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Abstract. We use a state-of-the-art regional chemistry transport model (WRF-Chem v4.2.1) to simulate par-
ticulate air pollution over northern India during September–November 2016. This period includes a severe air
pollution episode marked by exceedingly high levels of hourly PM2.5 (particulate matter having an aerodynamic
diameter≤ 2.5 µm) during 30 October to 7 November, particularly over the wider Indo-Gangetic Plain (IGP). We
provide a comprehensive evaluation of simulated seasonal meteorology (nudged by ERA5 reanalysis products)
and aerosol chemistry (PM2.5 and its black carbon (BC) component) using a range of ground-based, satellite and
reanalysis products, with a focus on the November 2016 haze episode. We find the daily and diurnal features in
simulated surface temperature show the best agreement followed by relative humidity, with the largest discrepan-
cies being an overestimate of night-time wind speeds (up to 1.5 m s−1) confirmed by both ground and radiosonde
observations. Upper-air meteorology comparisons with radiosonde observations show excellent model skill in
reproducing the vertical temperature gradient (r > 0.9). We evaluate modelled PM2.5 at 20 observation sites
across the IGP including eight in Delhi and compare simulated aerosol optical depth (AOD) with data from
four AERONET sites. We also compare our model aerosol results with MERRA-2 reanalysis aerosol fields and
MODIS satellite AOD. We find that the model captures many features of the observed aerosol distributions
but tends to overestimate PM2.5 during September (by a factor of 2) due to too much dust, and underestimate
peak PM2.5 during the severe episode. Delhi experiences some of the highest daily mean PM2.5 concentrations
within the study region, with dominant components nitrate (∼ 25 %), dust (∼ 25 %), secondary organic aerosols
(∼ 20 %) and ammonium (∼ 10 %). Modelled PM2.5 and BC spatially correlate well with MERRA-2 products
across the whole domain. High AOD at 550nm across the IGP is also well predicted by the model relative
to MODIS satellite (r ≥ 0.8) and ground-based AERONET observations (r ≥ 0.7), except during September.
Overall, the model realistically captures the seasonal and spatial variations of meteorology and ambient pollu-
tion over northern India. However, the observed underestimations in pollutant concentrations likely come from
a combination of underestimated emissions, too much night-time dispersion, and some missing or poorly repre-
sented aerosol chemistry processes. Nevertheless, we find the model is sufficiently accurate to be a useful tool
for exploring the sources and processes that control PM2.5 levels during severe pollution episodes.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Atmospheric particle pollution in India is a persistent envi-
ronmental issue and a leading health risk factor for its 1.4 bil-
lion population (Pandey et al., 2021). In 2019, ambient air
pollution was estimated to cause almost a million premature
deaths in India (Pandey et al., 2021). The State of Global
Air 2022 (HEI, 2022) reports that over 90 % of the Indian
population resides in areas where the annual mean concen-
trations of PM2.5 (particulate matter having an aerodynamic
diameter smaller than 2.5 µm) exceed even the minimal in-
terim target of 35 µg m−3 recommended by the World Health
Organization air quality guidelines (WHO, 2021). The coun-
try is home to 18 of the 20 cities worldwide with the greatest
rise in PM2.5 pollution in the last decade (HEI, 2022). This
upward trend in degraded air quality is projected to continue
across South Asia under current policies, including more fre-
quent high-pollution incidents over northern India (R. Ku-
mar et al., 2018; Paulot et al., 2022). These trends have huge
consequences for the future life expectancy of the 400 mil-
lion residents of this region which is currently reported to
be reduced by more than 9 years under the current pollution
burden (Greenstone and Fan, 2020).

The Indo-Gangetic Plain (IGP) is situated south of the Hi-
malayas and stretches from parts of Pakistan in the west,
through north and east India and Nepal, to Bangladesh in
the east. The IGP is a heavily populated region (home to
over 40 % of the total Indian population) with many rural,
suburban and urban clusters (Fig. 1a). It is characterized by
intensive multi-cropping systems, rapid industrialization and
a growing economy, which results in a heterogeneous mix
of particle and gaseous pollutant emissions (Venkataraman
et al., 2018; A. Kumar et al., 2020). The region is a global
centre for poor air quality (Singh et al., 2017), underpinned
by India being one of the largest emitters of anthropogenic
aerosols in the world (Lu et al., 2011). The anthropogenic
sources include vehicles, industry, the burning of crop waste
and garbage, residential cooking, and mining. The emissions
contributions are dominantly composed of nitrate and sul-
fate precursors and carbonaceous aerosols, driven by a rapid
increase in demand for energy (Lu et al., 2011). Black car-
bon (BC) is fine particulate matter’s light-absorbing compo-
nent (Lack and Cappa, 2010) and is released during incom-
plete combustion of carbon-containing fossil fuels like coal,
oil and gas and biofuels like wood, agricultural residues and
forest fires. BC particles are short-term climate forcers with a
net positive radiative forcing (Ramanathan et al., 2001; Bond
et al., 2013; Wang et al., 2014). BC emissions from India are
some of the highest globally and significantly impact the In-
dian summer monsoon, regional climate and human health
(Ramanathan et al., 2001). Natural particle sources such as
mineral dust also substantially influence the air quality over
the IGP and broader northern India (Li et al., 2017). Addi-
tionally, air quality over the IGP region is greatly affected
by the prevailing meteorology, topography and long-range

transport of pollutants (Kaskaoutis et al., 2014; Kumar et al.,
2014; Schnell et al., 2018; Ojha et al., 2020).

In addition to the year-round poor air quality over the
IGP region, recurring intense post-monsoon and winter haze
episodes have been reported in numerous studies (Ram et al.,
2016; M. Kumar et al., 2018; Kanawade et al., 2020; Beig et
al., 2019; Bharali et al., 2019; Thomas et al., 2019; Dhaka et
al., 2020; Kumari et al., 2021; Gupta et al., 2022). Most of
these severe episodes coincide with the biomass burning pe-
riod (mid-October to November), during which agricultural
land is cleared in open fields by burning crop residue, pri-
marily paddy (Singh et al., 2020). Although highly seasonal,
the emissions from these multiple small to large fires emit
large amounts of reactive gases and particles such as car-
bon monoxide (CO), nitrogen oxides (NOx), volatile organic
compounds (VOCs), carbonaceous particles and other com-
ponents of PM2.5 (Singh et al., 2020; Kumar et al., 2021).
One such severe haze event over northern India occurred be-
tween 30 October and 7 November 2016, leading to daily
mean PM2.5 concentrations of 300–600 µg m−3, some 20–
40 times greater than the 24 h WHO (2021) air quality guide-
line of 15 µg m−3 (Mukherjee et al., 2018; Sawlani et al.,
2019; Kanawade et al., 2020; Jethva et al., 2019). Jethva et
al. (2019) reported that crop residue fire counts over north-
west India were particularly high in the 2016 post-monsoon
period. Alongside crop biomass burning emissions, the un-
favourable meteorology and accumulation of local urban
emissions contributed to this week-long episode of extremely
high pollution (Kanawade et al., 2020; Sawlani et al., 2019).

Modelling studies characterizing air pollution over India
have utilized a variety of regional chemistry transport mod-
els (Nair et al., 2012; Kumar et al., 2012a, b; Moorthy et
al., 2013; Pan et al., 2015; Srivastava et al., 2016; Schnell et
al., 2018; Ghosh et al., 2023). These studies highlight various
problems in simulating atmospheric composition over the In-
dian subcontinent, such as capturing the high aerosol load-
ing, erroneous boundary-layer parameterizations, underesti-
mations in emissions inventories, complex mountain topog-
raphy and inaccurate moisture transport. This is especially
true for simulations of surface BC concentrations, which
utilize regional South Asian emissions inventories that are
thought to underestimate the BC emissions (Kumar et al.,
2015; Govardhan et al., 2019). Equally important is simulat-
ing the vertical distribution of BC particles and understand-
ing their effect on atmospheric stability, for which only lim-
ited measurements have been made over India. These studies
found high BC loadings vertically (up to 8 km altitude) over
north-west and central India during different months (Babu
et al., 2011; Bisht et al., 2016; Brooks et al., 2019). The role
of these absorbing particles in modifying the vertical bound-
ary layer structure during a haze episode over the northern
Indian region has been poorly explored to date (Bharali et
al., 2019).

