
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deciphering Clusters With a Deterministic Measure of Clustering
Tendency

Citation for published version:
Diallo, AF & Patras, P 2024, 'Deciphering Clusters With a Deterministic Measure of Clustering Tendency',
IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 4, pp. 1489-1501.
https://doi.org/10.1109/TKDE.2023.3306024

Digital Object Identifier (DOI):
10.1109/TKDE.2023.3306024

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Knowledge and Data Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.1109/TKDE.2023.3306024
https://doi.org/10.1109/TKDE.2023.3306024
https://www.research.ed.ac.uk/en/publications/85d4c3cf-7048-47ee-9db1-d83e7bb9c873


1

Deciphering Clusters with a Deterministic
Measure of Clustering Tendency

Alec F. Diallo and Paul Patras, Senior Member, IEEE

Abstract—Clustering, a key aspect of exploratory data analysis, plays a crucial role in various fields such as information retrieval. Yet,
the sheer volume and variety of available clustering algorithms hinder their application to specific tasks, especially given their
propensity to enforce partitions, even when no clear clusters exist, often leading to fruitless efforts and erroneous conclusions. This
issue highlights the importance of accurately assessing clustering tendencies prior to clustering. However, existing methods either rely
on subjective visual assessment, which hinders automation of downstream tasks, or on correlations between subsets of target datasets
and random distributions, limiting their practical use. Therefore, we introduce the Proximal Homogeneity Index (PHI), a novel and
deterministic statistic that reliably assesses the clustering tendencies of datasets by analyzing their internal structures via knowledge
graphs. Leveraging PHI and the boundaries between clusters, we establish the Partitioning Sensitivity Index (PSI), a new statistic
designed for cluster quality assessment and optimal clustering identification. Comparative studies using twelve synthetic and real-world
datasets demonstrate PHI and PSI’s superiority over existing metrics for clustering tendency assessment and cluster validation.
Furthermore, we demonstrate the scalability of PHI to large and high-dimensional datasets, and PSI’s broad effectiveness across
diverse cluster analysis tasks.

Index Terms—Data Homogeneity, Clustering Tendency Assessment, Cluster Analysis, Knowledge Graphs, Knowledge
Representation, Dimensionality Reduction, Exploratory Data Analysis

✦

1 INTRODUCTION

Clustering algorithms are employed in a diverse range
of machine learning (ML) and exploratory data analysis
applications, including pattern recognition, computer net-
working, recommendation systems, market research, etc.
[1]. Algorithms designed for this task seek to find intrinsic
structures in data, allowing their separation into smaller
groups of similar items based on some common character-
istics. The utility of such information motivates its use as a
pre-processing step for data analysis, or as dimensionality
reduction methods to represent data with the most discrim-
inative patterns [2], [3].

Despite the obvious utility of clustering algorithms, sev-
eral fundamental aspects of clustering are still highly de-
bated or overlooked. These include universally agreed upon
definitions [4], choice of appropriate clustering algorithms
that optimize the quality of partitions [5], and even elemen-
tary questions such as whether data is amenable to cluster-
ing [6]. Given the purpose of clustering algorithms, the first
and most important question that should be answered is:
“Does a dataset contain any inherent grouping structure?”

Existing clustering methods and their applications [7]
are often impractical due to issues such as time and com-
putational complexities, or sensitivity to outliers. Further,
their imposition of a classification on a dataset, i.e., blindly
forcing a partitioning of the dataset without prior knowl-
edge of inherent structures, produces partitions regardless
of whether any natural clusters are present, which can, and
very often leads to misinterpretations. While the objective
of a clustering task can be constructive (subject to inten-
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tion) [8], the knowledge of inherent grouping structures still
provides valuable insights allowing justification of choices
or reconfiguration of datasets to highlight desired attributes.
Hence, studying the “clusterability” or “clustering tendency”
of datasets is a prerequisite for clustering.

Several clustering tendency assessment methods have
been proposed over the years [9], [10], [11], [12]. These
typically aim to determine the existence of meaningful clus-
ters within a given dataset, thereby avoiding inappropriate
clustering and misinterpretation of results. On one hand,
discovering that a dataset does not possess sufficient clus-
ter structure to be meaningfully partitioned indicates that
clustering may not be suitable for the given data, or that the
data may need to be reprocessed. Alternatively, if the data is
found to be clusterable, a suitable algorithm can be selected
or developed. Upon this assessment, the target dataset is
clustered when fit and the quality of the resulting clusters
is evaluated through clustering validation measures, which
may trigger the selection of a clustering algorithm alter-
native until the produced clusters reach a desired quality.
Skipping the clustering tendency assessment step, as ob-
served in typical clustering pipelines, could potential lead
to scenarios where considerable time and effort is wasted
by applying countless clustering algorithms in an attempt
to achieve good clustering results on data lacking cluster
structures. This issue is overcome by initially ensuring that
a dataset preprocessor produces representations suitable for
clustering. The steps followed by these typical and ideal
clustering pipelines are depicted in Fig. 1.

Deciding on a suitable assessment approach for cluster-
ing tendency is not straightforward. While prior methods
for the evaluation of clusterability help in gaining insight
into the behavior of clustering techniques, they all differ
significantly and have practical limitations [6]. Specifically,
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Fig. 1. Typical and ideal clustering pipelines, highlighting the possible
succession of steps involved in each.

most fail to identify inherent structures in complex datasets
or are not applicable in real settings due to their com-
putational complexity. Further, many of the measures of
clusterability are based on specific clustering algorithms or
objective functions [13], [14], which effectively inverts the
clustering pipeline (requiring that an algorithm is chosen
before one determines whether data possesses sufficient
structure to be meaningfully clustered), and thereby restricts
the notion of clusterability to identifying structures that a
chosen algorithm can capture.

