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Abstract 

Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. 

However, for most people daily salt intake far exceeds their physiological need and is 

habitually greater than recommended upper thresholds. Excess salt intake leads to 

elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, 

excessive salt intake is estimated to be responsible for ~5 million deaths per year globally. 

For approximately one-third of otherwise healthy individuals (and >50% of those with 

hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such 

people are categorized as ‘salt sensitive’ and salt sensitivity of blood pressure is considered 

an independent risk factor for cardiovascular disease and death. The prevalence of salt 

sensitivity is higher in women than in men and, in both, increases with age. This narrative 

review considers the foundational concepts of salt sensitivity and the underlying effector 

systems that cause salt-sensitivity. We also consider recent updates in pre-clinical and 

clinical research that are revealing new modifying factors that determine the blood pressure 

response to high salt intake.  
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Introduction 

For most people, daily salt (sodium chloride) intake habitually exceeds recommended limits. 

This is true globally regardless of sex, age (including children), ethnicity and socioeconomic 

status. The negative effects are long recognized: Huang Di’s Neijing Suwen, written c200 

BCE, cautions that ‘if large amounts of salt are taken, the pulse will stiffen and harden’.1 The 

adverse effects of high salt intake are supported by clinical trials (see Online Supplement) 

and best evidenced for blood pressure (BP).2  Reducing salt intake toward recommended 

upper limits remains an important public health goal for many countries.  The magnitude of 

the BP reduction would vary between individuals but population health gains would be made 

because cardiovascular risk falls with every mmHg.3 A complementary precision strategy is 

to identify individuals who would most benefit from dietary salt-reduction, i.e. those who are 

salt sensitive. This review will highlight key work that shaped the concept of salt sensitivity 

and its importance for health; provide a focused view on the causative physiological 

pathways and key modifying factors; and consider how knowledge of salt-sensitivity may be 

leveraged to improve human health.  

Salt intake & blood pressure: a brief history.   

A study published in 1904 showed that a dietary regimen of salt-free bread, meat and 

bouillon, reduced BP in six men and two women with hypertension.4 The investigators 

concluded that BP related directly to salt intake, attributed to retention of chloride because 

sodium was not yet measurable in laboratories. An insightful observation was that patients 

were either able to ‘accommodate themselves to the chloride saturation of their organism’ 

or were not, ie those in whom ‘chloride saturation is revealed by a permanent hypertension’. 

Studies in the 1940s, using Kempner’s strict rice fruit diet also note the differential response 

to salt restriction: ‘in 2 of the 6 patients the blood pressure declined to essentially normal 

levels and promptly rose again to the pre-treatment values when 20g of sodium chloride 



 

 

 

4 

was added daily’.5 In these early studies the concept of salt sensitivity and salt resistance is 

born.   

Dahl and Love made the first at-scale (n=873) association between measured BP and a 

qualitative assessment of salt intake, noting that hypertension (BP >140/90mmHg) occurred 

more frequently in individuals self-declaring high salt consumption than in those who never 

added salt to food.6 This prompted the development through selective breeding of a rat 

model where BP was either salt sensitive or salt-resistant.7 The ‘Dahl Salt-Sensitive rat’ has 

been a cornerstone of research on the genetic and physiological mechanisms through which 

high salt intake causes hypertension and organ injury. The BP response to increased salt 

intake between salt-sensitive rodents and their salt-resistant controls is often very large and 

starkly divergent. This does not accurately reflect the human condition in which the response 

is a continuous variable. It has nevertheless been a convenient research tool to view the 

human phenotype as binary, allowing categorization of individuals as ‘salt sensitive’ or ‘salt 

resistant’. 

Measurement and prevalence of salt sensitivity 

Investigators mostly use one of two approaches to identify salt-sensitivity, intervening either 

with diets of known ‘low’ or ‘high’ salt content for periods of several days or with 

diuretics/saline to rapidly contract/expand intravascular volume. The individual’s mean 

arterial BP is measured and an arbitrary threshold difference (either absolute or percentage 

change) between the two intervention stages applied to define salt sensitivity or salt 

resistance. Such studies consistently categorize ~30% of healthy humans as salt sensitive. 

This may be higher in some ethnicities.8 It is more prevalent in women, regardless of 

menopausal status.9,10,11 Prevalence increases with age12 and with comorbidities that impair 

kidney and vascular function (e.g., diabetes mellitus, hypertension, kidney disease).  

These approaches have several limitations. They are resource intensive and largely 

applicable only in a research setting. Consensus protocols are lacking. It is uncertain 
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whether rapid intravascular manipulation captures the biology of ‘salt sensitivity’. Dietary 

protocols also suffer from lack of standardization regarding the salt content of diets, the 

order and duration of exposure and subsequent washout periods between diets.13 

Importantly, it is not certain that sensitivity to the BP lowering effects of salt restriction and 

sensitivity to the BP elevating effects of high salt intake are mechanistically the same. 

Moreover, the low salt intakes used are not realistically achievable outside of the research 

setting and are substantially lower than real-life diets recommended for most normotensive 

and hypertensive individuals 

The absence of standardized and evidenced category thresholds is problematic. Figure 1 

shows categorization of 19 patients with hypertension.14 BP was measured after 6 days of 

a ~0.6g/day salt regimen and after 6 days of ~14g/day salt intake, with a category threshold 

of  ³10% increase in mean BP . Group-wise, the average BP response is clearly divergent, 

increasing by ~18% in salt sensitive and ~4% in salt resistant groups. However, given the 

spread of response across both groups, how likely is it that the 10% threshold is 

discriminating on core biological differences? Is salt-sensitive patient A is more biologically 

aligned to salt-sensitive patient B or to salt-resistant patient C?  

Salt sensitivity: what does it mean for cardiovascular outcomes? 

