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Abstract 

Background/Aims 

National guidelines of many countries set screening intervals for diabetic retinopathy (DR) 
based on grading of the last screening retinal images. We explore the potential of deep learning 
(DL) on images to predict progression to referable DR beyond DR grading, and the potential 
impact on assigned screening intervals, within the Scottish screening programme. 
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Methods 

We consider 21346 and 247233 people with T1DM and T2DM respectively each contributing 
on average 4.8 and 4.4 screening intervals of which 1339 and 4675 intervals concluded with a 
referable screening episode. Information extracted from fundus images using DL were used to 
predict referable status at the end of interval and its predictive value in comparison to 
screening-assigned DR grade was assessed. 

Results 

The DL predictor increased the AUC in comparison to a predictor using current DR grades from 
0.809 to 0.87 for T1DM and from 0.825 to 0.87 for T2DM. Expected sojourn time – the time 
from becoming referable to being rescreened - was found to be 3.4 (T1DM) and 2.7 (T2DM) 
weeks less for a DL-derived policy compared to the current recall policy. 

Conclusions 

We showed that, compared to using the current retinopathy grade, DL of fundus images 
significantly improves the prediction of incident referable retinopathy before the next 
screening episode. This can impact screening recall interval policy positively, for example, by 
reducing the expected time with referable disease for a fixed workload - which we show as an 
exemplar. Additionally, it could be used to optimise workload for a fixed sojourn time. 

Synopsis/Precis 

Using deep learning to predict progression to referable retinopathy from fundus images leads 
to screening policies with shorter expected sojourn time than the current screening policy in 
Scotland. 

What is already known on this topic 

Diabetic retinopathy grading schemes, such as those used in the Scottish Diabetic Retinopathy 
screening programme, grade fundus images on a scale - increasing in severity - ranging from no 
retinopathy to proliferative retinopathy. Those with more severe diabetic retinopathy grades 
are more at risk of their diabetic retinopathy increasing to referral or sight threatening over a 
fixed time period than those with less severe diabetic retinopathy. Deep learning on fundus 
images has been shown to predict fundus image gradings at human-level, and more recent 
studies have shown it can predict progression of diabetic retinopathy. 

What this study adds 

Using a large cohort from the Scottish Diabetic Retinopathy screening programme, this study 
provides a thorough quantification of the increment in prediction by using Deep Learning on 
fundus images to predict progression to referable retinopathy, beyond prediction models based 
on current grading. 
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How this study might affect research, practice or policy 

The study shows how policies based on deep learning on fundus images can identify those most 
at risk of developing referable changes and reduce their sojourn time by shortening the 
screening interval, so they are seen within a minimum time of developing sight threatening 
changes. 

1. Introduction 

Screening for diabetic retinopathy (DR) using fundus photography is effective in limiting visual 
impairment caused by DR[1]. Many countries have instituted screening programmes which 
typically assign some fixed interval between screens that depends on the level of disease 
present on the photographs[2–4]. Systematic screening for DR has been running in Scotland 
since 2006.  

The choice of screening intervals in most screening programmes has often been a pragmatic 
compromise between the total workload the system can afford, the desire to minimize the time 
a person with referable disease is in this state before they are detected and referred (i.e. the 
sojourn time) and the feasibility for the person with diabetes (a belief that short intervals 
would be too burdensome but that very long intervals of more than two years might reduce 
adherence)[5]. In practice the acceptable sojourn time is often not quantified but the incidence 
of referable disease at next screen in those assigned to a given interval is used as a proxy[6]. 
Thus the change in the Scottish system to two-yearly screening was made based largely on the 
low overall incidence (<0.3%) of referable disease at next screen in those with no DR in 2 
consecutive screenings. 

There is considerable interest in how screening programmes might be altered in a number of 
ways to gain efficiencies, reduce sojourn times as well as burden on participants. For example 
one might continue to use fixed intervals based on grades, but change the length of these 
intervals as was done in Scotland. Or one might have a different interval for a given grade 
depending on some other stratifying information such as diabetes type. One might move away 
from fixed intervals completely to a personalized interval aimed at achieving equity in risk of 
referable disease at the next screen and so on. To this latter end the increment in AUC for 
prediction of referable disease by including other individual level covariates such HbA1c and 
blood pressure on top of grades has been evaluated[5,7]. However it is important to evaluate 
not just the increment in prediction achieved for any given system change but also other 
aspects such as workload for a given sojourn time distribution or sojourn time distribution for 
a given workload[8]. 