In this paper, we propose the Proximal Homogeneity
Index (PHI), a novel statistical scoring system that offers
a deterministic and unbiased summary that describes the
clustering tendency of a given dataset. Its formulation,
designed to exploit global and local structures of inherent
groups of data, produces a qualitative score that allows
informed clusterability decisions, as well as the comparison
of different topological configurations of samples. PHI, intu-
itively characterizing the homogeneity of samples, naturally
provides a suitable tool for evaluating the quality of clusters
discovered. Hence, we derive another statistic based on
PHI, named the Partitioning Sensitivity Index (PSI), which
enables such evaluations solely relying on the relationships
between samples of the dataset. Using PHI and PSI, we per-
form an extensive empirical analysis of data clusterability
and cluster validations, and compare our results against
those obtained with popular statistics to date, including
the Purity [15] and Silhouette [16]) scores, demonstrating
that our proposed statistics more often agrees with expert
knowledge. We evaluate the effectiveness of our proposed
statistics by addressing crucial aspects of exploratory data
analysis, namely: (i) assessing the clustering tendency of a
dataset; (ii) comparing different clustering or dimensionality
reduction methods, to find the most appropriate one for a
given dataset; and (iii) finding the optimal parameters (e.g.,
number of partitions) to be used by a clustering algorithm.
Furthermore, we show that our approach, developed ac-
cording to rigorous principles, scales well to the analysis
of large, high-dimensional datasets.

The rest of the paper is organized as follows. We present
our proposed statistics in Section 3 and perform exten-
sive comparative evaluations in Section 4. Limitations and
possible improvements of our approach are discussed in
Section 5 before reviewing the relevant literature in Sec-
tion 2, highlighting the shortcomings of existing methods
and motivating the need for new cluster analysis tools such

as the one proposed. Section 6 summarizes our findings and
concludes the paper.

2 RELATED WORK

Existing clusterability assessment methods can be cat-
egorized either as informal (graphical-based) or for-
mal (statistics-based). With high-dimensional and complex
datasets being ubiquitous in this era, very few of these
methods have remained pertinent, and even fewer for mul-
timodal applications.

Graphical-based tendency assessment methods [17] in-
spect the clusterability of datasets by generating visual
forms which indicate the presence of different clusters in
the set. They are often computed from randomly generated
samples, which reduces their reliability and considerably
degrades their performance when handling hierarchically
ordered clusters. Due to their high memory and computa-
tional requirements [12], in addition to their inconclusive-
ness when faced with complex datasets, we only consider
formal techniques in this study.

Viewing clustering tendency as a test for spatial ran-
domness, existing statistics-based approaches are designed
around the idea that random data should typically not
have clusters [9], [18], [19]. However rare, this observation
is not always true, which reduces the reliability of these
methods. Intuitively, formal approaches traditionally mea-
sure the likelihood of a dataset’s samples as being gen-
erated by a uniform sampling distribution, and therefore,
use random sampling to compute their statistics, which
ultimately makes their results vary across different evalu-
ations, thereby requiring multiple evaluations to provide an
average estimate. Their test for affinity towards aggregation
relies on a null hypotheses such as H0: samples from the
dataset are randomly distributed. Another important issue with
these methods is that since random sampling may fail to
choose samples that provide a faithful representation of
the dataset’s intrinsic structures, their accuracy is subject
to degradation, especially with large datasets. Hopkins and
Skellam [9] proposed a statistic which compares the dis-
tances between randomly selected samples from a dataset
and their nearest neighbors (wi) within the dataset to dis-
tances between samples generated from a random distribu-
tion and their nearest neighbors within the dataset (ui). This
test, initially designed for 2-dimensional samples has been
widely used after its extension to high-dimensional data-
points by Cross and Jain [18]: H =

∑
i u

d
i /

(∑
i u

d
i+

∑
i w

d
i

)
.

With this definition, values close to 1 tend to suggest the
presence clusters, while values near 0 tend to suggest uni-
formly distributed data. Randomly distributed data then
tend to result in values around 0.5. While there is no
definitive cut-off established for this statistic, values greater
than 0.5 are usually considered as indicators for clusterable
datasets. This statistic, which was found to be the most pow-
erful [20], [21], has been observed to lose its effectiveness
when used on high dimensional datasets [6]. Asides from
the suboptimality of this approach due to its limitations on
processing speed and size and dimensionality of datasets,
its sensitivity to the number of samples randomly drawn
and the fact that real datasets are never randomly uniform,
make this statistic unfit for practical applications.
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These shortcomings motivate our search for a novel,
effective, and scalable clustering tendency assessment statis-
tic, which unlike the Hopkins statistic, provides a determin-
istic score and a much simpler and more intuitive inter-
pretation, with a value of 1 representing a perfectly clustered
dataset (homogeneous data that is not amenable to clustering)
and a value of 0 indicating the presence of highly clusterable
samples. It is worth noting that since clustering tendency
assessment statistics must be computed without a priori
domain knowledge, it is extremely important for them to be
consistent and reflective of the overall structure of datasets.

3 PROPOSED STATISTICS

The proposed Proximal Homogeneity Index (PHI) is a novel
statistic that takes as input a set of data points and produces
a score directly correlated to their structural homogeneity.
This score, which is inversely proportional to the clustering
tendency of the dataset, allows intuitive interpretations of its
clusterability. That is, a target dataset is considered highly
clusterable if its homogeneity index is low, and inversely,
highly homogeneous datasets are considered unlikely to
contain clusters.

PHI provides a deterministic score, as no assumptions
are made about the topology of the dataset or the relation-
ship between its samples and random distributions. This
allows replicability of results across multiple runs, which
makes our approach more reliable than existing methods
relying on various null hypotheses based on randomization.
Additionally, PHI is designed to be easily applicable to real-
world datasets with no restrictions on size, dimensionality,
or modality, and is completely independent of the clustering
algorithms used to partition the data for downstream tasks.

Upon clustering, an accurate cluster validation metric
(clustering quality index) is obtained from the PHI scores
of individual clusters. This metric, which we call the Parti-
tioning Sensitivity Index (PSI), acts as a new statistic enabling
several cluster validation tasks, such as finding the most
appropriate clustering algorithm or the number of clusters
that optimizes the overall homogeneity (cluster quality) of a
partitioned set.

3.1 Clustering Tendency Assessment
Our proposed statistic computes the homogeneity index of
a dataset by relying on measures of separability and com-
pactness, which are given by a knowledge graph generated
from the dataset’s elements.

Suppose we have a collection of n vectors in a d-
dimensional space, for which we wish to assess whether it
contains any inherent grouping structures. To illustrate our
approach, we will first consider samples in a 2-dimensional
space, i.e., S :=

{
Si ∈ R2 | i ∈ {1, · · · , n}

}
.