BP is an accepted surrogate endpoint for cardiovascular and cerebrovascular events,15 but 

the connectivity between salt sensitivity and salt resistance defined in the research setting 

and the real-world BP of a given individual is not clear. The salt intakes deployed are 

extreme and the BP response is rapid, being achieved within days. This does not reflect real 

world exposure and it is unlikely that individuals categorized as salt resistant in the research 

setting are impervious to the effects of a salt intake of 8-10g/day sustained over decades, 

leading to accumulation in the skin and organ damage. This is an important consideration 

when communicating research outcomes. It is, however, likely that salt sensitivity captures 

important information concerning individual cardiovascular vulnerability. What that 
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information means for ‘hard’ health outcomes is not fully understood and our knowledge 

comes from just two retrospective studies from Japan16 and the US.17  

The Japanese study screened patients with essential hypertension for salt sensitivity using 

a dietary protocol following discontinuation of antihypertensive medication. Subjects were 

stabilized in hospital for ~2 weeks and then a low (1-3g/day) and high salt (12-15g/day) diet 

for one week in a random order. BP and urinary sodium excretion were measured on the 

last three days of each diet period. Salt sensitivity was defined as a >10% increase in mean 

BP. After categorisation, patients were managed in community to and objective BP of 

£140/90mmHg. Seven years later, records of 156 (62 salt sensitive) of the original ~350 

patients were screened for fatal and non-fatal cardiovascular events, kidney failure and all-

cause mortality. The calculated rate of total cardiovascular events per 100 patient-years in 

the salt sensitive group was more than twice that of the non-salt sensitive group (Figure 

2A). There were no cases of kidney failure reported in either group. 

For the American study, subjects were admitted after antihypertensive withdrawal and salt 

sensitivity determined over two days. BP was initially measured before and after intravenous 

administration of 2L of isotonic saline over a 4h period. The following day, subjects were 

sodium/volume depleted with three 40mg doses of furosemide and fed a low sodium diet 

(0.6g/day salt) and BP measured the following morning. Mean BP at the end of the saline 

infusion period was compared with that at the end of the furosemide/low-salt food-treatment 

and salt sensitivity defined as a difference of  ³10mmHg; salt resistance was defined as a 

difference <5mmHg and those with a BP change  ³5 and <10mmHg were categorized as 

indeterminate. Salt sensitivity was ascribed to 26% of the normotensive and 51% of the 

hypertensive subjects; 58% and 33%, respectively, were salt-resistant at initial 

characterization.18  Over 25 years later, of the 596 subjects with available records, 123 had 

died, 60 from cardiovascular causes; these subjects were more likely to have been 

hypertensive and salt sensitive at the start of the study. The key point was that survival of 



 

 

 

7 

subjects initially categorized as normotensive and salt sensitive was not different to those 

who were hypertensive. Normotension and salt resistance were associated with the best 

survival throughout follow-up (Figure 2B).  

These studies are influential, with these limitations. The Japanese study, using a 

randomized dietary protocol that is highly reproducible in terms of categorizing an individual 

as salt sensitive or not,13 has a small number of subjects and short follow-up, resulting in 

few outcome events. The US study has important strengths in that it captured a higher 

proportion of the original cohort (~85%) after a long follow-up. However, initial subject 

categorization rests on protocols that induce rapid intravascular volume expansion followed 

by rapid contraction and the BP response to the contraction phase is arguably a form of 

furosemide testing, rather than sensitivity to salt intake per se. Both are retrospective studies 

with the inherent limitations that come from reviewing medical documentation that was not 

designed to collect data for research and of having no control over subsequent exposure to 

salt intake or to confounders. There are also risks of selection bias. For example, 

proportionally more of the 112 subjects lost to follow-up in the American study were young 

Black men.  

The American Heart Association understands salt sensitivity as a cardiovascular risk factor 

‘independent of and as powerful as BP’.19 We argue that the independence of salt sensitivity 

from BP, in terms of cardiovascular risk, remains to be unequivocally established. Given 

sustained high salt intake, salt sensitive individuals may be vulnerable to higher BP in their 

day-to-day lives. Indeed, the Olivetti Heart study examined salt-sensitivity by dietary 

protocols in 47 normotensive men and at 15-year follow up (n=36), there was a higher 

incidence of hypertension in salt sensitive subjects20.   

Mechanisms of salt sensitivity: effector systems & modifying factors 

Mean arterial BP is the product of cardiac output and total peripheral vascular resistance, 

with cardiac output being the product of heart rate and stoke volume. Salt sensitivity implies 
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‘failure to adapt’ in one or more of these components. The two main theories have focussed 

on defects in i) the renal regulation of intravascular volume and therefore cardiac output 

(renal dysfunction theory21), and ii) the regulation of vascular tone in resistance arteries and 

arterioles (vasodysfunction theory22). 

Renal dysfunction 

Guyton, Coleman and Granger’s hypothesis is that long-term regulation of arterial BP is 

achieved by the kidney.23 Every person has a set-point BP and any deviation from this 

causes a proportional change in renal artery perfusion pressure, triggering a parallel change 

in sodium excretion that will ultimately alter blood volume and cardiac output, returning BP 

to the set-point. High salt intake poses a physiological challenge: an increase in salt intake 

transiently expands plasma volume, increasing cardiac output; BP and renal perfusion 

pressure are increased, promoting sodium excretion, which in turn lowers effective blood 

volume and BP (Figure 3A). Central to this feedback loop is the physiological process of 