This study aims to evaluate the WRF-Chem regional atmo-
spheric chemistry transport model’s ability to simulate the
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Figure 1. (a) Degree of urbanization based on 2015 human population size and built-up area density data over India from GHS-SMOD
(Schiavina et al., 2022). (b) Locations of the observation sites used for comparison in this study; the legend indicates the different datasets
(ASOS – automatic weather stations, RAOB – radiosonde observations, CPCB – Indian Central Pollution Control Board PM2.5 ground
monitoring stations, AERONET – Aerosol Robotic Network ground remote sensing observations). The inset figure is an enlarged map of
Delhi capital, and the geographical area falling under the IGP region is highlighted in light blue.

meteorology and aerosol chemistry across north India and
the IGP in September–November 2016. Our choice to anal-
yse the 2016 seasonality and the pollution episode differs
from the previous literature (R. Kumar et al., 2020; Jena et
al., 2020; Sengupta et al., 2022; Govardhan et al., 2023b) in
several aspects, listed below.

i. We use an updated WRF-Chem version (v4.2.1) and uti-
lize the MOZART-MOSAIC chemical scheme (detailed
in Sect. 2.1), which explicitly resolves the aerosols into
four size bins and represents the chemistry of secondary
organic and inorganic aerosols that make up the domi-
nant components of PM2.5 in the post-monsoon season,
as compared to the GOCART scheme employed in these
earlier studies which lacks particle size information.

ii. The 2016 pollution episode over the IGP was one of the
worst for air quality (since 2004) and anomalous for the
highest rice crop production (since 2002) in NW Indian
states, resulting in high crop residue burning in that year
(Voiland and Jethva, 2017; Jethva et al., 2019; Sem-
bhi et al., 2020). As shown by multiple trend analyses,
2016 had the highest number of agricultural fires of the
last decade during the post-monsoon season (Sarkar et
al., 2018; Mukherjee et al., 2018; Thomas et al., 2019;
Kulkarni et al., 2020; Sembhi et al., 2020; Liu et al.,
2021; Jethva, 2022; Gupta et al., 2023). Moreover, al-
though several modelling studies have analysed the air
quality during intense post-monsoon pollution episodes
in the years after 2016 (e.g. Dekker et al., 2019; Beig
et al., 2019; Kulkarni et al., 2020; Roozitalab et al.,
2021), studies for 2016 are fewer (Sembhi et al., 2020;
Mukherjee et al., 2020). It is, therefore, necessary to

understand the implications of this particularly extreme
episode with a chemistry transport model whose per-
formance at simulating prevailing seasonal meteorology
over a sufficiently long period has been evaluated.

iii. The use of hourly fifth-generation European Centre for
Medium-Range Weather Forecasts (ECMWF) reanaly-
sis (ERA5) data to drive the model meteorology and a
comprehensive comparison of the simulated meteorol-
ogy and biases across northern India are an additional
novelty of this work, as is the use of a wide range of
ground and satellite observations as well as reanalysis
products in the evaluation.

We first evaluate WRF-Chem simulations of surface and
vertical meteorology against multiple available observations
from weather stations and radiosonde profiles and reanaly-
sis datasets. We then evaluate the modelled chemistry and
aerosol optical properties against ground-based measure-
ments, reanalysis products and satellite-retrieved data. The
study focuses on characterizing monsoon to post-monsoon
changes in meteorology and the atmospheric chemical com-
position of modelled PM2.5 and BC in 2016.

2 Data and methods

2.1 WRF-Chem model description and configuration

The Weather Research and Forecasting model (version 4.2.1)
coupled with Chemistry (WRF-Chem) (Grell et al., 2005;
Fast et al., 2006) is an atmospheric chemistry transport
model widely applied to the South Asia region, including
its development as an air quality early-warning system for
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Delhi (Jena et al., 2021; R. Kumar et al., 2020). It has
a terrain-following vertical coordinate system and is avail-
able with a range of physical parameterizations (Skamarock
and Klemp, 2008). The transport of trace gases and aerosol
species in WRF-Chem uses identical vertical and horizontal
coordinates, allowing for feedback between meteorology and
chemistry via radiation and photolysis (Grell et al., 2005).
This makes WRF-Chem well-suited for investigating and
isolating the interactions between aerosols and meteorology.

The single domain for this study covers the northern part
of South Asia (20–38◦ N, 66–90◦ E) at 12 km horizontal res-
olution (Fig. 1b), with 33 vertical levels from the surface to
the model top which is fixed at 50 hPa. The lowest 10 levels
are below 1 km. The configurations of WRF-Chem dynam-
ical and chemical parameterizations used in this study are
adopted from the literature available for South Asia and are
summarized in Table S1 in the Supplement. ERA5 data at a
horizontal resolution of 0.25◦× 0.25◦ are used for initializ-
ing the meteorology, boundary conditions and nudging in the
model (Hersbach et al., 2020). Temperature, winds and water
vapour are nudged towards ERA5 values above the planetary
boundary layer (PBL) every 6 h, using grid nudging with a
nudging coefficient of 6× 10−4 s−1 (Stauffer and Seaman,
1994). Terrestrial and land-use data are static and obtained
from the MODIS IGBP 21-category land-cover classification
(Friedl et al., 2002).

Time-varying boundary conditions for chemistry are taken
from simulations of the global 6-hourly Model for Ozone and
Related Chemical Tracers (MOZART-4)/Goddard Earth Ob-
serving System Model version 5 (GEOS-5) (NCAR, 2016).
The simulation of gas-phase chemistry in WRF-Chem is pro-
vided by the updated MOZART-4 scheme (Emmons et al.,
2010, 2020), which includes treatment of biogenic hydrocar-
bons and aromatics (Hodzic and Jimenez, 2011; Knote et al.,
2014). Aerosol chemistry is simulated using the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC)
four-bin scheme (Zaveri et al., 2008). MOSAIC includes de-
tailed solid-, liquid- and mixed-phase equilibria and thermo-
dynamic gas–particle partitioning to compute aerosol com-
position and a simple parameterization of secondary organic
aerosol (SOA) aqueous chemistry using glyoxal (Knote et al.,
2014) but does not explicitly include detailed aqueous-phase
chemistry, such as that described in Acharja et al. (2023). The
aerosol processes in the mechanism include aerosol trans-
port, dry and wet removal, water uptake, nucleation, coagula-
tion, and condensation processes. The MOSAIC scheme uses
a sectional approach to divide dry aerosol diameter into four
discrete bins: 0.039–0.156, 0.156–0.625, 0.625–2.5 and 2.5–
10 µm (the coarse-PM bin) (Zaveri et al., 2008). The aerosol
distribution scheme includes both in-cloud and impaction
scavenging and assumes aerosols to be internally mixed
within the same bin and externally mixed between the bins
(Riemer et al., 2019). MOSAIC simulates sulfate (SO2−

4 ),
nitrate (NO−3 ), ammonium (NH+4 ), calcium (Ca2+), carbon-

ate (CO2−
3 ), black carbon (BC), primary organic mass (OM),

liquid water (H2O), sea salt (NaCl) and other inorganic
species such as minerals and trace metals (Zaveri et al.,
2008). The Fast Tropospheric Ultraviolet–Visible (FTUV)
photolysis scheme (Tie et al., 2003) provides photolysis rates
and accounts for the aerosol feedback on photolysis (Hodzic
and Knote, 2014).