In this paper we evaluate the potential of deep learning (DL) on retinal photographs to assign 
screening intervals both instead of and in addition to the current grading system. 

Here we first assess whether DL can improve the prediction of transition to referable retinal 
grade at next screen if used instead of or additional to the current grading system. We then 
quantify what the impact would be on the distribution of sojourn time if DL was used to assign 
the same fixed intervals of 6, 12, and 24 months as used at present and with the total workload 
of the system held constant at the present level. As an alternative way to summarise impact on 
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sojourn time we quantify whether those who did have referable disease at next intervals would 
have been assigned a shorter interval under use of DL than they were actually assigned under 
the current system. 

2. Methods 

2.1. Data sources 

The study used the Scottish Diabetes Research Network national dataset (SDRN-NDS) [9] that 
linked all fundus images between October 2005 and March 2017 from the Scottish Diabetic 
Retinopathy screening (SDRS) programme to a national register of all people with diabetes in 
Scotland maintained by Scottish Care Information - Diabetes Care (SCI-DC) for primary care 
data. Data was also linked to Scottish Morbidity Records (SMR) for out- and in-patient records, 
and to the General Register Office (GRO) for Scotland for death records. Clinical and retinal 
grading information in the linked register was available from 2003 to 2020. 

We also used data from the DDR Lesion Segmentation Dataset [10], which contained fundus 
images and pixel-level labelling of the images for a number of retinal lesion types including 
microaneuysms. 

2.2. Retinopathy protocol 

The photographic protocol used by SDRS specifies a single macula centred fundus photograph 
from each eye. A variety of non-mydriatic 45 degree fundus cameras were used. Images from 
each eye were classed as ungradeable or graded as 1 of 5 retinopathy (R) grades (R0 through 
R4) broadly based on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale [11] and 1 
of 3 maculopathy (M) grades (M0, M1, M2) [12]. All manual graders contributing to the final 
grade had passed compulsory nationally administered proficiency testing and were assessed in 
QA processes that ensured grading standards were uniform between graders and between 
grading centres. There is a high false-positive rate of referral for maculopathy (M2) since 
lesions on 2D photographs lack specificity for macular oedema. For this reason, we defined a 
referable state in this study as being graded R3, R4, or a composite of M2 and not being 
subsequently rescreened. Not being rescreened is used as a proxy for confirmation that the 
condition of the individual was significant enough to require continued referral to an eye clinic 
and thus removal from the screening programme. During the study period the screening policy 
assigned people to either immediate referral to an ophthalmology clinic [13] (for grades R3, R4, 
or M2), 6 month recall (for grades R2 or M1) or 12 month recall (for R0, R1 and M0) based on 
grading at the most recent screening episode. In 2021 this changed such that those people who 
had no diabetic eye disease (graded R0 and M0) for 2 consecutive screening episodes were 
instead screened every 2 years[14,15]. See appendix for detailed definitions of none/mild 
moderate/referable. 

2.3. Study population 

The study included all screening intervals in the SDRS programme that started and ended 
between 1 January 2007 and 1 January 2019. A screening interval starts with a screening 
episode (interval-start episode) and ends with another screening episode. The latest screening 
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episode prior to the interval-start episode is referred to as the previous episode. The first 
screening interval for each individual and screening intervals starting with ungradable fundus 
images were excluded. Thus each included screening interval has a previous episode and an 
interval-start episode. The previous episode was used to assign recall intervals of 24 months 
within the current screening policy. Observed screening intervals were censored at the first 
referable state, death, or the end of the study period. 

2.4. Analysis overview 

Analysis was separated into 3 sequential stages: a DL training stage, a generalized linear model 
(GLM) fitting stage, and a model performance evaluation stage. Predicted scores from DL 
models trained in the DL training stage were used alongside grading and clinical information to 
fit models in the GLM fitting stage, and these GLM models were evaluated in the final evaluation 
stage.    

2.5. Deep-learning analysis 

Three deep learning models were trained for this analysis with the following functionalities: 

1) ProgressionDL model: Takes 2 fundus images, one for each eye,at the start of the interval, 
and predicts both the log hazard rate of referral at the next screening, the sum of the 
retinopathy grades of the 2 input fundus images and the sum of the maculopathy grades of 
the 2 input fundus images. 