Let us normalize the features of the set such that all
samples lie within the space defined by a unit square. Using
the Min-Max normalization, we ensure the preservation of
relationships among the original samples, while the range
of values is bounded as desired (between 0 and 1). This
mapping of features from the original values contained in S
to normalized values in S ′ is computed as follows:

S ′ =

{ Si −minS
maxS −minS

∣∣∣∣ i ∈ {1, · · · , n}
}
. (1)

To provide adequate localization properties while mini-
mizing the computational complexity, we partition the space
defined by a unit square into np × np disjoint subsets (grid
partitions), where np ∈ N≥0 is the number of partitions
along each dimension. Any sample is therefore identified
to be in exactly one of the regions based on its coordinates
(feature values); and all samples exactly at a decision bound-
ary are assigned to their closest lower/left cell, with the
exception of zero-valued features, which are assigned to the
closest upper/right cell. Formally, let Ci,j ∈ C define a cell
of the partitioned grid:

Ci,j=

{
S ′
k | k ∈ {1, · · · , n}

}
, such that,

i

np
< S ′(0)

k ≤ i+ 1

np
or S ′(0)

k = i = 0,

j

np
< S ′(1)

k ≤ j + 1

np
or S ′(1)

k = j = 0,

(2)

where i, j ∈ {0, · · · , np − 1}, and S ′(0)
k and S ′(1)

k are the
features of sample S ′

k along the first and second dimensions,
respectively.

A comprehensive summary (bird’s-eye view) of the sam-
ples’ distribution can then be obtained by replacing samples
contained within each cell by their average. Let C ′ represent
this summarized view of the dataset, with the content of
each of its cells given by:

C ′
i,j =

1

|Ci,j |

|Ci,j |∑
k=0

(Ci,j)k, (3)

where |Ci,j | is the number of samples contained in cell
Ci,j , and (Ci,j)k is the k-th sample contained in the cell.
These cell aggregations are performed for all non-empty
cells, i.e., Ci,j ̸= ∅. The knowledge graph of the dataset can
be obtained using the adjacency matrix derived from this
summarized view. Let X be the set of all non-empty cells of
C ′, the adjacency matrix of the graph (A ∈ RN×N ) is then
defined as:

A =

a1,1 a1,2 . . .
...

. . .
aN,1 aN,N

 ,

where N = |X| being the number of non-empty cells in
C ′. Values of adjacency matrices are typically set such that
ai,j ̸= 0 iff Xi and Xj are adjacent. To take the locality into
account, we consider two cells to be adjacent if the distance
between samples contained within them (i.e., ∥Xi − Xj∥)
is less than the diameter of a single cell. This constraint
alone can however introduce biases towards densely packed
regions, therefore, we also constrain each non-empty cell to
only have connections to (be influenced by) its two closest
samples. Since we partitioned our unit square space into
np × np cells, each cell has a side-length of 1/np and
a diameter of (1/np)

√
2. Based on these constraints, the

adjacency matrix can then be computed as follows:

ai,j =


∥Xi −Xj∥ if i ̸= j, j ∈ 2NN (Xi) and

∥Xi −Xj∥ < 1
np

√
2

0 otherwise

, (4)
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where 2NN (Xi) represents the two nearest-neighbors of Xi

(not including Xi itself). With this definition, the adjacency
matrix preserves the locality of samples, while preventing
biases towards dense local clusters. Yet, the possibility of
having multiple graph components from such an adjacency
matrix hinders the simplicity of studying the overall homo-
geneity structure of the dataset. To overcome this issue, we
introduce the concept of Proximally-Connected Graphs (PC
Graphs).

Definition (Proximally-Connected Graph). Let G(V,E) be a
graph with a set of vertices V and a set of edges E, and let vi
and vj denote any two distinct vertices in V . G is said to be
proximally-connected if there exists an edge between vertices vi
and vj only when at least one of the two following conditions is
fulfilled:

1) vi and vj are considered adjacent;
2) removing ei,j disconnects G such that vertices of the two

resulting components cannot be connected with edges of
length (or weight) lower than that of ei,j .

Remarks. The definition of proximally-connected graphs in-
troduces some useful and interesting properties, namely:

• Any proximally-connected graph is connected;
• Any connected sub-graph of a proximally-connected

graph is proximally-connected;
• For a given set of samples, structural homogeneity

is preserved across all possible proximally-connected
graphs.

Using the graph G generated from our previously de-
fined adjacency matrix A, we can create a PC graph by
updating A such that all components of G are connected.
Let V be the set of all vertices of G. The adjacency matrix is
then updated as:

ai,j =


∥Vi − Vj∥ if Vi ∈ V i, Vj ∈ V

i
, and

∥Vi − Vj∥ = min ∥V i − V
i∥

ai,j otherwise

, (5)

where V i = ∪ {Vk | k ∈ {1, · · · , i}} and V
i
= V \ V i.

The graph generated from the updated adjacency matrix
then satisfies all requirements of PC graphs, and therefore
enables fast and structured exploration of the dataset. Fig. 2
depicts a summary of the steps involved in the generation
of a PC graph from given samples.

With this representation of the data, we can observe that
tightly grouped samples are characterized by short edges
between vertices, and the separation of different groups is
emphasized by longer edges. Conforming to PC graphs, the
separation of different groups is measured based on their
closest members, which is conceptually ideal for measuring
the separation between arbitrarily shaped clusters.

Let us now denote the PC graph of the dataset as
Ĝ(V, Ê), where V and Ê are respectively, the sets of vertices
and edges in Ĝ. Let |ei,j | be the length associated to ei,j , the
edge between vertices vi and vj . The Proximal Homogeneity
Index of the samples in S can then be obtained by combin-

ing the compactness and separation information given by
Ĝ:

φS =
1

max
ei,j

|ei,j |
×

1

|V̂ |

∑
ei,j

|ei,j |, (6)

where |V̂ | is the total number of vertices in graph Ĝ.
The score produced by this statistic directly represents

the degree of structural homogeneity of the dataset. That is
to say, when different grouping structures are present, their
homogeneity is low (due to the difference between the max-
imum and average distances in the graph); and the absence
of grouping structures is reflected by a marginal difference
between the maximum and average distances, producing a
high homogeneity score. Therefore, we consider a dataset
clusterable if it has low homogeneity, i.e., there is a signifi-
cant gap between inherent grouping structures.