Monthly anthropogenic emissions at 0.1◦×0.1◦ horizontal
resolution are obtained from the 2010 Emission Database for
Global Atmospheric Research for Hemispheric Transport of
Air Pollution version 2.2 (EDGAR-HTAPv2.2; https://edgar.
jrc.ec.europa.eu/dataset_htap_v2, last access: 13 Febru-
ary 2024). The emission sectors included in EDGAR-
HTAPv2.2 are industrial, residential, transportation, agricul-
ture, shipping, energy and aviation. For emissions from In-
dia, EDGAR-HTAPv2.2 incorporates the regional emissions
inventory from the Model Inter-Comparison Study for Asia
Phase III (MICS-Asia III) to derive emissions maps at a
common grid resolution of 0.1◦× 0.1◦ (Janssens-Maenhout
et al., 2015). Within MICS-Asia III, a mosaic of regional
anthropogenic emission inventories was developed by com-
bining the nationally reported estimates by Argonne Na-
tional Laboratory (ANL-India) and REAS2 (Regional Emis-
sion inventory in Asia) (Lu et al., 2011; Li et al., 2017).
The total emissions for SO2, NOx , NH3, PM10, PM2.5,
BC, organic carbon (OC) and non-methane volatile organic
compounds (NMVOCs) are speciated in the model follow-
ing the MOSAIC-MOZART chemistry mechanism. The an-
thropogenic emissions exhibit a diurnal variation, with a
simple transition between daytime and night-time values
at 05:30 and 17:30 LT (local time) for each emitted pol-
lutant, as specified by the preprocessor tool anthro_emis
utility in the model (https://www2.acom.ucar.edu/wrf-chem/
wrf-chem-tools-community, last access: 13 February 2024).
The use of the 2010 EDGAR-HTAPv2.2 inventory to model
air quality during 2016 adds some uncertainties to the model
results as the emissions over India evolved from 2010 to
2016. Emissions of OC, CO, NOx , SO2 and NMVOCs from
anthropogenic sectors such as industrial and energy sectors
increased because of rapidly increasing demand, whilst pri-
mary particulate emissions of BC, OC and PM2.5 from resi-
dential and informal industry sectors reduced due to cleaner
fuel policies (such as the Ujjawala scheme; http://www.
pmujjwalayojana.in/, last access: 13 February 2024) (Mc-
Duffie et al., 2020). The estimates derived from the global
CEDS inventory reported by McDuffie et al. (2020) show a
combined increase from road transport, energy, industry and
agricultural sectors in annual NH3, SO2, NOx and NMVOC
emissions over India between 2010 and 2016. The reported
increases in emissions of these pollutants across India are
∼ 17 %, ∼ 11 %, ∼ 12 % and ∼ 10 %, respectively. These
changes in emissions may mean our model simulations un-
derestimate the BC, primary OC and secondary aerosol con-
tributions to total PM. However, it is challenging to fully iso-
late the impact of these changes in an atmospheric chem-
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istry model because the model output also depends substan-
tially on other factors, such as the meteorology, which drives
online emissions. Compared with other global inventories
of coarser resolution (e.g. ECLIPSE), the use of EDGAR-
HTAPv2.2 has been found to simulate air quality over In-
dia with a greater local heterogeneity and to show slightly
smaller overall biases when compared against reanalysis and
satellite products (e.g. Upadhyay et al., 2020). Hence, al-
though the EDGAR-HTAPv2.2 emissions are from 2010, we
believe that they have been widely evaluated and are amongst
the best available for our simulations.

In India, the post-harvest agricultural residue is largely
cleared by burning it in open fields, and this is a dom-
inant contributor to Indian PM2.5, BC, OC, SO2, NOx

and NMVOC emissions (Venkataraman et al., 2018). As
EDGAR emissions do not include any biomass burning emis-
sions (from agricultural fires, wildfires or prescribed fires),
these are derived from the Fire Inventory from NCAR, ver-
sion 1.5 (FINNv1.5) (Wiedinmyer et al., 2011). The emis-
sions are based on satellite-measured locations of active fires
and emission factors relevant to the underlying land cover
(Akagi et al., 2011). The FINNv1.5 fire emissions inputs
are distributed at 1 km spatial and hourly temporal resolution
for 2016 (https://www.acom.ucar.edu/Data/fire/, last access:
13 February 2024).

Biogenic emissions are calculated online (updated ev-
ery 30 min) using the Model of Emissions of Gases and
Aerosol from Nature (MEGAN v2.0) (Guenther et al., 2006).
MEGAN uses satellite-driven land-cover and modelled me-
teorological information (e.g. temperature and photosynthet-
ically available radiation, PAR) to estimate VOCs, NOx and
CO from vegetation at spatial resolution. Dust emissions
are generated online by incorporating the Goddard Global
Ozone Chemistry Aerosol Radiation and Transport (GO-
CART) scheme from terrain data and modelled meteorology
(Chin et al., 2002). The GOCART scheme, described in de-
tail elsewhere (Ginoux et al., 2001; Zhao et al., 2010, 2013),
utilizes the information about 10 m wind speed, threshold
wind velocity (minimum value to reach for the dust emis-
sion to occur) and potential dust source region factors to cal-
culate the dust emission flux. The total dust emission fluxes
are calculated by multiplication by an empirical dimensional
constant, which is taken from Ginoux et al. (2001). The GO-
CART scheme then distributes the emitted dust particles into
four size bins (described earlier).

For our evaluation of WRF-Chem performance, hourly
simulations are conducted for 1 September to 30 Novem-
ber 2016, allowing 6 d of spin-up (from 25–30 August).
September falls within the south-west (SW) monsoon season
(its withdrawal typically begins in mid-September), whilst
October and November are in the post-monsoon season (In-
dia Meteorological Department, 2017). This permits a com-
parative assessment of meteorology and air quality between
the two seasons. Although 2015–2016 was widely recorded
as subject to a pronounced El Niño event, its effects over In-

dia only lasted until the summer of 2016 (India Meteorologi-
cal Department, 2017) and therefore should not significantly
impact the study period. In terms of general climatology, the
2016 SW monsoon rainfall was recorded to be normal over
the country, aside from a deficit in rainfall over parts of north-
west India.

2.2 Meteorological data

WRF-Chem-simulated meteorology is compared with ob-
servational networks measuring daily surface weather (Iowa
Environmental Mesonet-Automated Surface Observing Sys-
tem; IEM-ASOS network) and atmospheric soundings (ra-
diosonde observations (RAOB), University of Wyoming).
Figure 1b shows the locations of the observation sites from
these networks. The data links and access details are given in
Table S2.

The IEM-ASOS network is an archive of global automated
airport weather observations from weather stations operated
by national agencies and airport authorities. Hourly 2 m air
temperature (T2), relative humidity (RH), wind speed (WS)
and wind direction (WD) data for 49 observation sites (Ta-
ble S4) within the study domain are used. Processing and
general quality control of the data are undertaken by the IEM
network so the downloaded data were only checked for miss-
ing values before comparison with model output.

Radiosonde measurements for vertical meteorology pro-
file comparison are available for eight sites within the model
domain. Pilot balloon soundings are undertaken by the India
Meteorological Department, and rigorous quality checks are
performed before making them freely available (Durre et al.,
2006). The radiosonde measurements are available each day
at 00:00 UTC (05:30 and 17:30 IST (Indian standard time),
respectively). No station has complete soundings for the en-
tire study period, so model-measurement comparisons only
include times when observations are available. The sounding
observations are vertically interpolated to the model’s pres-
sure levels from 1000 to 100 hPa. The average vertical tem-
perature, virtual potential temperature (VPT), WS and RH
profiles are compared for individual sites, and temporal vari-
ability (as standard deviation) is reported for the entire period
across all the pressure levels.

The spatial features of modelled meteorology are com-
pared against the global MERRA-2 reanalysis (Gelaro et al.,
2017) dataset available at a latitude–longitude grid resolution
of 0.5◦× 0.625◦ and 72-hybrid-eta levels at 6 h frequency.
MERRA-2 reanalysis data are provided by NASA’s Global
Modelling and Assimilation Office (GMAO). The meteoro-
logical variables are re-gridded to WRF-Chem spatial res-
olution (12 km), and comparison was undertaken for T2,
10 m WS, water vapour mixing ratio (QV) and planetary
boundary layer height (PBLH) variables.

https://doi.org/10.5194/acp-24-2239-2024 Atmos. Chem. Phys., 24, 2239–2266, 2024
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2.3 Ground-based PM2.5

We evaluate the performance of WRF-Chem in simulating
aerosols by comparing modelled PM2.5 mass concentrations
and aerosol optical depth (AOD) at 550 nm with observations
and reanalysis products. The measurements of surface PM2.5
used for model comparison are undertaken by the Central
Pollution Control Board of India (CPCB), accessed via the
OpenAQ platform (Table S1, Fig. 1b). In addition to gen-
eral quality control procedures applied by CPCB, the hourly
PM2.5 mass concentration data for 20 stations in the study
domain were filtered for missing, zero and negative values.
Days with < 40 % of hourly measurements were also re-
moved before comparing with the modelled PM2.5 mass con-
centrations. Since Delhi has many more individual sites than
other states in the domain, the data are grouped into two cat-
egories: all sites within the Delhi region (n= 8) and the re-
maining sites (referred to as “Others”, n= 12), the major-
ity of which are located within the IGP region (Fig. 1b, Ta-
ble S4).