2) GradingDL model: Takes a single fundus image and predicts the current retinopathy grade 
(R0-R4 or ungradable) and maculopathy grade (M0-M2) 

3) LesionDL model: Takes a single fundus image andpredicts the pixel locations of 
microaneuysms. The model outputs the number of pixels containing microaneuysms. 

The ProgressionDL model used a hybrid ResNet50-ViT network architecture 
(vit_small_resnet50d_s16_224 from the timm library by [16]). To provide a single prediction 
from bilateral fundus image inputs, a multiple-instance learning head, as used in [17], was 
added to the hybrid ResNet50-ViT network immediately after the final global average pooling 
layer. The multiple-instance learning module used 4 heads each of dimension 128. The 
multiple-instance learning module was proceeded by 3 linear layers that mapped the output of 
the MIL layer to each of the 3 outputs; a) a single scalar output corresponding to the log hazard 
rate of developing referable disease, b) the sum of retinopathy grades for both eyes, c) the sum 
of maculopathy grades for both eyes. The network structure is illustrated in Figure 1. The 
network was trained using the final screening programme grades as described in 
supplementary methods, as are the details of training GradingDL and LesionDL. 

2.6. Statistical analysis 

GLMs with a complementary log-log link function - to allow for interval censoring - were used 
to model the transition to referable DR from the interval-start episode. We considered 2 
baseline models. The first used only retinopathy and maculopathy grades at the interval-start 
episode corresponding to the information presently used to determine recall policy. The second 
used grades from both the interval-start and previous episodes and clinical covariates including 
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age, diabetes duration, eGFR, HbA1c, BMI, total cholesterol, smoking status, statin use, and 
hypertensive drug use from the interval-start episode. We applied a log transform to the eGFR 
covariate within the model to account for skew. For each baseline a model with and without the 
DL outputs (from ProgressionDL, GradingDL, and LesionDL) was fitted to the tuning dataset for 
the T1DM and T2DM cohorts separately. A GLM using only the DL outputs, from all 3 DL 
models, was also fitted using the tuning dataset for each of the T1DM and T2DM cohorts. 
Predictive performance was evaluated via the AUC, test log-likelihood and the expected 
information for discrimination using the test dataset. The difference in test log-likelihood 
between 2 models provides the strength of evidence that one model improved the predictive 
performance above the other. A difference in test log-likelihood of 6.9 natural log units is 
asymptotically equivalent to a p value less than 0.005 for comparison of nested models[18].  
The difference in expected information for discrimination between 2 models quantifies the size 
of improvement in predictive performance. It is interpretable without knowing the absolute 
value of expected information of discrimination of either model, unlike the AUC (e.g. an 
improvement from an AUC of 0.98 to 0.99 is a larger improvement than from 0.60 to 0.61).     

Sojourn time was estimated as the time between incident referable disease and its detection by 
retinal photography. The information we know is the time between screening examinations and 
the eye status at these 2 time points, exact time of incident disease was not observed. However 
if we assume that the rate of referral is constant over each screening interval, we can use the 
predicted rate of referral from our predictive model to calculate the expected sojourn time, for 
each interval in which a transition occurs using predictive models of the hazard rate.. 

We modelled the hazard function as constant over time, equivalent to a Poisson arrival process 
with an exponential distribution of time to failure. Clinical measures were the nearest recorded 
value between prior to each patient’s interval-start episode within 730 days. Where 
unavailable, clinical measures were imputed using the mi package for R. The current policy 
assigns screening recalls of 6 months, 1 year, and 2 years determined by the screening 
programme grades. To demonstrate the consequence of using DL models to determine the 
current screening interval we calculated the expected sojourn time for the current policy and a 
policy derived from our DL-only model. The DL-derived policy was constructed such as to share 
the same proportion of assigned screening recalls as the current policy. Using all screening 
intervals from the test set the proportion of 6 month, 1 year, and 2 year recalls allocated by the 
current policy, derived from the grades from the interval-start episode, was determined. The 
DL-enhanced GLM using grades from the interval-start episode was used to predict the hazard 
rate for test set screening interval. The intervals were ranked by ascending hazard rate. The DL 
policy was to allocate the top ranking intervals a recall of 6 months, and the bottom ranking 
intervals a recall of 2 years with the remaining intervals allocated a recall of 1 year such that 
the proportion of recalls was the same as for the current policy. The expected sojourn time over 
a 2 year window was calculated for each policy given the DL-predicted hazard rates of intervals 
ending in referral. When calculating the expected sojourn time it was assumed that conditional 
on not being referred within an allocated recall interval, the individual would then be assigned 
the same recall again until either they were referred or the 2-year window elapsed. Using the 
same screening intervals considered for the calculation of expected sojourn time, the mean 
recall interval length of those people who were observed to transition to referral at the next 
screening episode was calculated for each considered policy. A smaller mean recall interval for 
those transitioning is indicative of a preferable policy. 
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3. Results 