‘pressure-natriuresis’, in which increased arterial BP is sensed by the kidney as increased 

perfusion through the vasa recta, initiating paracrine signalling cascades leading to 

internalization of sodium transport proteins along the nephron.24 Evidence for the 

importance of pressure-natriuresis for BP regulation comes from an experimental series in 

conscious dogs where an externally-inflatable cuff was implanted around the aorta above 

the renal arteries, allowing investigators to control renal perfusion pressure independently 

of systemic arterial pressure.25,26 In one such experiment, noradrenaline was infused over a 

seven-day period (Figure 3B). When renal perfusion pressure was unregulated (i.e. no 

external occlusion), noradrenaline increased mean arterial BP by 6-10mmHg; urinary 

sodium excretion initially doubled and dogs showed a negative cumulative sodium balance 

over the seven-day period; in contrast, when the cuff was used to maintain renal artery 

perfusion pressure within ~1mmHg of baseline, noradrenaline infusion had no effect on 

sodium excretion and the BP rise was amplified, increasing by ~35mmHg.25  
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The renal dysfunction theory proposes that salt sensitivity reflects a failure of the kidneys to 

excrete sufficient salt in response to an increase in salt intake, due to an underlying defect 

in the pressure-natriuresis response.16,27-29 The idea that pressure-natriuresis is impaired in 

salt-sensitive hypertension has been investigated in anesthetised animals: sodium excretion 

is measured during step-wise increases in renal perfusion pressure, typically achieved by 

sequential arterial ligation. The natriuretic response to increasing renal perfusion pressure, 

assessed over a short (minutes) timeframe, is attenuated in the Dahl Salt sensitive rat, 

compared with the salt-resistant strain30 (Figure 3C), and in mice models with salt-sensitive 

hypertension31.  Mechanistically, the blunted pressure-natriuresis can be intrinsic to the 

kidney, reflecting, for example, failure of renal sodium transporters to downregulate with salt 

intake,32 abnormal paracrine signalling in response to rising perfusion pressure,31 or 

tubulointerstitial inflammation following immune cell infiltration.33 The intrinsic pressure–

natriuresis relationship, which diminishes with age,34 is modulated by renal sympathetic 

nerve activity35,36 and by many endocrine factors, particularly the renin-angiotensin-

aldosterone system (RAAS).37  

Nevertheless, such experiments do not test the central tenet of the renal dysfunction theory 

which holds that salt-sensitivity is caused by excess sodium retention secondary to impaired 

pressure natriuresis. In fact, despite attenuated pressure natriuresis, Dahl salt-sensitive 

display the same degree of sodium retention as Dahl salt-resistant rats when fed high salt38. 

In other experimental settings of high salt intake, attenuated acute pressure natriuresis is 

observed without increased BP39,40 and other studies show that with high salt intake, sodium 

balance can be achieved without increasing BP or renal perfusion pressure.41  Moreover, 

we are not aware of any studies that have directly measured the pressure-natriuresis 

response in humans.  Attempts have been made to infer the pressure-natriuresis response 

from chronic renal function curves (Figure 3D). These curves are generated by directly 

changing salt intake or vascular volume and measuring BP as the dependent variable.42 
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Renal function curves are conventionally plotted with BP on the x-axis and urinary sodium 

excretion on the y-axis and may thus appear to show the chronic pressure-natriuresis 

relationship. However, because both sodium excretion and BP are dependent on the 

independent intervention, which is not shown, renal function curves are difficult to interpret. 

The slope of the chronic renal function curve is attenuated in salt sensitive individuals, but 

this does not show that the pressure-natriuresis relationship is impaired. Rather, the curve 

highlights that those who are salt sensitive cannot accommodate large increases in salt 

intake and therefore BP rises. In summary, the acute pressure-natriuresis response is 

supressed in salt-sensitive animal models but whether this also occurs in humans and 

whether it is causal phenomenon remain major unanswered questions.  

Vascular dysfunction 

Here, the concept is that an individual’s BP change in response to a dietary salt load is 

determined by their modulation of total peripheral vascular resistance, rather than a change 

in cardiac output (Figure 4). Most people respond with vasodilation and a fall in peripheral 

resistance; the salt load is accommodated and eventually excreted without inducing an 

exaggerated rise in BP. Salt sensitive individuals, in contrast, display an abnormal vascular 

response: dietary salt-induced vasodilation is blunted, peripheral resistance does not fall, 

and the salt load induces a large rise in BP.  

Key evidence for this theory comes from controlled clinical studies in healthy black 

participants.43,44 During the first week, subjects were fed a low salt diet (75mmol Na+/day 

per 70kg), increased to 250mmol/day/70kg in the second week. BP was measured on the 

last three days of each period, averaged and if the difference between week 2 and week 1 

was ³5mmHg, participants were categorized as salt sensitive; <5mmHg denoted salt 

resistance. In the ~50% of subjects who were salt resistant, the increased salt intake 

prompted a rapid drop in total peripheral vascular resistance, with a nadir of ~15% at day 2. 

Peripheral vascular resistance progressively returned to pre-salt baseline by day 6. In salt 
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sensitive subjects, the initial fall in vascular resistance was blunted and -importantly- was 

not sustained, rising above baseline 3-4 days after the start of high salt intake. Cumulative 

sodium retention, increase in body weight, fall in hematocrit (indicating plasma volume 

expansion), and increase in cardiac output were similar between salt sensitive and salt 

resistant subjects.  

The vasodysfunction theory acknowledges that increasing salt intake leads to short-term 

salt retention as the kidney takes several days to reduce tubular reabsorption and excrete 

the sodium load. However, the argument is that volume expansion and increased cardiac 

output occurs with high salt intake, regardless of whether the individual is salt sensitive or 

not. Thus, volume expansion does not determine the BP response to a dietary salt load. 

Instead, it is a failure of the peripheral vasculature to rapidly dilate that causes salt 

sensitivity. Similar findings come from experiments in the Dahl rat. Changing sodium intake 

from 0mmol/day to 20mmol/day caused hematocrit to fall and body weight to rise, consistent 

with plasma volume expansion and a gain in total body water, respectively. These volume 

effects were observed in both the Dahl salt sensitive rats and non-salt sensitive control 

animals, with no differences between the two; however, in the former, salt intake induced 

hypertension and this was attributed to a failure of peripheral vascular resistance to fall as 

salt intake increased.45  

Mechanistically, the hemodynamic dysfunction could be intrinsic to the arterial vasculature: 

defects in nitric oxide production by the endothelial cell46 and abnormalities in soluble 

guanylate cyclase signalling in the vascular smooth muscle cell47 are both reported. 