2.4 Reanalysis PM2.5 and black carbon concentrations

The spatial distributions of modelled surface PM2.5 and BC
concentrations are compared with MERRA-2 global reanal-
ysis products, which are based on the GOCART scheme
employed in GEOS-5 atmospheric model (Randles et al.,
2017). The GOCART model in MERRA-2 employs the on-
line coupling of radiatively active aerosols with meteorol-
ogy in the GEOS-5 model. GOCART in MERRA-2 simu-
lates OC, BC, sea salt, dust and sulfate aerosols, which are
used to derive the total PM2.5 mass concentrations, but it
lacks information on size distribution and composition of
aerosols. Additionally, the aerosols in the GOCART scheme
are externally mixed and exclude the treatment of nitrate
and secondary organic aerosols (Randles et al., 2017) due to
which the MERRA-2 PM2.5 is underestimated during high-
pollution events (Buchard et al., 2017). Whilst the MERRA-
2 AOD is directly constrained by the assimilation of obser-
vations, the aerosol diagnostics (such as PM2.5) also partly
depend upon systematic biases and assumptions of aerosol
speciation and optical properties in the GEOS-5/GOCART
model used in MERRA-2, as noted by Buchard et al. (2017).
This is likely to influence the total PM2.5 comparisons be-
tween WRF-Chem and MERRA-2, as WRF-Chem simulates
a wider range of aerosol species. However, the utilization of
MERRA-2 reanalysis data still serves as a useful reference
for assessment of spatial and seasonal trends of aerosols be-
tween the two modelled datasets. AOD in MERRA-2 is as-
similated using multiple satellite and ground-based obser-
vation data, including bias-corrected AOD from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS), Ad-
vanced Very High-Resolution Radiometer (AVHRR) instru-
ments, Multi-angle Imaging Spectroradiometer (MISR) and
Aerosol Robotic Network (AERONET). The aerosol assimi-

lation uses satellite radiance and albedo from observing sen-
sors and bias-corrected AOD, described in detail in Randles
et al. (2017). Based on past studies and recommendations,
the PM2.5 concentration from MERRA-2-produced aerosol
fields is calculated via the following summation of aerosol
components in the size bin≤ 2.5 µm diameter.

[PM2.5]= [BC] + 1.6×[OC] + 1.375×
[
SO2−

4

]
+ [dust] + [sea salt] (1)

The multiplication factor of 1.375 on the sulfate ion concen-
tration is based on the assumption in MERRA-2 that sul-
fate is primarily present as neutralized ammonium sulfate
(Buchard et al., 2016; Provencal et al., 2017; Song et al.,
2018). OC in MERRA-2 is scaled up to organic matter con-
centration using values ranging from 1.2–2.6, and this study
uses the factor 1.6, which is commonly used for urban car-
bonaceous particles (Chow et al., 2015; Buchard et al., 2016;
Provencal et al., 2017; Song et al., 2018).

2.5 Satellite and ground-based AOD data

WRF-Chem AOD at 550 nm is compared with satellite obser-
vations from the MODIS sensor on board the Terra and Aqua
polar orbiting satellites. The AOD products from MODIS
have a 10 km horizontal resolution at equatorial local over-
pass times of 10.30 (Terra) and 13.30 (Aqua). AOD re-
trievals from MODIS are based on combined Dark Target
(DT: retrieval algorithm over dark land and ocean surfaces)
and Dark Blue algorithms (DB: bright land surface) and
re-gridded to the WRF-Chem resolution of 12 km. AOD in
WRF-Chem is simulated between wavelengths 300–1000 nm
and interpolated to 550 nm using the Ångström power law
(Ångström, 1964; Kumar et al., 2014). In addition, ground-
based AERONET version 2 level 2.0 (quality-assured and
cloud-screened) AOD is available at four locations (Fig. 1b)
within the study domain and is used for comparison with
modelled results. AERONET is a global network (Holben et
al., 1998) that has been extensively used for validating satel-
lite observations over South Asia (Sayer et al., 2014; Mhaw-
ish et al., 2017).

2.6 Statistical metrics

Statistical metrics used here for the evaluation of model
performance include mean bias (MB), normalized mean
bias (NMB), mean absolute error (MAE), root mean square
error (RMSE) and Pearson’s correlation coefficient (r). Def-
initions of these metrics are provided in Table S3.

3 Meteorology evaluation results

3.1 Near-surface meteorological fields

Figure 2 shows modelled and measured time series of daily
means and mean diurnal cycles T2, RH, WS and WD derived
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Figure 2. Daily-mean time series (left panels) and mean diurnal cycle (right panels) of observed (black) and modelled (red) meteorological
variables from 1 September–30 November 2016 averaged across the 49 ASOS measurement sites shown in Fig. 1b. From top to bottom: daily
mean 2 m temperature, relative humidity, wind speed and wind direction. The shaded regions indicate the standard deviation in the spatial
variability in the model and measured variables. The vertical dashed lines delineate the period of severe high pollution between 30 October
and 7 November.

from hourly data and averaged across all the observational
sites. The statistical comparison metrics for the 3 months are
provided in Table 1. As the exact measurement heights at
individual sites are not known, the comparisons are made as-
suming the standard above-ground heights of 2 m for temper-
ature and RH and 10 m for wind speed and direction. Daily
average T2 variability correlates well between the model and
observations for all the months (r > 0.85), with maxima and
minima captured well (Fig. 2). Model MB for T2 is slightly
lower but by less than−0.8 ◦C for all months. The T2 diurnal
profile is also well represented by the model, with differences
slightly larger (up to 2 ◦C) during night-time.

The general day-to-day variability in modelled surface RH
also compares reasonably well with the observations (r range
across the months: 0.65–0.79), with slight underestimations
that gradually increase from−1.9 % in September to−8.2 %
in November mainly due to underestimations seen in the
night-time RH peaks. The observed diurnal RH cycle is also
well simulated by the model although as for T2 with larger
differences during the night when RH is greatest.

The differences in simulated 10 m wind patterns are rela-
tively higher than those for T2 and RH, with modelled WS
showing a relatively poor correlation of r ≤ 0.4 and over-
estimations of about 0.5–0.8 m s−1 (36 %–61 %) in October
and November. However, better correlation (r = 0.62) and
lower biases (MB= 0.4 m s−1 and NMB= 0.2) are observed
for September. The diurnal variation of WS during daytime
is captured quite well by the model, while the bias is higher
at night (up to 1.5 m s−1); this is the reason for the observed
large biases in modelled daily variabilities in WS. Since local
WD is highly variable across sites in different regions, it is
hard for a model to capture the daily variabilities. Differences
between modelled and observed WD are smallest during the
daytime when the general wind direction is south-westerly
and largest at night.

Table 2 provides the statistical evaluation results from the
comparison of WRF-Chem and MERRA-2 global reanaly-
sis data for mean T2, 10 m wind speed, water vapour mix-
ing ratio (QV) and planetary boundary layer height (PBLH).
The spatial maps of these variables are presented in Figs. S1
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Table 1. Summary of statistical comparison of modelled and ob-
served meteorology variables derived from hourly data between
September and November 2016 and averaged across the 49 ASOS
measurement sites shown in Fig. 1b. The statistical metrics used
for comparison are mean bias (MB), normalized mean bias (NMB),
mean absolute error (MAE), root mean square error (RMSE) and
Pearson’s correlation coefficient (r).

Month/variable MB NMB MAE RMSE r

(N = 49)

Temperature (◦C)

September −0.28 −0.01 1.5 2.2 0.86
October −0.75 −0.03 1.8 2.6 0.90
November −0.84 −0.04 2.2 3.0 0.87

RH (%)

September −1.90 −0.03 7.8 10.0 0.75
October −4.10 −0.07 10.1 13.2 0.79
November −8.20 −0.15 12.8 17.7 0.65

Wind speed (m s−1)

September 0.40 0.20 0.8 1.07 0.62
October 0.54 0.36 1.0 1.26 0.30
November 0.81 0.61 1.1 1.37 0.40

and S2 in the Supplement. Except for PBLH, the meteorolog-
ical variables generally show good spatiotemporal agreement
between the model and MERRA-2, with the best agreement
for T2 and QV, as reflected in the high spatial correlations
(r ≥ 0.97). However, regional heterogeneities exist between
the two datasets which are generally more evident temporally
across all the variables. The largest spatial differences are
seen for WS and QV, which show overall underestimations
by WRF-Chem for WS (in contrast to observed overestima-
tions as compared to the measured data) and overestimations
for QV (in contrast to observed underestimations as com-
pared to the measured data) in the wider IGP region. There
is a stronger west–east gradient in PBLH in MERRA-2 com-
pared to WRF-Chem which possibly influences the PM2.5
concentrations in MERRA-2.