3.1. Cohort 

Cohorts included 21346 and 247233 people with T1DM and T2DM respectively. Both cohorts 
were divided into 3 sets: a DL training set (8984 T1DM and 119702 T2DM individuals); a 
tuning and GLM-fitting set (4944 T1DM and 51012 T2DM individuals); and a test set (7418 
T1DM and 76519 T2DM individuals). In the T1DM cohort, of the 1517 screenings with a provided 
grade of M2, but that returned to the screening programme, 1166 (76.9%) returned within 2 years and for 
T2DM of the 4569 screenings with a provided grade of M2, but that returned to the screening 

programme, 3730 (81.6%) returned within 2 years. Clinical characteristics are given in Table 1. 

 

3.2. Do DL-based models predict transition to referable DR more 
accurately than screening programme grades? 

As shown in Table 2 the GLM using only DL outputs increased the AUC, in comparison to a GLM 
using grades from the interval-start episode, from 0.809 to 0.871 for T1DM (an increase in 
expected information for discrimination of 0.7 bits and an increase in test log-likelihood of 
203.1 natural log units) and 0.825 to 0.886 (an increase in expected information for 
discrimination of 0.6 bits and an increase in test log-likelihood of 724.8 natural log units) for 
T2DM. A GLM with both DL outputs and grades did not improve performance substantially 
above that achieved using DL alone. Nor did a GLM using DL outputs, grades from previous 
episode and interval-start, and available clinical covariates. The predictive performance of the 
GLM using only DL outputs remained high across strata of both age and sex. The predictive 
performance was reduced conditioned on having a maximum retinopathy grade of R2 at 
interval-start. A summary of stratified predictive performance can be found in the appendix.  
When selecting a threshold of the DL-only GLM score using Youden’s J statistic for predicting 
referable disease at next screening: 7565 of 32867 intervals in T1DM and 34748 of 289641 in 
T2DM that end with a non-referable assessment were predicted to be referable, and 342 of 421 
intervals in T1DM and 1019 of 1338 in T2DM that end with a referable assessment were 
predicted to be referable.    

3.3. Is expected sojourn time reduced in a recall policy using DL? 

There was a decrease in the estimated expected sojourn time using a GLM based on DL outputs 
compared to a GLM based on screening programme grades by 3.4 weeks in T1DM and 2.7 
weeks in T2DM, as shown in Table 3. Figure 2 shows the distributions of expected sojourn 
times for screening intervals ending in referral for the DL-only and current policy (based on 
screening programme grades) for both T1DM and T2DM. 

3.4. Are more people who become referable assigned to shorter 
recall intervals using a DL-derived policy? 

The workload-matched DL-derived policies, both derived from our GLM model using interval-
start grades and DL outputs and the DL-only GLM, led to more people who were observed to 
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progress to referral being assigned to a 6 months recall than the current policy and less people 
observed to progress to referral being assigned to a 2 year recall in both T1DM and T2DM 
cohorts. This is shown in Table 4. The mean recall interval length for those referable at the next 
screening episode was 11.2 months (T1DM) and 12.6 months (T2DM) for the current policy. 
This reduced to 9.7 months (T1DM) and 11.4 months (T2DM) for DL-only GLM-derived policy 
and 9.7 months (T1DM) and 11.3 months (T2DM) for the DL and grades GLM-derived policy. 

4. Discussion 

4.1. Statement of principle findings 

We have shown that DL applied to fundus images can be used to significantly improve 
prediction of progression to referable retinopathy beyond the information available from 
retinopathy grading. As an illustration of likely clinical benefit we estimated expected sojourn 
time of the current policy and a workload-matched DL-derived policy. This showed that 
prediction by use of DL could lead to a reduction in the delay in detecting people who have 
progressed to referable disease. Expected sojourn time could only be estimated using analytical 
techniques. Therefore we also compared the same policies using mean screening period, and by 
comparing recall interval allocation distributions, of screening intervals which ended in people 
presenting to screening with referable disease. In both cases an improvement is demonstrated 
using DL-based screening interval assignment without increasing the number of screening 
episodes. We found that a model using only DL outputs was not substantially improved by 
including the manual grading information, nor by further including additional clinical 
covariates, which suggests that it would be possible to fully automate the recall policy within 
the screening programme. 