Nevertheless, many factors impact on vascular resistance and the list of modifying factors 

that respond abnormally in a salt sensitive paradigm include the sympathetic nervous 

system, endocrine factors, such as the RAAS, and the milieu of paracrine agents (e.g., 

endothelin-1) that can influence both endothelial and vascular smooth muscle cell biology.   

A unifying mechanism for salt sensitivity? 
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Although desirable to attribute salt sensitivity to a unifying mechanism, we feel that current 

experimental evidence does not allow this. This partly reflects the technical challenges of 

assessing the function of all relevant physiological systems in any given experimental 

setting. Additionally, it remains unclear whether causal mechanisms established in one 

context (e.g., salt sensitivity in health) are as important when transferred to another (e.g., 

salt sensitivity in hypertension). Our own studies (see Online Supplement), suggest salt 

sensitivity can originate from direct defects in one or both effector systems. It may also arise 

due to an abnormality, congenital or acquired, in the array of factors that modify the function 

of these effector systems. Of these modifying factors, the sympathetic nervous system48 and 

RAAS49 are long-established as major contributors to salt sensitivity. Indeed, the 

contribution of primary hyperaldosteronism and renin-independent aldosterone production 

is often underestimated and it may be one of the most common causes of salt sensitivity.50 

In normotensives, renin-independent aldosteronism ranges across a continuum.51 This 

spectrum of renin-independent aldosterone secretion induces predictable alterations in renal 

sodium and potassium handling51 but modelling in unilaterally nephrectomized rats, show 

that aldosterone initiates salt sensitivity by increasing total peripheral vascular resistance; 

cardiac output was reduced with high salt intake.52 

Recent advances in modifiers of salt sensitivity 

In the remainder of this review, we will focus on recent advances highlighting the importance 

of other modifiers of salt sensitivity. 

Extracellular potassium 

The body contains ~3.5kg of potassium, mostly stored intracellularly, and extracellular 

potassium has a narrow physiological range, of 3.5–5.0mmol/l. Chronic perturbations 

outside this range disturb the membrane potential of excitable cells and may be life-

threatening.53  
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Potassium intake routinely falls below recommended adequate intake (90-120 mmol/day) 

and there is a negative association between potassium intake and BP, cardiovascular54-56 

and kidney disease.57 Interventional studies replacing regular table salt (100% NaCl) with 

‘low salt’ (75% NaCl, 25% KCl), show a reduction in BP58 and meta-analysis of randomized 

controlled trials find that the hypotensive effect of oral potassium supplementation is larger 

in individuals with high sodium intakes.59,60 This leads to the hypothesis that sub-clinical 

potassium depletion contributes to salt sensitivity. Two lines of evidence support this 

hypothesis.  

First, dietary potassium restriction, resulting in hypokalemia, induces salt sensitivity in young 

Sprague-Dawley rats.61 Second, clinical studies show that dietary potassium 

supplementation reduces BP to a greater extent in salt sensitive individuals than in those 

who are salt insensitive, independent of sodium intake.62 In one study, normotensive 

individuals recruited from rural China underwent a sequential three stage protocol, eating 

first 3g/day (51mmol/d) NaCl, then 18g/day (308mmol/d) NaCl and then, in the final week, 

18g/day NaCl with a 4.5g/day (60mmol/d) KCl supplement. A BP response to salt loading of 

>10mmHg categorized 13/60 participants as salt sensitive and potassium supplementation 

lowered their BP to the level recorded in the low-salt phase of the experiment. 

Mechanistically, Salt sensitive subjects had a lower 24h urinary sodium excretion than the 

non-salt sensitive group, a deficit abolished with potassium supplementation. Potassium 

salts have long been recognized for their diuretic potential and recent research has identified 

the underpinning molecular pathways in the renal tubule.63 Best understood is regulation of 

the sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT), which 

normally reabsorbs ~10% of the filtered sodium load and is the target of thiazide 

antihypertensives. Mutations in the key WNK4-SPAK-OSR1 cascade of regulatory kinases 

lead to gain of NCC function causing Gordon Syndrome (Pseudohypoaldosteronism type 

II), which presents with salt sensitive hypertension. Pre-clinical studies show that increasing 
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plasma potassium by oral gavage of potassium-chloride promotes rapid dephosphorylation 

of serine and threonine residues in the N-terminus of NCC and deactivates the 

transporter.64,65 The physiological rationale for this phenomenon is that by ‘turning off’ NCC, 

high plasma potassium diverts sodium reabsorption from the DCT to the downstream 

collecting duct. Here, sodium is reabsorbed by the principal cell via the epithelial sodium 

channel (ENaC). ENaC-mediated reabsorption is electro-physiologically coupled to 

potassium secretion by ROMK and BK channels.66 Overall, the regulation of electrolyte 

transport in the kidney by plasma potassium means that potassium can be excreted without 

driving excess sodium reabsorption. Phosphoproteomic67 and transgenic mouse studies68,69 

are unravelling the chain of events connecting a change in extracellular potassium to 

phosphorylation status of NCC. As extracellular potassium rises, a heterotrimeric potassium 

channel (Kir4.1/Kir5.1) is activated, depolarizing the basolateral membrane, and reducing 

chloride efflux. Intracellular chloride concentration increases, inhibiting the phosphorylation 

of NCC by the WNK4-SPAK-OSR1 cascade.  