A seasonal dry bias in the WRF model over the Indian
region due to possible errors in moisture fluxes has been
reported previously (Kumar et al., 2012b; Conibear et al.,
2018), and night-time underestimations in modelled RH sim-
ilar in magnitude to this study were noted by Gunwani and
Mohan (2017). A comparison of modelled results, includ-
ing ERA5 (used to drive WRF-Chem here) and independent
MERRA-2 global reanalysis datasets with hourly ground
observations (Fig. S3), shows the highest positive bias in
RH in ERA5 during all the months, while WRF-Chem and
MERRA-2 tend to underestimate RH across all the months.
This may affect the model’s ability to capture the diurnal evo-
lution of secondary aerosols by hygroscopic growth, particu-
larly at night.

Table 2. Summary of statistical comparison of WRF-Chem-
and MERRA-2-derived meteorology variables from September to
November 2016. The statistical metrics used for comparison are
mean bias (MB), normalized mean bias (NMB), mean absolute er-
ror (MAE), root mean square error (RMSE) and Pearson’s correla-
tion coefficient (r).

Month MB NMB MAE RMSE r

Temperature (◦C)

September −0.57 −0.03 1.4 2.12 0.99
October −1.5 −0.10 1.9 2.67 0.99
November −2.4 −0.22 2.7 3.30 0.99

Wind speed (m s−1)

September −0.17 −0.09 0.57 0.73 0.85
October −0.23 −0.12 0.64 0.85 0.76
November −0.17 −0.08 0.79 1.09 0.73

QV2 (g kg−1)

September 0.56 0.05 0.94 1.38 0.98
October 0.19 0.02 0.79 1.11 0.98
November −0.07 −0.01 0.65 0.99 0.97

PBLH (m)

September −324 −0.28 355 430 0.69
October −477 −0.37 481 550 0.67
November −344 −0.36 356 446 0.70

PM2.5 (µg m−3)

September 54 1.9 55.1 72 0.87
October 20 0.49 21.7 30 0.87
November −8.4 −0.12 13.8 23 0.95

BC (µg m−3)

September 0.52 0.65 0.57 0.93 0.91
October 0.24 0.19 0.44 0.79 0.91
November −0.78 −0.28 0.89 1.42 0.92

The observed positive bias in simulated 10 m WS (also
seen in Fig. S1 meteorology comparison with ERA5 and
MERRA-2) is well known, and the observed magnitude of
the bias is largely consistent with previous studies (Zhang
et al., 2016; Mues et al., 2018; Gunwani and Mohan, 2017;
Wang et al., 2021). First, this could be in part due to in-
accurate land-surface parameterizations (such as roughness
length or surface drag and urban canopy), yielding smaller
friction velocities and stronger winds in the model. Sec-
ond, it could also be due to unknown differences in heights
of measured and modelled WS. However, the afternoon-
simulated WS levels are close to the observations, which
suggests there are underlying weaknesses in nocturnal sta-
ble boundary layer decoupling in the model. The associated
turbulent fluxes and thermodynamic exchanges occurring in
the atmospheric boundary layer are important for model-
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simulated PBL and pollutant dispersal (Shen et al., 2023;
Nelli et al., 2020). However, during the extreme-pollution
episode (30 October to 7 November), both the model and ob-
servations agree on a reduction in WS (although with varying
magnitudes) and a shift in WD. These changes highlight the
role of stagnant meteorology in greatly enhancing the near-
surface pollution lasting over a week.

3.2 Vertical profiles

Figures 3 and 4 show averaged modelled and observed
sounding profiles over individual RAOB sites (Fig. 1) for
temperature (T ), virtual potential temperature (VPT) and
wind speed (WS) at 05:30 IST (00:00 UTC) and 17:30 IST
(12:00 UTC), respectively. The corresponding summaries of
statistical metrics are presented in Tables 3 and 4. The upper-
air meteorology and thermodynamic structure are crucial
parameters of the atmosphere as they impact the transport
and convective distribution of pollutants. Of all the meteoro-
logical quantities examined here, vertical profiles of T and
VPT are represented best by the model, with correlations
of r ≥ 0.95 across all the sites and r = 1.0 for most of the
sites at both times. At 05:30 IST, modelled T profiles show
a warm bias of up to 1.5 ◦C at six sites and a cold bias of
up to 2 ◦C at Delhi and Gwalior sites up to about 980 hPa
(Fig. 3a), which gradually decreases with altitude. The model
also captures the observed marked inversion near the surface
in morning T and VPT profiles reasonably well at most sites.
Agreement at 17:30 IST is even better (Fig. 4a): biases in
modelled T profiles are less than 0.5 ◦C below 980 hPa at all
sites except Ranchi and negligible aloft. Overall, across all
sites, the average MB, NMB and RMSE values are generally
lower for VPT compared to T at both times (Tables 3 and 4).

The simulated WS vertical profiles have larger variations
across most of the sites at both times compared to T and
VPT profiles (Figs. 3c and 4c). Consistent with the 10 m
WS comparisons, the model tends to overestimate WS ver-
tically by up to 4 m s−1 at 05:30 IST and up to 3 m s−1 at
17:30 IST in the lower layers but better captures it aloft
(above ∼ 900 hPa), with only slight differences across all
the sites (Fig. S4). Despite the considerable positive bias
within the bottom layers, the model reproduces the observed
higher WS at higher altitudes reasonably well, resulting in
good correlations of r ≥ 0.77 at 05:30 IST and r ≥ 0.95 at
17:30 IST. As an exception, the modelled WS profiles are
very well represented over the Patna site (in the east) dur-
ing both times. The results here differ from those of Mohan
and Bhati (2011), who noted increased deviation in simulated
WS at higher altitudes over Delhi during the summer months.

The simulated RH profiles were also evaluated (Fig. S4)
and show underestimations by up to 20 % in the lower lay-
ers of the model across most sites at both times, which de-
creases in magnitude at higher altitudes except at Gorakh-
pur. These biases vertically are generally more negative at
05:30 IST compared to 17:30 IST, indicating a dry bias in the

Table 3. Summary of statistical comparison of modelled and ob-
served 05:30 IST profiles derived from radiosonde data for the indi-
vidual RAOB stations shown in Fig. 1b averaged from September
to November 2016. The statistical metrics used for comparison are
mean bias (MB), normalized mean bias (NMB), mean absolute er-
ror (MAE), root mean square error (RMSE) and Pearson’s correla-
tion coefficient (r).

Station name MB NMB MAE RMSE r

Temperature (◦C)

Calcutta −0.22 0.03 0.58 0.83 1.00
Delhi 0.14 −0.02 0.67 1.01 1.00
Gorakhpur 0.14 −0.02 1.14 1.68 1.00
Gwalior −0.08 0.01 0.67 1.12 1.00
Jodhpur −0.25 0.03 0.92 1.92 1.00
Lucknow −0.81 0.10 1.54 7.70 0.96
Patna −0.15 0.02 0.75 1.06 1.00
Ranchi −1.08 0.14 1.70 7.56 0.96

VPT (◦C)

Calcutta −0.31 −0.01 0.70 0.98 1.00
Delhi 0.09 0.00 0.74 1.09 1.00
Gorakhpur −0.02 0.00 1.37 1.99 0.99
Gwalior −0.16 0.00 0.78 1.29 1.00
Jodhpur −0.37 −0.01 1.13 2.65 0.99
Lucknow 0.14 0.00 1.24 3.87 0.98
Patna −0.27 −0.01 0.90 1.25 1.00
Ranchi 0.68 0.01 1.70 5.99 0.95

WS (m s−1)

Calcutta −0.35 −0.04 1.34 2.02 0.96
Delhi −0.29 −0.02 1.57 2.08 0.99
Gorakhpur −0.78 −0.07 1.80 2.42 0.98
Gwalior −0.33 −0.03 1.60 2.37 0.97
Jodhpur −0.74 −0.06 1.82 2.41 0.98
Lucknow 0.15 0.01 2.37 4.92 0.89
Patna −0.59 −0.06 1.53 2.13 0.98
Ranchi 0.58 0.07 2.65 5.33 0.77

RH (%)

Calcutta −1.09 −0.02 7.56 11.9 0.93
Delhi −2.20 −0.08 6.23 10.0 0.92
Gorakhpur −10.5 −0.21 15.4 19.4 0.88
Gwalior −1.87 −0.06 7.21 10.9 0.93
Jodhpur 1.54 0.07 8.59 11.7 0.89
Lucknow −2.99 −0.08 10.4 15.1 0.87
Patna −0.84 −0.02 9.37 14.4 0.92
Ranchi −3.12 −0.07 10.6 16.5 0.89

early morning hours in the model, consistent with the ground
observation comparisons.