4.2. Comparison with other studies 

It is well known that fundus images contain information that is predictive of future DR state 
and this forms the basis of DR screening programme recall policies. However little is known 
with about the added value that DL could bring to recall interval assignment compared to 
current grading systems. It has been demonstrated that DL can predict progression of 2 or 
more ETDRS grades from fundus images [19], however the cohort size was small and images 
were from 7-field photography in clinical trial participants with macula oedema and hence are 
not representative of a screening programme population. Other studies have considered 
prediction of progression of DR using DL but did not quantify the improvement above current 
grading[20,21]. With respect to screening policy, a number of approaches have been proposed 
to improve screening programmes. For example, existing programmes have extended screening 
intervals to 2 years for those people deemed at lowest risk, supported by evidence of low 
incidence of referable disease at new screen [6]. Others have proposed using personalised 
screening intervals based on prediction models that include covariates such HbA1c and blood 
pressure on top of retinopathy grades, where interval lengths are set to maintain rates of 
referal per screen[7]. In this paper, similarly to a previous study[8], we consider the explicit 
trade off between the time a person is in a referable disease state before they are detected and 
referred (i.e. sojourn time) and the total workload of the system 
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4.3. Strengths and limitations 

A significant strength of the study is that it includes the full population of 268579 patients in a 
nationwide systematic screening programme for DR. The study had some limitations. Firstly, 
the referable outcome was based on the screening programme grade. Confirmation of this 
grade could have been more reliable information from the ophthalmology clinic. This 
information was not available in this study. However M2 referrals who came straight back into 
the screening programme after referral were not labelled as referable to reduce false positives. 
Secondly, because date of incident disease is not known, it is difficult to precisely assess a 
model which assigned a shorter screening interval than the screening programme. For instance, 
where the screening programme assigned a 12 month recall interval, which ended with 
detected referable disease, and the DL model assigned a 6 month recall, we do not know if 
referable disease would have been present at the hypothetical screening episode after 6 
months. We therefore assumed that these patients had high enough risk of progression to 
justify recall at 6 months. Finally, our findings have not been externally validated. 

4.4. Summary 

We have shown that DL prediction of progression to referable retinopathy using fundus images 
can be used to improve screening recall interval allocation within the Scottish Diabetic 
Retinopathy screening programme. Further validation of our DL score is required before it 
could be used in practice within the Scottish screening programme. This would include 
validation against adjudicated grades as opposed to the programme final grade and a validation 
using more recent screening data.   
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Figure 1. Diagram vizualising the structure of the proposed ProgressionDL model. A single hybrid 
ResNet50 ViT is used to process both left and right fundus images. The hybrid ResNet50 ViT outputs are 
then input into a Multiple Instance Learning module. Those outputs are then input to a linear layer to 
determine the log hazard rate. 

 

 

Figure 2. Distributions of sojourn time of screening intervals in the test set observed to transition to 
referable disease for the current policy and the DL-only policy. The left plot shows comparisons of 
sojourn distributions for T1DM and the right show them for T2DM. The mean sojourn times are shown as 
vertical dashed lines. In both plots the density for sojourn times lower than 200 days was larger for the 
DL-only policy. This shows a larger proportion of people requiring referral would be referred sooner under 
the DL-only policy than the current policy which in practice would lead to their treatment starting earlier, 
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Table 1:  Cohort characteristics at interval-start for each cohort stratified by DR status (referable 
or not) at end of interval. Continuous variables show median and quartile range, and categorical 

variables show percentages. 