The concept that dietary potassium supplements deactivate NCC has been validated in 

healthy, normotensive humans70. Whether rapid, moment-to-moment control of NCC 

phosphorylation by plasma potassium influences BP is unclear. BP was not reduced by 

potassium supplements, although as indicated by the authors, the study was not powered 

to study BP changes.70 It is possible that deactivation of NCC by potassium improves the 

pressure-natriuresis response, but this has not been tested directly. In the longer term, 

continued exposure to high potassium intake triggers ubiquitylation and lysosomal 

degradation of NCC, reducing the total NCC protein in the mouse kidney.71 This might be 

expected to facilitate sodium excretion and improve overall sodium balance, particularly in 

the setting of high sodium intake.  

In salt sensitive people, potassium supplementation also reduced plasma asymmetric 

dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis, and increased 
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urinary nitrite/nitrate excretion in salt sensitive subjects.62 These effects are consistent with 

an increase in nitric oxide bio-availability and correction of a vascular defect by elevated 

potassium intake. Notably, raising potassium intake prevents the high-salt induced reduction 

of flow mediated dilation in the brachial artery72 In rats, dietary potassium supplementation 

reduces salt sensitive hypertension by inducing vasorelaxation, whereas potassium 

depletion creates a pro-constrictive environment by stimulating the production of angiotensin 

II and endothelin-1, and reducing nitric oxide bioavailability.73 Cell culture experiments show 

that increasing extracellular potassium induces endothelial cell swelling and stimulates nitric 

oxide release; endothelial cell membrane stiffness is also reduced.74   

Overall, dietary potassium emerges as an important modifying factor and it is likely that 

modest, sub-clinical potassium depletion induces dysfunction in both the renal and vascular 

response to elevated salt intake. Extracellular potassium impacts on other modulators of 

salt sensitivity, for example T-cell function,75 which contribute to the injurious effects of high 

salt, as discussed below. Modifying dietary potassium to rescue salt-sensitivity may be 

feasible in certain settings.76 Hyperkalemia is a safety concern for use of oral potassium 

supplementation in certain patient groups53, although potassium-rich diets seem well-

tolerated in patients with advanced CKD77.   

 

Glucocorticoids 

Cortisol (corticosterone in rodents) production in the adrenal zona fasciculata is controlled 

by the hypothalamic-pituitary-adrenal axis (HPAA) and is not typically considered a “salt 

balance” hormone. Nevertheless, glucocorticoid excess (eg Cushing syndrome) often 

causes salt-sensitive hypertension,78 as does glucocorticoid resistance (eg loss-of-function 

mutations in the glucocorticoid receptor).79,80 Salt sensitivity in these different conditions 

relates either to hyperactivity of the HPAA and/or RAAS, or to abnormalities in the 11b-

hydroxysteroid dehydrogenase enzymes that determine the level of active glucocorticoid in 
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peripheral tissues.78 These important endocrine systems fail to adjust with salt intake and 

BP is responsive to mineralocorticoid receptor antagonists and/or glucocorticoid receptor 

antagonists. It is not surprising, given the powerful regulatory effects of these two systems, 

that salt sensitivity is associated with abnormalities in distal nephron sodium handling81-83 

and vascular injury with hemodynamic dysfunction.81,83-85  

 

Studies in humans and rodents also show connectivity between salt intake and HPAA 

function. There is a positive correlation between sodium excretion and urinary free cortisol 

excretion.86,87 Dietary interventional studies find that that urine glucocorticoid excretion 

increases with salt intake.88-90 In C57BL6 mice, high salt intake causes multi-level 

disruptions in glucocorticoid biology,91 activating the HPAA and reducing corticosterone 

binding globulin. Overall, basal glucocorticoid levels and tissue exposure is enhanced by 

high salt intake. C57BL6 mice are often considered salt resistant,19 and salt-induced HPAA 

activation may exaggerated in salt-sensitive models.92  

 

High salt intake amplifies stress-induced activation of the HPAA.91 In one study of 48 healthy 

normotensive white men, the HPAA response to acute mental stress was significantly 

greater in salt-sensitive subjects than those categorized as salt resistant.93 Chronic stress 

also induces salt sensitivity in young, normotensive subjects.94 The interplay between salt 

intake, basal cortisol and the stress response is relevant to many contemporary lifestyles. 

An additional dimension comes from research in salt sensitive rats in increased 

glucocorticoid and BP reflected salt induced modulation of the gut microbiota: re-introduction 

of intestinal Bacteroides fragilis inhibited the production of intestinal-derived corticosterone, 

mediated by bacterially-derived arachidonic acid.95 

 

Gut bacteria 
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The human body is colonized by large numbers of microorganisms (fungi, viruses, bacteria), 

mostly in the intestine where they support gut functionality through production of bioactive 

compounds, particularly short chain fatty acids. There are >1000 bacteria species in the 

human gut and biodiversity is affected by dietary constituents, including salt intake,96 

Alterations in community structure are associated with, and may cause, pathophysiological 

changes to cardiovascular physiology.97  

Our understanding of this emerging area mostly comes from animal research. Chronic 

angiotensin II infusion, a classic pharmacological model of salt sensitivity, decreases gut 

bacterial biodiversity, increasing the ratio of Firmicutes to Bacteroidetes, which are the major 

bacterial phyla. Disturbances in this ratio are found in a number of human bowel 

pathologies98. In angiotensin II-dependent hypertension, the antibiotic minocycline 

rebalances the Firmicutes to Bacteroidetes ratio, reducing BP.99 Fecal matter transfer 

experiments show that the gut microbiome contributes to the salt-sensitive hypertension and 

renal injury in the Dahl Salt Sensitive rat.100 CRISPR-Cas9 deletion of the G-protein–coupled 

estrogen receptor 1 (Gper1), protects against salt sensitive hypertension in the Dahl rat. 