The generalization of this approach to high-dimensional
vector spaces can be tedious if naively applied. One such
solution consists of computing PHI for every subspace
formed by unique pairs of dimensions, and averaging the
scores obtained to represent the homogeneity index of the
entire dataset. While this might provide a more accurate
descriptive value for the dataset, we opt for a more practi-
cal solution by directly computing the homogeneity index

Fig. 2. Constructing a Proximally-Connected Graph from a dataset’s
samples. The top, middle, and bottom sub-figures show the original
configuration of the samples, the re-scaled and grid-partitioned samples,
and respectively the connected graph generated by the dataset. Each
node’s value corresponds to the number of samples it combines, and
the distance separating two connected nodes is used as weight for the
corresponding edge.
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from the two most discriminative features of the dataset.
This dimensionality reduction is achieved by using singular
value decompositions [22] (SVD), where the new features
are generated from weighted combinations of the original
features. This not only improves the computational com-
plexity of the model, but also has the advantage of being
more robust to numerical errors, while providing additional
privacy for sensitive, high-dimensional datasets through
distortions and factorizations.

3.2 Cluster Validation
With the advent of big data, clustering is extensively used
for exploratory data analytics. Accurately assessing the
quality of the clusters obtained by an algorithm can be vital
to achieving good performance in different applications.
However, due to the unsupervised nature of the major-
ity of tasks involving clustering, the performance of the
downstream tasks cannot be evaluated based on a reserved
evaluation set where the true clusters are known. Yet, most
of the existing cluster validation metrics fail to accurately
evaluate the quality of clusters without ground truth labels,
which considerably hinders their practical viability.

Based on the proximal homogeneity index of the differ-
ent clusters produced, we propose a new statistic to over-
come these limitations. Specifically, this statistic, named the
Partitioning Sensitivity Index (PSI), aims to accurately assess
the quality of the clusters, without resorting to ground truth
labels.

Given the clustering result obtained by an algorithm,
the proximal homogeneity index φp is computed for every
partition p found in the dataset. Let P denote the set of all
partitions found by the clustering algorithm, we can sum-
marize the clustering homogeneity (across all partitions) by
comparing each partition to the least homogeneous partition
in P . However, to ensure this value is contained within the
unit interval ([0, 1]), we invert the formulation such that the
clusterability indices (1 − φp) are used instead. The overall
homogeneity across all partitions can thus be computed as
follows:

ψP =
1

max
p∈P

(1−φp)
×

1

|P |

∑
p∈P

(1−φp), (7)

where |P | is the total number of partitions produced by
the clustering algorithm. For algorithms producing a sin-
gle cluster (i.e., |P | = 1) or set of perfect clusters (i.e.,
maxp∈P (1 − φp) = 1), the overall homogeneity is simply
considered to be the average homogeneity score across all
identified clusters.

Let G be the PC graph generated from P , and Gp the
PC graph generated from partition p. And let ωp denote the
minimum distance separating vertices of p and vertices of
{P \ p}. A partition p is considered correctly clustered if its
longest edge is shorter than ωp, i.e., all vertices of p are far
away from any other partition. A vertex of p is considered
correctly labelled if its distance to its closest neighbor in
{P \p} is greater than the maximum length of its edges, i.e.,
the corresponding vertex is far enough from other partitions
for p to be considered a clearly distinct partition.

Denoting as ρp the ratio of correct partitions, and ρv
the ratio of correctly labelled vertices across all partitions

produced by the clustering algorithm, the global correctness
of the clustering can be derived as ρ = ρp · ρv .

While we wish to penalize the overall clustering quality
when the global correctness ratio is small, we adjust the
severity of the penalty such that the clustering quality index
deteriorates faster as the ratio gets smaller. This can be
achieved by using a logarithmic function to set the trend
of deterioration:

ρ =
√

log2 (1 + ρ) (8)

The normalization performed allows the penalty factor ρ
to produce a value contained within the unit interval for any
ρ ∈ [0, 1]. Using this adjusted penalty factor, the Partitioning
Sensitivity Index (PSI) of the clustering is obtained:

ψ = ρ × ψP . (9)

This internal validation statistic, quantifying the quality
of the clustering result based solely on the homogeneity of
the clusters obtained, produces a value highly correlated to
ground truth labels, and therefore effectively enables a wide
range of downstream tasks as confirmed by the extensive
evaluations we report in the next section.

4 EVALUATION

We conduct several experiments to demonstrate the ad-
vantages of our proposed statistics over existing clustering
tendency assessment and cluster validation metrics, while
confirming that our statistics behave consistently across
arbitrarily shaped datasets of different sizes and degrees of
complexity. For all experiments conducted, we set the num-
ber of cells (grid partitions) np used to obtain the proximal
homogeneity indices of datasets to np = 2 ⌈ln(1 + n)− 1⌉,
where n is the number of samples of the dataset. Such value
of np ensures computational efficiency on large datasets,
by logarithmically (rather than linearly) increasing PHI’s
number of cells as the number of samples increases.

We design three sets of experiments focusing on: the
clustering tendency assessment of datasets, the evaluation
of clusters produced by an algorithm, and the scalability
of our proposed approach. We use nine artificial and three
real-world datasets for validation. We rely on the artificial
datasets (depicted by the first two rows of Figure 3) to shed
light on the strengths, weaknesses, and biases of the ap-
proaches evaluated, enabling clear and sound comparisons.
We use real datasets primarily to highlight the practical
viability of our proposed statistics, making the case for its
adoption in statistical and exploratory data analysis.

4.1 Clustering Tendency Assessment
Our first experiment compares the scores produced by PHI
to those produced by the Hopkins statistic. We refer inter-
ested readers to Section 2, where this baseline approach is
discussed. Evaluations performed during this experiment
with the artificial datasets cover a wide variety of scenar-
ios, ranging from different number of clusters to intrinsic
complexity of datasets (e.g., shapes of clusters, number and
spatial disposition of samples). Each of these datasets was
designed to represent specific characteristics used to com-
pare the different statistics, namely proximity, randomness,
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Fig. 3. Visual representations of our artificially generated datasets, and their clustering results by different algorithms (k-Means — k-Means
Clustering, DBSCAN — Density-Based Spatial Clustering of Applications with Noise, Spectral — Spectral Clustering, and GM — Gaussian Mixture).

convexity, concentricity, affinity, interlacing, elongation, and
overlap/intertwining. As per [19], [23], we use a sampling
rate of 10% to calculate the Hopkins statistics. Although
internal cluster validation metrics can indirectly measure
clustering tendency, their need for pre-existing cluster as-
signments restricts their ability to evaluate the inherent
clustering structure of raw, unclustered data. Consequently,
these metrics fall outside the scope of the experimental
results outlined in Table 1. Their separate evaluation will
therefore be conducted in the following section (Section 4.2).

The results of our clustering tendency assessments are
reported in Table 1, where clustering tendencies of samples
are examined for each of the artificial datasets.

