
modified Gray’s criteria focusing on the first event type (relapse).

discrimination (and a value equal to 0.5 indicates no discrimination ability). Several definitions are avail-
able, including some that have been adapted to CR settings. For example, if the aim is to predict whether
kth event type is observed prior to a pre-specified time τ , Wolbers et al. (2014) proposed the following
cause-specific time-dependent C-index:

Ck(τ) = Pr (CIFk(τ | xi) > CIFk(τ | xj) | {Zi = k} ∧ {Ti ≤ τ} ∧ {Ti ≤ Tj ∨ Zj ̸= k}) , (41)

for a random pair of individuals (i and j). This metric quantifies if model is able to correctly rank the
risk of observing the . More recently, Ahuja and der Schaar (2019) proposed a joint concordance index to
evaluate the model’s ability to correctly predict both the event type and time. Their approach may be of
interest in cases where more than one event type is of interest. If the interest is to assess discrimination
across the whole follow-up period rather than at a specific time-point τ , a weighted average of Ck(τ) could
be used (see e.g. the approach proposed by Antolini et al. (2005) for a single event type).

Brier score. Schoop et al. (2011) adapted the proper scoring score introduced by Graf et al. (1999) to
competing risks settings. For a given prediction time τ , the Brier score for cause k is defined as the
weighted average of the squared differences between the cause-specific event indicators and the predicted
cause-specific survival probabilities:

BSk(τ) =
1
n

n∑
i=1

wi [1{Ti ≤ τ, Zi = k} − Pr(Ti ≤ τ, Zi = k | xi)]
2
, (42)

where the weights wi capture right censoring (Schoop et al., 2011, , Theorem 4.1). This can be interpreted
as a metric of overall performance, as it encompasses both calibration and discrimination. To summarise
performance across a range of time-points, an integrated Brier Score can be used (Graf et al., 1999).

The lower the value of (42), the better. However, the absolute value of (42) is difficult to interpret as its
scale depends on the number of observed events. As an alternative, an scaled version of (42) can be used.
The scaled Brier score can be computed as follows (Van Geloven et al., 2022):

BSk(τ)
scaled = 1− BSk(τ)

BSk(τ)null , (43)

where BSk(τ)
null denotes the Brier score under the null model (no covariates) and which can be computed

using the Aalen-Johansen estimator (Aalen and Johansen, 1978). The later lies between 0 and 1, where 1
indicates perfect predictions.
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13 Discussion

We summarised a broad range of competing risks modelling techniques, covering both the statistical and
machine learning literature. Our objective is to provide a synthesised catalogue, with unified notation and
interpretation. We also briefly review the metrics that are most commonly used to evaluate and compare
predictive performance. Furthermore, we discuss some practical considerations that may help practitioners
to decide which method is more appropriate to address their scientific question using their available data.

In order to promote the usage of state-of-the-art approaches, we point out to available software and,
demonstrate its practical implementation through reproducible R vignettes. Emphasis on reproducibility is
critical when developing and evaluating new methods. While making the implementation of the method
publicly available using version control hosting tools; such as GitHub or BitBucket, helps towards this
goal; this is not enough. The code must be well documented and, when possible, accompanied with the
raw data (synthetic or real) that was used to assess performance. It is also important provide details on
how such data was generated or processed, as well as a clear description of any ad hoc choices made
(e.g. inclusion/exclusion criteria). For instance, the Surveillance, Epidemiology, and End Results (SEER)
Program1 datasets have been employed to showcase several CR methods (e.g. Zhang and Zhou, 2018; Alaa
and van der Schaar, 2017; Bellot and van der Schaar, 2018b; Nemchenko et al., 2018; Bellot and van der
Schaar, 2018a). However, detailed information on how the dataset used was preprocessed is usually not
provided (in some cases, authors do not even provide the full list of covariates used in the analysis). Similar
issues have been reported when using the MIMIC database (Johnson et al., 2017). This highlights an
urgent need for more systematic and reproducible benchmark pipelines (Mangul et al., 2019) for competing
risks methods which will help to reduce the gap between developers and users. Such benchmark would
ideally help users to better understand the advantages and limitations of each method, including sample size
requirements (both in terms of total sample size and the number of events) and scalability, among others.
For this purpose, the inclusion of a wide range of data sets (with varying characteristics) is important.