Particularly intriguing was the finding that genetic knockout of Gper1 strongly influenced the 

commensal bacteria colonizing the gut; this differed from wild type rats even though animals 

were maintained in the same environment, eating the same food.101 A fecal matter transplant 

from wild type rats into the Gper1 knockout animals converted the gut microbiota signature 

of recipients and Gper1 knockout rats were no longer protected from salt sensitive 

hypertension and endothelial dysfunction.101  

Mechanistically, most work suggests that gut bacteria modulate the vascular effector 

system. Salt-induced alterations in the bacterial community and the agents produced by 

these colonies102 can induce vasoconstriction and amplify the BP response causing salt 

sensitivity. Short chain fatty acids, such as acetate, and other biproducts of bacterial 

metabolism such as lactate, make important contributions to the levels circulating in the host 
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serum. These are potent ligands of GPCRs such as GPR41103 and GPR81104 and activation 

of these receptors constricts arteries, increasing peripheral resistance and BP.101  

Gut bacteria can also influence the host vasculature indirectly by regulating the recruitment 

and polarization of immune cells. Thus, germ-free mice, born into and maintained in a sterile 

environment, have no commensal bacteria and are resistant to hypertension and vascular 

dysfunction induced by chronic angiotensin II. This protection arises because the 

recruitment of monocytes to the peripheral arterial vasculature that normally accompanies 

angiotensin II infusion, is blunted in germ-free mice.105 Other studies examined fecal pellets 

from mice and found that high salt intake causes a rapid and sustained depletion 

Lactobacillus murinus from the gut and concomitant Th17 cell expansion. The growth of 

human and mouse Lactobacillus was inhibited by high extracellular sodium.  Reintroduction 

of this bacterium into the gut microbiome repolarized Th17 cells and attenuated salt sensitive 

hypertension.106 The modulation of immune cells by gut bacteria is mediated in large part 

by short chain fatty acids.107  

If salt sensitivity ‘follows the gut microbiota’, can this be leveraged to mitigate the adverse 

effects of high salt intake in some humans? Although an attractive hypothesis, the bacterial 

microbiome is highly complex to the extent that the community structure, and the activity of 

the bacterial bioactive pathways that influence host cell function, oscillate throughout the 

day, which may influence the diurnal BP rhythm.108 Moreover, broad-spectrum antibiotics, 

which reduce the diversity of the gut microbiome, amplify salt sensitive hypertension in the 

Dahl rat but reduce BP in Spontaneously Hypertensive rats, which are less salt sensitive.109 

The interplay between host strain genetics and different gut bacterial colonies makes it 

difficult to identify a common therapeutic strategy, although repurposing medicines used for 

disorders such as inflammatory bowel disease may show promise.110 Nevertheless, 

predicting the individual response to a therapy that alters the gut microbiome is a major 

translational roadblock. 
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Immune cells 

Sustained high salt alters the activation state and profile of cells in both the innate and 

adaptive immune systems and research, mostly in animal models, shows that this 

contributes to salt sensitive hypertension and tissue injury.111 For example, in the Dahl salt 

sensitive rat, high salt intake causes an influx of macrophages, B- and T-cells into the 

kidney, a migration that does not occur in non-salt sensitive rat strains.112 Broad B- and T-

cell suppression with mycofenolate mofetil attenuates hypertension in the Dahl salt sensitive 

rat.113 Genetic depletion of CD3+ T-cells is similarly protective114 and reconstitution of the T-

cell population by adoptive splenocyte transfer restores salt sensitive hypertension.115 This 

contributory role of adaptive immune cells to salt sensitive hypertension is also evidenced 

in Rag1 knockout mice, genetically deficient in B- and T-cells, which have an attenuated BP 

response to angiotensin II.116   

 

Recent advances reveal how high salt intake influences immune cells. Salt-induced 

increases in BP and renal perfusion pressure partially drive immune cell influx into the 

kidney.117 This is likely a responsive, secondary ‘activation’ contributing to the progression 

of tissue injury. Other studies suggest a causal role in salt-induced hypertension itself. The 

gut microbiome releases short-chain fatty acids into circulation that impact the induction of 

innate and adaptive immune cells. If the normal host microbiome interaction is disrupted by 

sustained high salt intake, the BP response to that salt is amplified.107 Moreover, innate and 

adaptive immune cells may be able to directly sense salt homeostasis, responding to 

extracellular sodium concentration via membrane channels and transporters. For example, 

increasing the concentration of NaCl in the extracellular media from 140mmol/l to 180mmol/ 

activates p38/MAPK pathways in human and mouse Th17-cells, inducing proinflammatory 

polarization and augmenting production of TNFa and interleukin-2.118,119 A similar tropic 
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effect is seen on classically-activated (proinflammatory) bone-marrow derived 

macrophages,120 whereas increasing extracellular salt concentration in vitro blunts the 

function of alternatively-activated (anti-inflammatory) macrophages.121 In other studies, 

increasing extracellular sodium from 150mmol/l to 190mmol/l promotes sodium entry into 

human dendritic cells, via ENaC and sodium-hydrogen exchanger isoform 1122. This in turn 

increases intracellular calcium concentration due to calcium influx via the sodium-calcium 

exchanger. Protein kinase C is activated, phosphorylating p47phox and causing assembly 

of NADPH oxidase to drive superoxide and reactive oxygen species production. The 

oxidative burst has two effects: it directly activates the NLRP3 inflammasome to produce 

interleukin-1b and it induces lipid peroxidation, which in the case of arachidonic acid, forms 

isolevuglandins that can act as neoantigens to activate T-cells.122,123 Dendritic cells and 

other innate antigen presenting cells orchestrate the immune balance between fighting 

invasive pathogens and the tolerance to self-antigens. As their function is influenced by salt 

intake, this has important consequences: clearly the chain of events contributes to the 

development of salt sensitive hypertension, from which NLRP3 deficient mice are 

protected.123 Longer-term, the potential of antigen presenting cells to hold a rapid immune 

memory to high salt is problematic and may contribute to tissue damage.   