Revisiting the configuration of the datasets’ samples
(Fig. 3), we make the following observations about the clus-
tering tendency assessments offered by the two statistics:

• The Grid dataset, considered perfectly homogeneous
by PHI (i.e., not likely to contain any cluster), is
according to the Hopkins statistic, randomly dis-
tributed.

• Both statistics tend to correctly indicate randomness
when the samples are in fact randomly distributed.

• Where all circular shapes are considered by the Hop-
kins statistic likely to contain clusters (scores close
to 1), PHI assesses their clusterability based on the
homogeneity of samples and therefore produces low
scores when distinct cluster structures are present.

TABLE 1
Evaluation of clustering tendencies using our proposed approach (PHI)

and the Hopkins statistic. Averages and standard deviations are
reported over 10 runs.

Dataset
Statistics

Hopkins PHI

Grid 0.41 ±0.01 1.00 ±0.00

Random 0.64 ±0.05 0.59 ±0.00

1 Circle 0.87 ±0.02 0.83 ±0.00

2 Circles 0.82 ±0.02 0.30 ±0.00

5 Circles 0.75 ±0.01 0.67 ±0.00

2 Moons 0.80 ±0.03 0.36 ±0.00

Blobs 0.88 ±0.05 0.49 ±0.00

Sine / Cosine 0.58 ±0.05 0.75 ±0.00

• While the 5 Circles dataset contains more clusters
than the 2 Circles dataset, PHI reports a higher ho-
mogeneity score for the former due to the 5 Circles
dataset having a more homogeneous overall struc-
ture than the the 2 Circles dataset. This observation
confirms PHI’s ability to not only assess whether a
dataset is clusterable, but also its intrinsic structure
(i.e., how structurally homogeneous a dataset’s sam-
ples are). For this comparison, the Hopkins statistic
also reports a slightly lower clusterability.

• Structural patterns, completely ignored by the Hop-



7

kins statistic, constitute a key component of PHI,
allowing more accurate assessments of clusterability
and dataset homogeneity by PHI.

• Contrary to the Hopkins statistic that is based on ran-
domness, PHI reports the same score across multiple
runs due to its deterministic nature.

Overall, the results obtained demonstrate the viability
of PHI as a clustering tendency assessment statistic, and
further highlight its intuitive interpretation and consistency
across different data representations.

4.2 Cluster Analysis

Having confirmed the effectiveness of PHI in assessing the
clustering tendencies of datasets, we now wish to determine
the suitability of its derived cluster validation statistic (PSI)
for different cluster analysis tasks. Hence, based on the
results of different clustering algorithms, we evaluate this
statistic and compare its performance to those of common
cluster validation metrics existing in the literature.

Since clustering validation metrics are typically either
defined as internal (when they assess the quality of cluster
structures without reference to external information), or
external (when clusters are compared using prior or do-
main knowledge such as ground truth labels), we select 4
established approaches from each category as baselines to
demonstrate the advantages of PSI, as follows.

External Cluster Validation Metrics

• Purity score [15]: measures the extent to which each
cluster contains samples belonging to the most fre-
quent label in that cluster. Its value ranges between 0
and 1, with larger values indicating better clustering.

• Rand Index [24]: measures the fraction of correctly
clustered samples compared to ground truth labels.
Its values (between 0 and 1) increase with clustering
quality.

• Adjusted Rand Index [25]: corrects the Rand Index
for chance, such that a baseline is established by
using the expected similarity of clusters produced
by a random model. While the Adjusted Rand Index
can produce negative values (unlike the Rand Index),
higher values still indicate better clustering.

• Normalized Mutual Information [26]: measures the
amount of information shared between clusters pro-
duced by the clustering algorithm, and clusters de-
fined by the ground-truth. Values range between 0
and 1, with larger values indicating better clustering.

Internal Cluster Validation Metrics

• Silhouette Score [16]: measures how well samples fit
within their respective clusters. Its value ranges from
-1 to 1, where 1 indicates well separated clusters, 0
indicates overlapping clusters, and negative values
indicate samples assigned to the wrong cluster.

• Dunn Index [27]: compares the degrees of com-
pactness and separation of clusters by dividing the
minimum inter-cluster distance by the maximum
cluster size. Larger values for this index indicate
better clustering.

• Davies–Bouldin Index [28]: measures the average
similarity of each cluster with its most similar clus-
ter by calculating the ratio of within-cluster and
between-cluster distances. With a minimum score of
0, lower values indicate better clustering.

• Calinski-Harabasz Index [29]: computes the ratio of
total inter-cluster dispersions over all clusters and
total intra-cluster dispersions over all clusters. Larger
values for this index indicate better clustering.

4.2.1 Comparing clustering algorithms
In this experiment, we aim to find the most suitable clus-
tering algorithm for any given dataset, based on the quality
of clusters produced by candidate algorithms. To achieve
this goal, we use our proposed statistic (PSI) to measure
the performance of each candidate, and compare our se-
lected choice against that made from ground truth labels.
For each dataset used in this experiment, we use four
clustering algorithms as candidates: k-Means [30], Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) [31], Spectral Clustering [32], and Gaussian Mixture
models [33]. We implement these algorithms using Scikit-
Learn library [34], keeping the default values of the relevant
hyper-parameters, except for the number of cluster (where
appropriate), which was specified according to each dataset.
We use the same eight synthetic datasets and visualise
the clusters determined by each of the algorithms in the
lower four rows of Fig. 3. We evaluated the output of each
algorithm by the 8 clustering validation baselines selected,
our proposed statistic, and a true accuracy metric computed
using the Hungarian algorithm [35], to find the best match
between the clustering results and ground truth labels.

Table 2 compiles the results obtained for each dataset,
clustering algorithm, and clustering evaluation metric.
Based on the definitions of the clustering evaluation metrics
(which values indicate better clustering), we compute the
average number of times the best clustering algorithm was
correctly indicated, i.e., the number of times a preferred
algorithm had the maximum true accuracy across all candi-
dates (bottom row – “Correct Algorithm Selection Ratio”).
This evaluation allows an easy comparison of all the metrics
considered. Since none of the internal clustering validation
metrics used as benchmarks are applicable to datasets con-
taining only one cluster, we consider them successful in
comparing multiple clustering algorithms.