VPT profiles are particularly useful in understanding the
stability and turbulence of the atmosphere, which helps in the
dilution of the pollutants within the mixed boundary layer.
By accounting for moisture and temperature, a VPT profile
indicates buoyancy and stability in the atmosphere and can
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Figure 3. Top to bottom: comparisons of vertical profiles of temperature (◦C), virtual potential temperature (VPT; ◦C), and wind
speed (m s−1) between the model (red) and radiosonde observations (black) for eight sites at 00:00 UTC (05:30 IST) averaged for September–
November 2016. The horizontal lines show the standard deviation in the day-to-day temporal variability during the comparison period.
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Figure 4. Top to bottom: comparisons of vertical profiles of temperature (◦C), virtual potential temperature (VPT; ◦C), and wind
speed (m s−1) between the model (red) and radiosonde observations (black) for eight sites at 12:00 UTC (17:30 IST) averaged for September–
November 2016. The horizontal lines show the standard deviation in the day-to-day temporal variability during the comparison period.
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Table 4. Same as Table 3 but for 17:30 IST profiles.

Station name MB NMB MAE RMSE r

Temperature (◦C)

Calcutta −0.16 0.02 0.57 0.82 1.00
Delhi 0.04 −0.01 0.63 0.85 1.00
Gorakhpur −0.02 0.00 1.24 1.89 1.00
Gwalior −0.17 0.02 0.68 1.15 1.00
Jodhpur −0.11 0.01 0.74 1.02 1.00
Lucknow 0.01 0.00 0.95 1.73 1.00
Patna 0.06 −0.01 0.75 1.20 1.00
Ranchi −1.22 0.18 2.15 8.45 0.96

VPT (◦C)

Calcutta −0.24 0.00 0.68 1.00 1.00
Delhi −0.02 0.00 0.74 0.97 1.00
Gorakhpur −0.31 −0.01 1.50 2.19 0.99
Gwalior −0.26 0.00 0.81 1.39 1.00
Jodhpur −0.20 0.00 0.91 1.25 1.00
Lucknow −0.12 0.00 1.16 2.13 0.99
Patna −0.01 0.00 0.85 1.34 1.00
Ranchi 0.65 0.01 1.89 5.59 0.96

WS (m s−1)

Calcutta −0.30 −0.04 1.30 1.78 0.97
Delhi −0.24 −0.02 1.48 1.91 0.99
Gorakhpur −0.71 −0.06 1.76 2.32 0.98
Gwalior −0.27 −0.02 1.50 1.97 0.98
Jodhpur −0.64 −0.06 1.76 2.27 0.98
Lucknow −0.40 −0.03 1.81 2.42 0.98
Patna −0.68 −0.06 1.49 2.01 0.98
Ranchi −0.15 −0.02 1.88 2.74 0.95

RH (%)

Calcutta −2.13 −0.04 8.06 12.7 0.93
Delhi −1.47 −0.06 6.73 10.6 0.90
Gorakhpur −9.62 −0.20 14.9 18.8 0.86
Gwalior −0.58 −0.02 7.80 12.0 0.90
Jodhpur 2.29 0.12 8.54 11.4 0.86
Lucknow −2.12 −0.06 10.9 14.9 0.85
Patna −0.96 −0.02 9.44 14.0 0.91
Ranchi 1.73 0.04 10.3 15.3 0.89

be used to derive planetary boundary layer heights (Liu et al.,
2019; Vogelezang and Holtslag, 1996). Figure 3 shows that,
at all sites, observed and simulated temperature inversion
layers are close to the surface at 05:30 IST, demonstrating
the typical formation of an urban nocturnal stable boundary
layer. In contrast, at 17:30 IST (Fig. 4), both the observed and
modelled VPTs exhibit a typical well-mixed late-afternoon
profile due to surface heating, with higher values of VPT near
the surface (33–36 ◦C surface) that remains nearly constant
up to about 850 hPa across most sites. The negligible biases
and error statistics in T and VPT profiles (Tables 3 and 4)
across all sites provide high confidence in model skill in

simulating the thermodynamic structure of the atmosphere.
This is an improvement on Mues et al. (2018), who reported
larger biases in T profiles (up to 3 and 7 ◦C at 05:30 and
17:30 IST, respectively) at the Delhi site in winter and sum-
mer 2013. As noted in Sect. 3.1, and elsewhere (Mohan and
Bhati, 2011; Gunwani and Mohan, 2017), errors in simulated
WS are highly sensitive to local roughness length and model
topography and are thus subject to greater noise. Given these
limitations, we find the model performance statistics compa-
rable to previous studies (Mohan and Bhati, 2011; Kumar et
al., 2012b) and close to the benchmarks provided by Emery
and Tai (2001).

4 Chemistry evaluation results

4.1 Ground-based PM2.5

Figure 5 compares the modelled and measured daily av-
eraged time series (left) and diurnal variability (right) of
surface PM2.5 concentrations from hourly samples from
September to November 2016. The observations are spatially
averaged across 8 sites in Delhi and 12 sites across the rest
of the domain (referred to as “Others”). The statistical sum-
mary is presented in Table 5. The model adequately captures
the day-to-day variation of PM2.5 for October–November,
when it is biased low, while it fails to reproduce the daily
variability during September when it is strongly biased high.
On average, during September, the model overestimates sur-
face PM2.5 concentrations by more than a factor of 2 (NMB
range: 1.69 to 1.91) across all the sites and underestimates
in November by 26 % over Delhi and by 14 % over Oth-
ers. Overall, the model and observed daily surface PM2.5
correlate reasonably well during October (Delhi – r = 0.65,
Others – r = 0.53) and November (Delhi – r = 0.76, Oth-
ers – r = 0.66). Correlation for these months is better across
Delhi sites but shows relatively larger mean biases (+17.7 to
−73.2 µg m−3) and NMBs (+0.13 to −0.26) compared to
Others. Additionally, the model tends to predict PM2.5 con-
centrations with a fairly broad range of monthly RMSE val-
ues (56.3–138 µg m−3).

The spatially averaged diurnal cycle for modelled surface
PM2.5 shows a pronounced diurnal trend matching obser-
vations for Delhi sites, while the diurnal cycle is less pro-
nounced at Others sites. Generally, diurnal trends are in good
agreement across all sites, although on average, the model
tends to underpredict the afternoon dips and night-time peaks
compared to the observations, indicating missing anthro-
pogenic activities from the simplified diurnal emissions pat-
terns derived from monthly estimates used in the model. The
lack of a representation of a realistic diurnal activity cycle
in the anthropogenic emissions highlights that meteorology
could be driving the modelled PM2.5 variation. However, this
might partly be affected by the imperfectly represented diur-
nal variability of WS in the model (Sect. 3.1).
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Figure 5. Time series of daily means (a, c) and mean diurnal cycles (b, d) of observed and modelled PM2.5, averaged across 8 sites in Delhi
and 12 sites over the rest of the domain (labelled “Others”) from September–November 2016. The shaded area in both panels shows standard
deviation of the spatial variability of the model and measured PM2.5. The locations of the ground measurement sites are shown in Fig. 1b.
The vertical dashed lines delineate the period of severe high pollution between 30 October and 7 November.

Table 5. Statistical summary of comparisons of modelled and observed PM2.5 concentrations derived from hourly data between September
and November 2016 for Delhi (top) and Other stations (bottom). The statistical metrics are mean bias (MB), normalized mean bias (NMB),
mean absolute error (MAE), root mean square error (RMSE) and Pearson’s correlation coefficient (r). n denotes the number of available
measurement stations in the group.

Month MB NMB MAE RMSE r Obs_mean Mod_mean
PM2.5 (µg m−3)

Delhi sites (n= 8)

September 111 1.91 111 124 0.17 58.7 170
October 17.7 0.13 58.1 74.2 0.65 141 159
November −73.2 −0.26 95.2 138 0.76 279 206

Others sites (n= 12)

September 69.9 1.69 70.26 89.5 0.44 41.3 111
October 10.9 0.11 40.71 56.3 0.53 102 113
November −23.8 −0.14 54.94 73 0.66 172 148

During the 30 October–7 November pollution episode,
both observations and the model show the highest daily
mean surface PM2.5 (observed – 300–750 µg m−3, modelled
– 150–420 µg m−3) across Delhi, while relatively lower con-
centrations are seen across Others sites during this period
(observed and modelled: < 200 µg m−3) (Fig. 5). The ob-
served daily mean PM2.5 concentrations exceed the 24 h av-
erage 2021 WHO air quality guideline of 15 µg m−3 (WHO,
2021) by nearly 50 times, and the predicted concentrations
are exceeded by nearly 28 times. The maximum negative dif-
ferences (up to 350 µg m−3) between the daily mean mod-
elled and observed PM2.5 also occur during this episode.
During this period, the observed hourly PM2.5 concentrations
exceed 1000 µg m−3 (mostly at night) at the Delhi US em-

bassy site (in central Delhi) and exceed 800 µg m−3 at all the
sites across Delhi and two downwind stations in the lower
IGP (Lucknow and Kanpur). The corresponding modelled
hourly concentrations at these locations and times underes-
timate PM2.5 by a factor of 2–3 (380–520 µg m−3), in part
attributable to overestimated surface WS.