Translating these findings into the physiological setting of human salt homeostasis is the 

important next step. Salt intake is habitually high and it is not yet known if the innate and 

adaptive immune systems operate differently in salt sensitive and salt resistant individuals, 

although CITE-sequencing of human monocytes suggests this to be the case.123 Moreover, 

how cells sense their ionic microenvironment in vivo is not resolved. Certainly, tissue 

interstitial sodium concentration is higher than that of plasma but only by ~10mmol/l.124 This 

may influence polarization and function of infiltrating and resident immune cells, consistent 

with the emerging view that such cells are involved in physiological sodium homeostasis. 

For example, monocyte-derived macrophages help the body meet the challenge of high salt 
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intake by buffering the release of salt from the skin for renal excretion,125 or by promoting 

local vasodilation by scavenging the potent vasoconstrictor, endothelin-1.126 Disruption of 

either mechanism amplifies the salt-induced BP increase. In contrast, resident macrophages 

support physiological salt reabsorption by sustained sympathetic innervation of the kidney: 

disruption of this physiological crosstalk leads to natriuresis.127 Immune cells can also modify 

vascular function by inducing damage and fibrosis128 and disrupting endothelial cell 

integrity.129,130 An emerging concept is crosstalk talk between cells of the kidney tubule and 

immune cells. In models of type 2 diabetes, renal tubular cells secrete interleukin-1b, which 

induces pro-inflammatory polarization of macrophages and release of interleukin-6, to 

induce ENaC-mediated sodium retention and salt sensitivity.131,132 Activated T-cells can 

interact with epithelial cells in the DCT, stimulating sodium transport through the thiazide-

sensitive sodium-chloride cotransporter, salt retention and high BP;133 the inflammatory 

cytokine TNFα also has this effect.134 

 

Conclusions 

We have aimed to identify the foundational basis for our understanding of salt sensitive BP 

as an independent cardiovascular risk factor. Three things are clear: i) salt sensitivity is a 

reproducible physiological phenotype that can be defined in a research setting using 

extreme changes in salt intake or intravascular volume; ii) thus defined, a large minority of 

healthy, normotensive people (and the majority of those with an underlying health condition 

such as kidney disease) have salt sensitive BP; iii) there is a persistent environmental 

challenge of dietary salt excess, where intakes of 8-10g per day are routine. High salt intake 

will exert a greater toll on some individuals than on others. Whether salt sensitivity increases 

cardiovascular risk independent of other risk factors, such as BP per se is less certain. Two 

clinical studies suggest this,16,17 but neither was designed to assess the BP load those 

participants experienced during the extended follow-up period. Barotrauma may not be the 
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only cause of tissue injury by high salt intake.135 Animal research shows that high salt intake 

can impair many functions, including metabolism, immunity and cognition. These studies 

should stimulate more research work in humans on potential adverse health effects of high 

dietary salt intake beyond BP.  

Clinical research is hampered by the absence of standardized definitions and protocols to 

assess salt sensitive BP. More problematic is the lack of a reliable and economic surrogate 

biomarker to take salt sensitivity out of the clinical research centre and into real world 

healthcare. This may come: RNA signatures of salt sensitivity in peripheral blood and other 

biofluids could pave the way to precision medicine by targeting nutritional therapy to those 

that will derive the most benefit.136,137  
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Figure 1. Variability in the BP response to salt. The percentage change in mean arterial 

BP was measured in 18 hypertensives following a change from low to high salt intake, with 

an increase  ³10% as the category threshold. Subjects A and B are salt sensitive with 

changes of +10.5% and +31% respectively; subject C is salt resistant, with a change of 

+9.5%. The figure is illustrative of experimental data14  

 

Figure 2. The long-term impact of a salt-sensitive classification. (A) Study showing that 

salt-sensitive people had more cardiovascular events than non-salt sensitive. In the salt 

sensitive group there were 17 (5 fatal) cardiovascular events and 14 (3 fatal) in the non-salt 

sensitive group. Reproduced from16 with permission of the publishers. (B) Survival curves 

for normotensive salt-resistant subjects (N+R), normotensive salt-sensitive subjects (N+S), 

hypertensive salt-resistant subjects (H+R), and hypertensive salt-sensitive subjects (N+S),  

Normotensive, salt resistant people had a greater survival than those with hypertension and 

those with normotension and salt-sensitivity. Reproduced from17 with permission of the 

publishers 

 

Figure 3. Salt sensitivity, salt balance, and the kidney. (A) Negative feedback loop 

showing control of arterial BP by renal sodium excretion. (B) Servo-control of renal perfusion 

pressure highlights that the pressure-natriuresis mechanism can influence chronic BP 

regulation. These experiments were performed in conscious dogs. In control animals (blue 

line), infusion of noradrenaline caused mean arterial pressure to increase by <10 mmHg and 

an increase in sodium excretion. In animals with servo-controlled renal perfusion pressure, 

the BP response to noradrenaline was amplified and sodium excretion did not change.  

Removal of the servo-control allowed urinary sodium excretion to increase and BP 

normalized. The figure is illustrative of experimental data.25  (C) The acute pressure-

natriuresis relationship may be attenuated in salt sensitive individuals (red line) compared 
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with non-salt sensitive people. The supporting evidence comes from studies in salt-sensitive 

animals, including studies in which major cardiovascular control systems have been 

experimentally disabled. (D) the chronic ‘renal function curve’ is often rotated and used to 

infer pressure-natriuresis. In fact, the curve shows that salt sensitive people cannot 

accommodate large changes in salt intake and BP rises.  