For each dataset, the results highlighted in the table
show when the best performing clustering algorithm was
indicated by the evaluation metrics. The visual represen-
tations of clustering results (depicted in Fig. 3), consulted
in conjunction with Table 2, shows that: (i) the external
clustering validation metrics used as baseline all ignore
structural patterns (manifested by their failure to find the
appropriate clustering algorithm for overlapping datasets),
and (ii) none of the internal clustering validation metrics
used as baseline is impervious to arbitrary configurations of
clusters (e.g., elongation, concentricity, intertwinement).

While our proposed Partitioning Sensitivity Index (PSI)
belongs to the category of internal clustering validation
metrics (as we only rely on the results of clustering algo-
rithms), we see in Table 2 that our correct algorithm selection
ratio is higher than that made by all baselines, including
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TABLE 2
Comparison of different clustering of datasets based on clustering validation metrics, and true (unbiased) accuracies computed using the

Hungarian algorithm. Results are reported for our proposed statistic (PSI) and 8 existing validation metrics (Purity, RI — Rand Index, ARI —
Adjusted Rand Index, NMI — Normalized Mutual Information, Sil. — Silhouette score, DI — Dunn Index, DB — Davies-Bouldin Index, and CH —

Calinski-Harabaz Index).

Dataset Clustering Algorithm
External Clustering
Validation Metrics

Internal Clustering
Validation Metrics True

Accuracy
Purity RI ARI NMI Sil. DI DB CH PSI (ours)

Grid

k-Means 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
DBSCAN 1.00 0.00 0.00 0.00 N/A N/A N/A N/A 0.00 0.01

Spectral Clustering 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
Gaussian Mixture 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00

Random

k-Means 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
DBSCAN 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00

Spectral Clustering 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
Gaussian Mixture 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00

Circle

k-Means 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
DBSCAN 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00

Spectral Clustering 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
Gaussian Mixture 1.00 1.00 1.00 1.00 N/A N/A N/A N/A 1.00 1.00

2 Circles

k-Means 0.50 0.50 0.00 0.00 0.35 0.01 1.18 173.16 0.64 0.50
DBSCAN 1.00 1.00 1.00 1.00 0.11 0.25 449.98 0.00 1.00 1.00

Spectral Clustering 1.00 1.00 1.00 1.00 0.11 0.25 449.98 0.00 1.00 1.00
Gaussian Mixture 0.50 0.50 0.00 0.00 0.35 0.01 1.18 172.17 0.86 0.50

5 Circles

k-Means 0.40 0.75 0.23 0.28 0.32 0.01 0.90 490.76 0.57 0.22
DBSCAN 1.00 1.00 1.00 1.00 -0.08 0.10 989.97 0.00 0.67 1.00

Spectral Clustering 1.00 1.00 1.00 1.00 -0.08 0.10 989.97 0.00 0.67 1.00
Gaussian Mixture 0.34 0.69 0.07 0.13 0.30 0.01 0.98 434.67 0.43 0.23

2 Moons

k-Means 0.75 0.63 0.25 0.19 0.49 0.05 0.77 224.21 0.85 0.73
DBSCAN 1.00 1.00 1.00 1.00 0.32 0.14 1.17 95.20 0.95 1.00

Spectral Clustering 1.00 1.00 1.00 1.00 0.32 0.14 1.17 95.20 0.95 1.00
Gaussian Mixture 0.83 0.72 0.44 0.35 0.47 0.01 0.80 199.06 0.64 0.81

Blobs

k-Means 0.78 0.79 0.52 0.56 0.51 0.05 0.71 364.36 0.53 0.60
DBSCAN 1.00 0.98 0.96 0.95 0.44 0.13 0.68 155.05 0.48 0.94

Spectral Clustering 0.98 0.97 0.94 0.92 0.46 0.01 0.88 264.95 0.49 0.96
Gaussian Mixture 1.00 1.00 1.00 1.00 0.45 0.11 0.96 251.53 0.59 1.00

Sine / Cosine

k-Means 0.50 0.49 -0.02 0.00 0.57 0.06 0.58 162.15 0.73 0.50
DBSCAN 0.60 0.51 0.00 0.07 0.24 0.04 1.85 30.18 0.25 0.26

Spectral Clustering 0.51 0.49 -0.01 0.00 0.57 0.06 0.58 161.13 0.71 0.50
Gaussian Mixture 0.54 0.50 -0.01 0.01 0.56 0.07 0.59 144.68 0.71 0.47

Correct Algorithm Selection Ratio 0.88 0.88 0.88 0.88 0.50 0.75 0.50 0.50 1.00

those of external metrics. By successfully finding the most
appropriate algorithm for all evaluated datasets, without
recourse to ground-truth labels, PSI shows great promise
for significantly reducing the need for labelled datasets.

4.2.2 Comparing dataset representations
Given the importance of visual representations of data (pro-
viding a clear idea of how the information is partitioned and
how different partitions relate to each other), we design an
experiment focused on finding the right spatial configura-
tion of a dataset’s samples, so as to maximize the separation
of different clusters. For this experiment, we used two
realistic datasets widely popular in the pattern recognition
domain, namely the Iris plants [36] and the hand-written
Digits [37] datasets (see Fig. 4).

We use three different dimensionality reduction methods
to generate candidate representations of the datasets in
a two-dimensional space: Principal Component Analysis
(PCA) [38], t-distributed Stochastic Neighbor Embedding (t-

SNE) [39], and Adaptive Clustering networks (ACNets) [3].
On one hand, PCA, one of the most widely used dimension-
ality reduction methods, was designed to generate embed-
dings that retain most information about the dataset. On the
other hand, t-SNE was designed to preserve local similar-
ities while generating low-dimensional samples suited for
visualization. By including ACNets in our benchmark, we
considered a third scenario consisting of optimal separation
of different clusters based on domain knowledge.

Using our proposed Partitioning Sensitivity Index, we
can then compare the candidates obtained to find represen-
tations of the datasets that best separate different clusters.
Fig. 4 shows for each dataset, the embeddings obtained by
each method as well as their associated qualities according
to PSI. From this figure, we observe that embeddings gener-
ated by ACNets have better partitioning qualities than those
of PCA and t-SNE. Additionally, we see that while the em-
beddings generated by t-SNE are in general better separated
than those produced by PCA, individual clusters generated
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Fig. 4. Representations obtained by different dimensionality reduction methods for the Iris and Hand-Written Digits datasets. Below each
representation are the clustering tendency assessment (clusterability) scores obtained by PHI and the Hopkins statistic, and the clustering quality
scores indicating how well separated the clusters are according to our proposed Partitioning Sensitivity Index (PSI).

by t-SNE are also more compact, which often creates better
partitioning (seen with the hand-written Digits dataset), but
can also combine different clusters when they are difficult to
separate (as seen with the Iris dataset). Nevertheless, we see
that in all cases, PSI accurately describes clustering qualities.