 T1DM T2DM 

Characteristics Not referable (89577)1 Referable (1339) Not referable 
(904576) Referable (4675) 

Age at diagnosis (years) 21.1 (2.4, 58.2) 16 (1.7, 54.5) 57.8 (33.7, 78.2) 53 (27.1, 78.7) 

Female (%) 47.44 43.47 42.9 43.42 

Diabetes duration at screening (years) 15.8 (2.6, 47) 19 (7.4, 47.7) 7.7 (2.2, 22.4) 12.5 (2.5, 28.2) 

Body mass index 26 (17.8, 52.8) 26.1 (18.8, 53.1) 31.9 (22.6, 54.8) 31.9 (21.9, 54.2) 

Systolic blood pressure 128 (98, 164) 128 (98, 164.8) 134 (106, 170) 136 (106, 180) 

Diastolic blood pressure 75 (55, 110.1) 75 (56, 108.2) 78 (60, 100) 79 (58, 102) 

Height 1.69 (1.48, 1.88) 1.7 (1.5, 1.88) 1.68 (1.5, 1.86) 1.68 (1.49, 1.87) 

Weight 73.4 (41.2, 111) 73.6 (48.9, 110.5) 89 (59, 137.3) 88.4 (57.6, 137) 

HbA1c (mmol/mmol) 68 (42, 115) 81 (50, 130) 54 (37, 103.1) 67 (39, 120) 

Total cholesterol (mmol/l) 4.6 (3, 7.1) 4.8 (3.1, 7.4) 4.4 (2.8, 7.1) 4.4 (2.7, 7.4) 

eGFR (ml/min/1.73m2) 97.8 (53.7, 149.2) 100.4 (47.8, 140.8) 77.7 (39.3, 112.2) 79 (34.1, 115.7) 

Ever smoker (%) 62.44 68.48 72.83 72.6 

Statins (%) 1.02 2.32 9.22 4.66 

Hypertensive drugs (%) 1.04 1.94 9.47 5.07 

Normal vision (%)b 99.43 99.4 99.07 98.46 

Prior CVD event (%) 4.52 7.62 20.92 23.61 

a Number of referable and not referable are the number of intervals that had that status at the end of the interval, not the number of 
patients.  

bNormal vision is defined as 6/18 or better on the Snellen scale. 

 

Table 2:  Prediction of progression to referability for both cohorts. Models are compared using the 
AUC, expected information for discrimination (Λ), and change in test log-likelihood from the 

grades-only GLM (ΔLL). 
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 T1DM T2DM 

Model AUC Λ(bits) ΔLL(nat log units) AUC  Λ(bits)  ΔLL(nat log units)  

Grades model 0.809 0.92 0.0 0.825 1.30 0.0 

Grades model + clinical covariates 0.820 1.00 23.9 0.842 1.37 97.0 

DL 0.870 1.62 203.1 0.886 1.90 724.8 

Grades model + DL 0.871 1.60 202.6 0.887 1.96 776.2 

Grades model + DL + clinical 

covariates 
0.873 1.69 225.7 0.883 1.98 764.4 

 

 

Table 3:  Expected sojourn time under the current policy and the proposed DL-informed policy.  

 Expected sojourn time (weeks)1 

Cohort Current policy Grade+DL policy DL policy2 

T1DM 24.6 21.2 21.2 

T2DM 27.6 24.7 24.9 

1 The expected sojourn time within a 24-month window is estimated for each 
policy given the estimated hazard rates from the DL predictor and the interval 
length assigned by the policy. 

2The DL policy ranks screening episodes by the hazard rate predicted by the DL 
predictor. Screening interval durations for the next episode are assigned in the 
same proportion to the current policy, with 6-month intervals assigned to those 
episodes with highest predicted risk and 24-month intervals for episodes with 
lowest predicted risk. 

 

 

Table 4:  Do DL-based policies assign more screening episodes, where the next screening episode 
was observed to be referable, to shorter recall intervals? The table shows the percentage of total 

intervals that ended in referral assigned to each recall interval for each policy. 
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 T1DM (421 referrals) T2DM (1338 referrals) 

Policy interval Current1 Grade+DL2 DL2 Current  Grade+DL  DL  

6 months 25.9% (109) 45.4% (191) 44.9% (189) 22.4% (300) 34.2% (458) 32.7% (438) 

1 year 67.9% (286) 51.1% (215) 51.8% (218) 61.4% (821) 54.6% (730) 55.9% (748) 

2 years 6.2% (26) 3.6% (15) 3.3% (14) 16.2% (217) 11.2% (150) 11.4% (152) 

1 For each observed screening interval in the test set we assign a 6 month, 1 year, or 2 
year recall interval as determined by the episode grades in line with current policy. 

2 We also assign alternative recall intervals based on a) the DL-only GLM and b) the 
DL+Grading GLM such that number of 6 month, 1 year, and 2 year recall intervals are the 
same as for the current policy. 
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