 

Figure 4. Salt sensitivity and peripheral vascular resistance. Effect of dietary salt 

loading (250mmol salt per 70kg per day) on A) mean BP, B) systemic vascular resistance, 

C) cardiac output and D) cumulative sodium balance, shown as a change from baseline 

measurements (75mmol/d salt per 70kg day). Salt sensitive individuals do not effectively 

reduce systemic vascular resistance in response to increasing salt intake. Salt-sensitivity 

was not due to sodium retention and an exaggerated increase in cardiac output. The figure 

is illustrative of experimental data.44 
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Salt intake & blood pressure: evidence from clinical trials   

INTERSALT was the first systematic international observational study to assess the 

relationship between 24h urinary sodium excretion and BP, including >10,000 people 

aged 20-59 years across 52 centres.59 Protocols and practitioner training were 

standardized, and urinary electrolyte analysis was performed in a single laboratory. 

Using all 52 centres, INTERSALT found that urinary sodium excretion associated 

positively with median BP and hypertension prevalence. These associations were lost 

with exclusion of four centres of non-acculturated tribal populations with low sodium 

excretion (<51mmol/24h).59 An important finding was that the slope of increasing BP 

with age associated positively with sodium excretion. The overall conclusion from the 

INTERSALT investigators was that, at a population level, the effect of reducing salt 

intake on BP per se might be small but the impact on the age-related increase in BP, 

and by inference cardiovascular risk, is favourable.  

Interventional trials of varying sizes and approaches have highlighted the benefits of 

reducing salt intake. The Trials of Hypertension Prevention (TOHP) studies, with a 

combined group size of 3,126 overweight but non-hypertensive participants, used 

nutritional counselling to reduce sodium intake to an objective target of ~1.6g/day 

(~4g/day salt) in the interventional arm, achieving a significant reduction in systolic 

BP.138,139 Incidence of hypertension was significantly reduced at 36 months and follow-

up >10 years after the original trial found evidence for reduced cardiovascular risk.140  

More recently, cluster randomized trials in Peru58 and China141 assessed the impact 

of community based salt-substitution strategies, replacing refined table salt (100% 

NaCl) with a 75% NaCl; 25% KCl mix (known as ‘low salt’). The Peruvian study 

assessed 2,376 people across 6 villages over 3 years, finding that the intervention 

reduced systolic BP by 1.3mmHg (-2.2 to -0.4) and diastolic BP by 0.8 (-1.4 to -0.1).58 
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Although these reductions may appear modest, at a population level, they would be 

estimated to reduce stroke and cardiovascular death incidence by 7-10%.3 Exploratory 

sub-analysis suggested that the salt-substitution intervention also significantly 

reduced the incidence of hypertension. The study from China (20,995 people across 

600 villages) focussed on individuals at-risk of an adverse cardiovascular event: the 

population was elderly, 88% had a history of hypertension and >70% a history of 

stroke. Here, salt substitution reduced the rates of stroke, all cardiovascular events, 

and all-cause mortality during the ~5-year follow up period.141 Urinary electrolyte 

analysis suggested that salt-substitution reduced salt intake by <1g/day.141 Urinary 

potassium excretion was increased, and other studies, including the Dietary 

Approaches to Stop Hypertension (DASH) trial, suggest that a raised potassium intake 

can reduce BP independently of salt intake. DASH enrolled 459 pre-hypertensive 

adults and showed that a diet rich in fruit and vegetables and having reduced 

total/saturated fat decreased BP compared with a control diet reflecting typical 

American nutritional exposure, despite similar salt intakes of ~7.5g/day.142 The 

subsequent DASH-Sodium trial confirmed that salt intake reduction and the DASH diet 

reduced BP, with a greater effect if both were used in combination.143 We discuss the 

modifying effect of potassium on salt sensitivity later in this review.  

To summarize, dietary salt intake is a clear risk factor for hypertension and 

cardiovascular disease. Salt intake, and therefore cardiovascular risk, is modifiable: 

managing intake is an attractive, and potentially cost-effective, means to improve 

health outcomes if it can be achieved safely at scale. There are significant 

complexities: the BP response to a given dietary salt exposure is a continuous 

variable, which means that some individuals would benefit more from dietary salt 

reduction than others.14 More problematic is the suggestion that reducing salt intake 
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would increase BP in some individuals. Inverse salt sensitivity is report in clinical 

studies when salt intake is reduced to ~1g/day.144 The real-world relevance of the 

phenomenon warrants detailed investigation, being a potential safety barrier to 

population-level intervention. Identifying salt sensitive individuals within a population 

is the aspirational approach to precision management of cardiovascular risk.  

 
 
Mechanisms of Salt sensitivity 
 
Our own studies (see Online Supplement), suggest salt sensitivity can originate from 

direct defects in either the kidney or in the vasculature or within the many factors that 

modulate these effector systems. Taking our studies in experimental salt-sensitivity as 

an example, we find that increasing salt intake raises BP by ~10mmHg within days in 

young, healthy C57BL6 mice. This involves sympathetic activation and vascular 

mechanisms and there is no impairment of the renal pressure-natriuresis response.145  

We also used the C57BL6 strain to model the human disorder of Apparent 

Mineralocorticoid Excess. This is caused by loss of function mutations in 11b 

hydroxysteroid dehydrogenase type 2 and presented with salt-sensitive hypertension. 

Our experiments in mice and rats show that renal salt retention now contributes 

significantly to salt-sensitivity in this context 92 32 146. Conditional knockout strategies 

have revealed additional complexities: deletion of  11b hydroxysteroid dehydrogenase 

type 2 in the nucleus of the solitary tract causes enhanced salt appetite and salt-

sensitivity147; deletion in the renal tubule activates increases sodium retention and salt-

sensitivity is prevented by diuretic therapy148 This multi-organ view of salt-sensitivity 

is observed in other models: salt sensitivity induced by pharmacological inhibition of 

nitric oxide synthase in rats reflects both a loss of vasodilation and high peripheral 

resistance as well as volume expansion with impaired pressure-natriuresis.149 
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