Upon further analysis, we highlight different clustering
tendencies for the different clusters obtained. PHI and the
Hopkins statistic are used to evaluate the clusterability of
the embeddings generated by PCA, t-SNE, and ACNets for
the two datasets. Where the Hopkins statistic indicates high
clustering tendency for all of these representations (values
close to 1), we see that our proposed statistic describes
their clustering tendencies with high fidelity, i.e., low values
where multiple clusters are present and high values where
distinct clusters are hard to dissociate from others.

4.2.3 Optimizing clustering algorithms
Aside from knowing which clustering algorithm would
best partition a dataset, another important question often
encountered in cluster analysis is how to find the best
hyper-parameters that maximize the performance of a given
clustering algorithm. To answer that question, we compare
the quality of partitions produced for each candidate value
of the hyper-parameter considered. We use our proposed
cluster validation statistic PSI as evaluation metric, and as
target dataset the ACNets embeddings of the Iris samples.
Since determining the optimal number of clusters consti-
tutes a fundamental issue in clustering problems where
the number of clusters is required to be set manually, we
choose this as the hyper-parameter to optimize. As such,
PSI is evaluated on three different clustering algorithms that
require this. For completeness, we include two other cluster-
ing validation statistics to compare PSI against: Silhouette
score and Calinski-Harabaz index.

Fig. 5 plots the cluster validation scores obtained for each
number of clusters and each clustering algorithm consid-
ered. We additionally used the Consensus Clustering [40]
algorithm to report the optimal number of clusters found
across multiple runs of each algorithm, which is shown as
the vertical dotted line on the plot, indicating 3 as the opti-
mal number of clusters. For all clustering algorithms used,
the scores obtained by PSI are validated by the Silhouette
score, the consensus clustering algorithm, and the domain
knowledge (i.e., known number of clusters — see the prop-
erties of the Iris dataset in Fig. 4). The Calinski-Harabaz
index, however, fails to find the optimal number of clusters,
or even decisively choose a best performing algorithm. This
is explained by the formulation of this index, i.e., with
clusters produced by ACNets, samples are tightly packed
together and therefore dividing inter-cluster distances by
intra-cluster distances often yields very large values, even
when some clusters are not well separated. The results of
this evaluation further highlight some key differences be-
tween our statistics and existing methods, mainly due to the
ability of our approach to consider the structure of cluster
samples in its definition. In this experiment, we observe that
while the Silhouette scores allow for identification of the
optimal number of clusters to be used, their values do not
entirely reflect the quality of the clustering results. Namely,
the Silhouette Score assumes that clusters are convex and
isotropic, which significantly reduces its descriptive power
when used to analyze complex or random cluster structures.
As an internal cluster validation statistic, PSI is not only
applicable under the same conditions as existing internal
validation metrics, but often solves shortcomings of these
methods as shown by Fig. 5.
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Fig. 5. Comparison of cluster qualities for clusters obtained by different
partitioning algorithms, for multiple values of a single parameter (number
of clusters). The top sub-figure shows visual representations of the
clustering results (sampled for different number of clusters), and the one
at the bottom plots the values recorded for all parameters. The number
of clusters obtained by the consensus clustering algorithm is plotted as
the vertical line.

4.3 Practical Use-Case

Next, we evaluate the performance of our proposed Par-
titioning Sensitivity Index when applied to large, com-
plex, and challenging datasets. For this experiment, we
use three realistic datasets, often used in the cyber-security
and image recognition domains, namely CIC-IDS-2017 [41],
MNIST [42] (a well-known handwritten digit classification
dataset), and CIFAR-10 [43] (an established computer-vision
dataset used for object recognition).

Results shown in Fig. 6 follow the changes in data
representations and in PSI, as ACNets learns to separate
the different clusters in the datasets. Depending on the
difficulty of the learning task, we see that representations
take between 60 and 200 training iterations to optimize.
The quickest optimization achieved is for the CIC-IDS-
2017 dataset, which contains 34,220 samples of 80 network
traffic features, representing the most common cyber attacks
known today. Comparatively, MNIST and CIFAR-10 were
the second and third to have optimized representations.

Fig. 6. Measures of cluster qualities at different stages of the training
process. The size and complexity of the datasets are reflected by PSI’s
rate of improvement, as confirmed by the the qualities of embeddings
produced.

These datasets consist of 70,000 samples of 784 features and
60,000 samples of 3072 features, respectively.

An interesting observation from this experiment is that
compared to the training loss, PSI better represents the
actual performance of the neural networks. This is indicated
by having the loss values close to their optimal while the
representations are still far from optimized (e.g., CIFAR-10
representation, loss, and clustering quality at iteration 100).

4.4 Complex Datasets
In this experiment, we evaluate the robustness of our
proposed cluster validation statistic on complex datasets
with large number of clusters. The Aggregation dataset [44]
consisting of seven perceptually distinct groups of points
is used, as this contains features that are known to create
difficulties for clustering algorithms such as: narrow bridges
between clusters, uneven-sized clusters, and so on. Our
proposed cluster validation statistic PSI is then used to
evaluate the quality of clusters in this dataset. To showcase
its robustness and faithful descriptive performance of the
cluster qualities, we apply our approach to the dataset
with all features that render clustering difficult, and to two
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variations of the dataset where some samples are selectively
removed to simplify clustering.

The results presented in Fig. 7 highlight the ability of
PSI to handle multiple clusters of complex shapes and sizes,
and show that our approach accurately describes the quality
of clusters obtained. In the left column of the figure, the
original dataset, with narrow or interconnected clusters is
evaluated by PSI to produce a quality index of 0.5, where
removing samples connecting different clusters significantly
increase the quality index. Specifically, PSI obtains a score of
0.74 when only two clusters are bridged by samples, and a
score of 0.82 when all clusters are well separated. This not
only confirms the robustness of PSI in evaluating large num-
ber of clusters, but shows how the structural relationships
between samples (see bottom row of the figure) impact the
quality of clusters.

4.5 Scalability Analysis

While the majority of modern computing infrastructures
are designed for scalability, throughput, and resilience, they
often delegate the task of latency management to algo-
rithmic tools. However, with the exponential growth of
data availability, datasets are continuously increasing in
size, dimensionality, and complexity, forcing data intensive
applications to introduce a trade-off between scalability and
functional accuracy [45], [46].