Inevitably, as new methods are developed, this review will be outdated. To address this, we aim to have
our GitHub repository (www.github.com/VallejosGroup/CompRisksVignettes) as a living
resource in which others can contribute additional vignettes via pull requests. We hope this will help to
improve accessibility to novel competing risks approaches as they are developed.
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Appendix

A. Parameter estimation for the Cox proportional CS hazard model

Separate CPH models are used for each event type, treating competing events as censored observations.
Regression coefficients in (6) can be estimated without the need to infer the corresponding baseline haz-
ards. For the k-th event type, the corresponding regression coefficients, βk, in (6) can be estimated by

1 https://seer.cancer.gov
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maximising the partial likelihood:

LCS(βk) =

n∏
i=1

(
exp(x⊤

i βk)∑
l∈Ri

exp(x⊤
l βk)

)1{Zi=k}

, (44)

where Ri denotes the set of observations at risk at time ti, i.e. subjects that are not censored or that have
not experienced a competing event by time ti.

B. Lunn-McNeil augmented layout

Assume we have two event types, K = 2. The following table shows the observed data for 3 subjects. The
first, experienced event type 2 at time 10, the second is assumed to be censored by time 70, and the third
experienced event type 1 at time 14.

Table 4 Original layout

Individual Event time (T ) Event type (Z) Covariates

1 10 2 x⊤
1

2 70 0 x⊤
2

3 14 1 x⊤
3

The augmented layout required for LM approach necessitates to have 2 rows per subject, one for each
competing event. In addition, we add event type indicators δik.

Table 5 Augmented layout for LM

Individual Event time (T ) Event type (Z)
Event type indicator (δ)

Covariates
Z = 1 Z = 2

1 10 2 0 1 x⊤
1

1 10 0 1 0 x⊤
1

2 70 0 1 0 x⊤
2

2 70 0 0 1 x⊤
2

3 14 1 1 0 x⊤
3

3 14 0 0 1 x⊤
3

A.3. R vignettes

Vignettes showcasing the usage of some methods are available online at: https://github.com/Val
lejosGroup/CompRisksVignettes.
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hazard functions for the generalized gamma distribution. Statistics in Medicine, 26(23):4352–4374, 2007. doi:
10.1002/sim.2836. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2836.

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34
(2):187–202, 1972. doi: 10.1111/j.2517-6161.1972.tb00899.x. URL https://rss.onlinelibrary.wi
ley.com/doi/abs/10.1111/j.2517-6161.1972.tb00899.x.

David Roxbee Cox and David Oakes. Analysis of survival data, volume 21. CRC Press, 1984.
D.R. Cox. Renewal theory. Methuen, 1962.
Andreas Damianou and Neil Lawrence. Deep Gaussian processes. In Artificial Intelligence and Statistics, volume 31

of Proceedings of Machine Learning Research, pages 207–215, 2013. URL http://proceedings.mlr.
press/v31/damianou13a.html.

Dominic Danks and Christopher Yau. Derivative-based neural modelling of cumulative distribution functions for
survival analysis. In International Conference on Artificial Intelligence and Statistics, pages 7240–7256. PMLR,
2022.

Kazeem Adesina Dauda, Biswabrata Pradhan, B. Uma Shankar, and Sushmita Mitra. Decision tree for modeling
survival data with competing risks. Biocybernetics and Biomedical Engineering, 39(3):697 – 708, 2019. ISSN
0208-5216. doi: https://doi.org/10.1016/j.bbe.2019.05.001. URL http://www.sciencedirect.com/sc
ience/article/pii/S0208521619300245.

Riccardo De Bin. Boosting in Cox regression: a comparison between the likelihood-based and the model-based
approaches with focus on the R-packages CoxBoost and mboost. Computational Statistics, 31(2):513–531,
2016. ISSN 1613-9658. doi: 10.1007/s00180-015-0642-2. URL https://doi.org/10.1007/s00180
-015-0642-2.

Ton De Waal, Jeroen Pannekoek, and Sander Scholtus. Handbook of statistical data editing and imputation, volume
563. John Wiley & Sons, 2011.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977. doi: 10.1111/j.2517-616
1.1977.tb01600.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517
-6161.1977.tb01600.x.

David Engler and Yi Li. Survival analysis with high-dimensional covariates: An application in microarray studies.
Statistical Applications in Genetics and Molecular Biology, 8(1), 2009. doi: doi:10.2202/1544-6115.1423. URL
https://doi.org/10.2202/1544-6115.1423.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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