One study characterizing this 2016 high-pollution episode
over Delhi reported exceptionally high night-time mean
PM2.5 concentrations of 2924 µg m−3 on 30 October (Diwali
festival night), 1520 µg m−3 on 5 November and daytime
mean values of nearly 1500 µg m−3 on 6 November (Sawlani
et al., 2019). The modelled and observed daily average PM2.5
across downwind Others sites only peaks (> 250 µg m−3)
towards the end of the high-pollution episode, suggesting
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a regional distribution of PM2.5 over time. The observed
and simulated near-surface meteorology during this time
over northern India shows stagnant conditions conducive to
the build-up of pollutants: smaller WS (1–1.5 m s−1), lower
PBLH (< 500 m) and a nearly 2–3 ◦C drop in near-surface
temperature, leading to atmospheric inversion (Fig. 2). These
stagnant conditions combined with regional and local anthro-
pogenic emissions facilitate pollution accumulation within
the shallow continental boundary layer over wider northern
India. After the extreme-pollution days (9 November on-
wards), the model captures the magnitude of daily PM2.5
variation well everywhere except for an observed peak across
Delhi on 17 November.

4.2 Modelled PM2.5 composition

The daily time series and average diurnal variability of
modelled mean surface PM2.5 composition over observa-
tion sites in Delhi and Others are shown in Fig. 6. Due
to the lack of observed PM2.5 speciation data for this pe-
riod, only modelled results are presented here. These are
qualitatively compared with literature for other years as the
aerosol loading over the Indian region exhibits stronger intra-
annual variabilities than interannual variabilities (Conibear
et al., 2018; Mhawish et al., 2021). The largest variations
in daily PM2.5 components across all months are observed
for secondary organic aerosol (SOA) and secondary inor-
ganic aerosol (SIA) (sulfate, nitrate and ammonium) over
all the sites. The concentration of fine dust particles dom-
inates most evidently at the beginning of September and
reduces to almost half in October and November but re-
mains a non-negligible contributor to total PM2.5 on aver-
age (15 %–25 %) across all sites. The fine dust component
is mainly responsible for the overestimations seen in mod-
elled PM2.5 in September compared to the measurement. An-
other notable change is in the nitrate component which dra-
matically peaks during the high-pollution period, together
with SOA, ammonium and primary aerosols (OC, BC). The
modelled peaks in PM2.5 and its components largely fol-
low the observed PM2.5 trend (October–November period),
which highlights the model’s skill in representing the diver-
sity of aerosols during dramatic shifts in surface particle pol-
lution and is more clearly seen across Delhi sites than Others.
Among SIA, the PM2.5 composition in November is domi-
nated by nitrate aerosols (10 %–30 %), which are compara-
ble to reported measurements. For example, a high nitrate
fraction (20 %–27 %) in post-monsoon months has been re-
ported in various measurement studies over India (Ram and
Sarin, 2011; Schnell et al., 2018; Patel et al., 2021; Taluk-
dar et al., 2021). The average modelled BC contribution over
Delhi during September (3 µg m−3), October (8.2 µg m−3)
and November (13.2 µg m−3) is comparable to the measured
elemental carbon (EC; assumed to be equivalent to modelled
BC) concentrations (∼ 3,∼ 6 and∼ 12 µg m−3, respectively)
reported by Sharma et al. (2018). The dominance of sec-

Table 6. Statistical summary of comparisons of concentra-
tions (µg m−3) of PM2.5 and black carbon from the WRF-Chem
model and MERRA-2 from September to November 2016. The sta-
tistical metrics are mean bias (MB), normalized mean bias (NMB),
mean absolute error (MAE), root mean square error (RMSE) and
Pearson’s correlation coefficient (r).

Month MB NMB MAE RMSE r

PM2.5 (µg m−3)

September 54 1.9 55.1 72 0.87
October 20 0.49 21.7 30 0.87
November −8.4 −0.12 13.8 23 0.95

BC (µg m−3)

September 0.52 0.65 0.57 0.93 0.91
October 0.24 0.19 0.44 0.79 0.91
November −0.78 −0.28 0.89 1.42 0.92

ondary particle contribution to modelled PM2.5 during post-
monsoon months is fully consistent with other studies (Gani
et al., 2019; Talukdar et al., 2021), although the relative abun-
dance is lower. The diurnal variation of PM2.5 components
over Delhi shows more pronounced dips in primary and sec-
ondary inorganics, suggesting the influence of local emis-
sions, while the fine dust component remains relatively sta-
ble, suggesting both local and natural non-local emissions
influence.

4.3 Comparison of PM2.5 and black carbon distribution
with reanalysis products

Figure 7 compares the monthly averaged spatial distribution
of WRF-Chem-modelled and MERRA-2-reanalysis-derived
surface PM2.5 and BC concentrations. The corresponding
domain-averaged performance statistics are summarized in
Table 6. The overall spatial agreement between the model
and MERRA-2 is excellent for both PM2.5 and BC (r > 0.87,
Fig. S6). However, on a regional scale, the modelled PM2.5 is
biased high over parts of arid western India and eastern Pak-
istan in September, resulting in a domain-wide NMB of 1.9.
The model shows a stronger west–east gradient in PM2.5
than MERRA-2, with the highest modelled concentrations
of > 250 µg m−3 in the western and north-western regions.
Agreement between the model and MERRA-2 improves for
October–November.

The high simulated PM2.5 loading over some parts of
north-western India during September is most likely due to
erroneous dust uplift by overestimated winds from the Thar
Desert in the west (Fig. S6), the major seasonal natural dust
source region (Bali et al., 2021; M. Kumar et al., 2018). This
overestimation could further be enhanced by the underesti-
mation of dust deposition in the model arising from a dry
bias over the land region in the domain (Ratnam and Kumar,
2005; Conibear et al., 2018). The notable change in modelled
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Figure 6. Time series of daily means (a, c) and mean diurnal cycles (b, d) of modelled individual PM2.5 components averaged across
8 stations in Delhi and 12 stations over the rest of the domain (labelled “Others”) from September–November 2016. The individual species
contribution abbreviations are as follows: SOA (secondary organic aerosol), POA (primary organic aerosol), SO2−

4 (sulfate), NH+4 (ammo-
nium), NO−3 (nitrate) and BC (black carbon). The vertical dashed lines delineate the period of severe high pollution between 30 October and
7 November.

Figure 7. Spatial distributions of monthly mean concentrations (µg m−3) of (a) PM2.5 and (b) black carbon from the WRF-Chem model
and MERRA-2 for September to November 2016. The monthly mean PM2.5 at the measurement sites is shown in circles in (a).
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PM2.5 over the dust source region along the western bor-
ders from September to November shows a strong seasonal-
ity in dust emissions in the model. Compared to WRF-Chem,
MERRA-2 shows a slightly better comparison with monthly
mean surface PM2.5 (Fig. 7a) for individual monitoring sites,
with smaller differences between the model-measured mean
and WRF-Chem (especially for September).

In contrast, the highest BC concentrations occur along
the IGP for all the months and increases from September
to November (Fig. 7b). During October and November, the
north-west and eastern parts of the IGP exhibit the highest
PM2.5 and BC concentrations in both datasets. Compared to
MERRA-2, modelled BC shows more distinguishable spatial
features including localized hotspots coinciding with densely
populated major metropolitan and industrial cities with clus-
ters of coal-fired power plants (Singh et al., 2018). For in-
stance, conspicuous localized regions appear over dense ur-
ban centres like Ahmedabad, Delhi, Calcutta, the steel in-
dustrial city of Jamshedpur, Raipur with heavy mining, Sin-
grauli with ore-processing industries in the upper central do-
main and Jharia coal belts in the east having clusters of coal-
fired power plants. Overall, the spatial variabilities of BC and
PM2.5 are quite similar in both WRF-Chem and MERRA-2,
with WRF-Chem estimating slightly lower PM2.5 and BC in
November over the majority of the IGP except over Delhi.