Exploratory data analysis techniques, having to analyze,
understand, describe, and eventually extract useful infor-
mation from their inputs, are most susceptible to requiring
such a trade-off when presented with such large datasets.
Therefore, we study the scalability of our proposed cluster-
ing tendency assessment statistic (PHI) and compare it to
that of the Hopkins statistic (the baseline method discussed
earlier). For this experiment, we measure the time taken
to compute with each statistic, the clustering tendency of
a randomly generated dataset. The size of the datasets are
gradually increased to also report the growth rates for each
method. Fig. 8 shows the average execution times over 10
runs, for each of the statistics considered.

Like many other cluster analysis techniques, the Hop-
kins statistic suffers from severe scalability problems as it
is greedy in nature. Further, it is subjected to a trade-off
between scalability and accuracy, as sampled data used to
compute its clusterability scores are randomly selected, i.e.,
despite not being scalable, its accuracy still suffers due to
randomness. Therefore, selecting all samples to compute a
deterministic value for the Hopkins statistic would further
degrade the scalability of the statistic.

Despite only using a 10% sampling rate to compute
the Hopkins statistic (as recommended in the literature),
a significant difference can be immediately noticed be-
tween the scalability of our PHI statistic and that of the
Hopkins statistic. A dataset containing 10, 000 samples of
1, 000 features each has its clustering tendency measured
by the Hopkins statistic in 60 seconds (using only 10%
of the data), while PHI takes less than 1 second (using
all samples), leading to a 59× improvement in processing
speed. With respect to the dataset size, where the execution
time increases exponentially for the Hopkins statistic, the
growth rate of PHI is sublogarithmic. This can theoretically

be proven by analyzing the complexity of all components
involved in the computation of PHI. Assuming the worse
case scenario, where all samples of the dataset are evenly
distributed across the all partitions, and with np being the
total number of partitions, each cell can have at most 8
neighbours, i.e. 9 cells considered for each sample. Using
a PC graph to compute PHI, pairwise distances between
aggregated cell samples can be computed in O(n2

p lnn
2
p)

using performance-oriented algorithms such as kd-Tree [47].
This term constitutes the most expensive operation as the
construction of the graph itself is directly proportional to
the number of edges, i.e., at worst O(n2

p). As the value of
np proposed in our experiment is logarithmic in terms of
number of samples in the dataset (np = 2 ⌈ln(1 + n)− 1⌉),
the overall complexity of PHI can be reduced to O(PHI) =
O((ln2 n) × (ln (ln2 n))) = O(k2 ln k), where k = ln (n).
However, for sub-optimal pairwise distance calculation
methods, the worse complexity of PHI, assuming the same
value for np would be O(PHI) = O(lnn). This highly
efficient complexity of PHI is obtained due to the main
attributes of our approach (as discussed in Section 3.1),
namely:

• the discriminative features’ extraction via SVD,
• the input space discretization via grid partitioning,
• the logarithmic growth rate of number of grid cells,
• the combination of samples within each grid,
• and the Proximally-Connected Graph of the dataset.

4.6 Code Availability

Upon publication, the source code of our proposed ap-
proach will be made public on GitHub.

5 DISCUSSION

Our proposed statistics, used as described in Section 3
perform distinctively well in all evaluation scenarios con-
sidered. We note however the existence of some edge cases,
such as evaluating on sets containing only one or two
samples, or understanding how outliers should participate
to the final scores. Similarly, the value of np, indicating
how many cells PHI should use for a given dataset, was
set via trial and error to estimate the best number of
grid partitions based on the number of samples. This pa-
rameter mainly enables faster processing of large datasets
by aggregating local groups of samples into single data
points while preserving the overall structure of the dataset.
This can however introduce a trade-off between the speed
of execution and the fidelity of the generated knowledge
graph. As such, large values of np are to be avoided to
prevent inaccurate assessments of the clustering tendency
of datasets. Ultimately, while our formulation of np (Section
4) works consistently well across all evaluations performed,
more theoretically-grounded definitions should be studied
in future work.

Although our proposed statistics have overcome limi-
tations of existing approaches, the structural patterns de-
scribed by PHI do not currently take into account the num-
ber of samples merged by each cell. This can however be
easily addressed (if needed) by adjusting PHI to account for



12

Fig. 7. Assessment of performance robustness of PSI on intricate cluster configurations. The clustering quality of the Aggregation dataset is
evaluated under three distinct conditions – the original dataset (left column), and two modified versions with select and progressive sample removals
to enhance cluster separation (center and right columns). Top and middle rows depicts the spatial configuration of the samples and are color coded
to indicate their corresponding clusters, respectively. The bottom row shows the PC graphs generated from the samples and used to compute PSI.

Fig. 8. Scalability analysis of PHI. Randomly generated datasets are
used to compare the execution time of PHI to that of the Hopkins statis-
tic (plotted on logarithmic scale and displayed in seconds), reporting
averages over 10 runs. For each dataset, the Hopkins statistic evaluated
using 10% of the samples.

disparities between the numbers of cells combined across all
connected vertices.

As shown in the previous section, our approach
painlessly scales to very large datasets. Therefore, we defer
to future work further reductions of the execution time
by using parallel processing techniques for 1) computing
portions of the adjacency matrix simultaneously, and 2)
enabling local exploration of extremely large graphs.

Finally, we leave for future work the application of our
proposed statistics to unsupervised machine learning tasks.

6 CONCLUSION

Although clustering tendency assessment is generally over-

looked by the research community, its undeniable neces-
sity has become more apparent with the emergence of
big data and machine learning applications. In this pa-
per we have shown how such methods can be beneficial
for exploratory data analysis applications and argued for
the need of consistent, reliable, and deterministic statistics
such as the Proximal Homogeneity Index (PHI) proposed.
Through extensive experiments, we have demonstrated the
suitability of PHI not only for clustering tendency assess-
ment, but also, through our Partitioning Sensitivity Index
(PSI), its effectiveness in validating clustering results, find-
ing the most appropriate clustering algorithm and hyper-
parameters, and choosing the best dimensionality reduction
method to maximize clustering performance. We studied
PHI’s practical viability using realistic datasets and revealed
its scalability properties. The results obtained confirmed the
consistency of our proposed statistics across datasets and
clustering methods, and we made the case for their adoption
in statistical and exploratory data analysis.
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