4.4 Evaluation of aerosol optical depth with satellite and
AERONET observations

Figure 8 compares WRF-Chem-simulated and MODIS
(Aqua)-retrieved monthly averaged distribution of AOD at
550 nm. The unitless quantity AOD is a measure of parti-
cle extinction within the atmospheric column from the sur-
face to the top atmosphere and provides a useful spatial es-
timate of particle loading using satellite instruments. The
spatial distributions of modelled and MODIS AOD agree
well for all months (r ≥ 0.72, Table 7), although regional bi-
ases similar to the MERRA-2 comparisons occur over north-
ern and western parts of the domain. As with MERRA-
2 PM2.5 comparisons, during September the model cap-
tures the high AOD well (up to 1.2) over north-western In-
dia and along the borders with north-east Pakistan but pre-
dicts higher AOD over the western arid region (Fig. 8), in-
dicated by the overall NMB of 0.69. The statistical eval-
uation metrics for all the months (Table 7) show there is
a good overall agreement between modelled and satellite
AOD, which gradually improves from September to Novem-
ber. In both model and satellite data, AOD values are gen-
erally low (< 0.5) outside of the broader IGP region in all
the months. Although the satellite AOD shows higher spatial
variability, a good spatial correlation exists between the two
datasets in October–November (r = 0.80 and 0.86, respec-
tively) (Fig. 9). The domain-averaged modelled AOD (0.39
and 0.34, respectively) during these months is comparable
to satellite-retrieved AOD (0.32 and 0.34, respectively). De-

Table 7. Statistical summary of comparisons modelled and
observed AOD at 550 nm derived from MODIS and at the
four AERONET stations at an hourly temporal resolution be-
tween September and November 2016. The statistical metrics are
mean bias (MB), normalized mean bias (NMB), mean absolute er-
ror (MAE), root mean square error (RMSE) and Pearson’s correla-
tion coefficient (r).

Month MB NMB MAE RMSE r

MODIS (AOD)

September 0.25 0.69 0.28 0.34 0.72
October 0.06 0.20 0.11 0.15 0.80
November 0.00 −0.01 0.09 0.13 0.86

AERONET (AOD)

Jaipur

September 0.43 0.96 0.43 0.45 0.38
October 0.10 0.31 0.14 0.17 0.04
November −0.03 −0.06 0.17 0.26 0.83

Kanpur

September 0.30 0.66 0.32 0.37 0.60
October −0.01 −0.02 0.19 0.25 0.64
November −0.15 −0.21 0.20 0.26 0.72

Gandhi College

September 0.02 0.04 0.22 0.27 −0.08
October −0.03 −0.05 0.13 0.17 0.69

Lahore

September 0.39 0.49 0.49 0.57 0.15
October −0.14 −0.13 0.38 0.50 0.26
November −0.37 −0.37 0.44 0.65 0.75

spite the overall underestimations during the biomass burn-
ing period of mid-October to mid-November, the model cap-
tures high AOD values over some small, localized parts in
Punjab and Haryana in northern India and north-eastern Pak-
istan, though with slightly lower magnitudes. The higher
AOD along the entire IGP region is more apparent from the
satellite observations in November, which show AOD values
reaching ∼ 2.0 (underestimated in the model by about 10 %)
over parts of Punjab in the north and Uttar Pradesh and Bihar
in the east (AOD > 1.8). Interestingly, the regional hotspots
along the IGP region, over eastern Uttar Pradesh and eastern
Bihar, as observed in modelled PM2.5 maps during October–
November, are evident in the MODIS AOD distribution but
less discernible in modelled AOD maps (Fig. 8). It is im-
portant to note that the MODIS satellite overpass times of
10:30 and 13:30 LT limit comparisons to the afternoon each
day. Therefore, it is the modelled meteorological conditions
typical of daytime (deep PBL height, increased WS) that af-
fect the modelled AOD column. In a similar model set-up
over northern India, Roozitalab et al. (2021) and Kulkarni et
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Figure 8. Spatial variation of monthly mean AOD at 550 nm derived from the model and MODIS sampled at local overpass times of
10.30 (Terra) and 13.30 (Aqua) for September to November 2016. Absolute differences of model minus satellite AOD are shown in the
bottom row.

Figure 9. Scatter plots of monthly averaged model versus MODIS-derived AOD at 550 nm for the months (from left to right) September, Oc-
tober and November 2016. The 2 : 1, 1 : 1 and 1 : 2 lines (dashed red lines), the best-fit line (black line) and Pearson’s correlation coefficient r

are also shown for each month.

al. (2020) found comparable estimates of modelled AOD dis-
tribution during the 2017 post-monsoon high-pollution event.

To further evaluate model skill in predicting the optical
properties of aerosols, the modelled daily averaged AOD at
550 nm is compared in Fig. 10 against the four AERONET
sites (Fig. 1b) in the study domain. There are missing data
at all the sites, with Kanpur in the east and Jaipur in the
west (both dense urban locations) having the most data

coverage. The daily variabilities of AOD comparison with
point observations show similar trends to those previously
noted for comparison with satellite AOD and ground-based
and MERRA-2 PM2.5 comparisons. The model evaluation
against AERONET AOD largely agrees with the PM2.5 eval-
uations, including higher disparities seen for September, with
a positive MB (0.02 to 0.43) across all the sites. However,
the high daily averaged AERONET AOD (> 1.0) at all sites
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Figure 10. Time series (left panels) and scatter plots (right panels) of modelled and AERONET daily averaged AOD at 550 nm over the four
AERONET stations shown in Fig. 1b for the period September to November 2016.

during the high-pollution event at the start of November is
captured reasonably well by the model except in Lahore, a
large city in eastern Pakistan, where the model underesti-
mates AOD the most. Of the four sites, crop residue burn-
ing occurs in Lahore (Kulkarni et al., 2020), which is also
situated close to other biomass burning regions of north-
western India. This AERONET site shows the highest ob-
served (∼ 3.0) and modelled (∼ 2.0) AOD values during the
high-pollution episode.

Additionally, to check for consistency between satel-
lite and ground measurements, the time series of satellite,
AERONET and modelled AOD at 550 nm at the four obser-
vation locations are shown in Fig. 11. To compare the three
datasets, the data points corresponding to the local overpass
time of MODIS are selected from the hourly AERONET and
WRF-Chem datasets. The satellite AOD generally matches
AERONET more closely at lower values and misses the
magnitude of high AOD during high-pollution days. Earlier
studies have attributed the inaccuracies in MODIS AOD re-
trievals to dense haze hanging over north India and the IGP
region during severe pollution days (Mhawish et al., 2022).
The modelled AOD captures the hourly AOD trend quite well
but also underestimates AOD in absolute magnitude during
high-pollution days across the sites. Overall, the modelled
AOD agrees well with satellite and ground observations dur-
ing October and November despite some underestimations in
absolute magnitudes.

4.5 Discussion

The discrepancies in model–observation particulate matter
comparisons for September have also been noted in other
studies for India and suggest inaccuracies in modelling mois-
ture transport during the monsoon season, which affects par-
ticle deposition and washout (Conibear et al., 2018; Mogno
et al., 2021). Furthermore, in 2016, almost all the ground sta-
tions were in urban locations of the IGP region, which pre-
vents the evaluation of the model at more spatially represen-
tative rural locations. In addition, nearly all the measurement
sites are in or near dense urban areas, with heavy influences
from traffic and local anthropogenic activities (for example,
trash burning and residential cooking), which may not be
fully reflected in the monthly anthropogenic emission inputs.
The sudden jumps in particulate matter during an extreme-
pollution event are especially difficult to capture within the
model (despite adequate meteorological fields) without up-
dated emissions estimates and knowledge of dynamic local
activity data (for instance, diurnal activity profiles specific
to Indian regions). For example, residential emissions are a
major contributor to poor air quality in rural and suburban
areas in northern India, with an estimated 16 % to 80 % con-
tribution towards SOA components of PM2.5 (Rooney et al.,
2019).

Diurnally, the nocturnal biases in wind speeds in the model
allow for an increased dispersal of the pollutants near the
surface, leading to underestimated PM2.5 concentrations dur-
ing the night. Furthermore, the inaccuracies in simulating
individual fractions of total PM2.5 also add to the observed
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Figure 11. Time series of MODIS-retrieved (green), modelled (red) and AERONET (blue) AOD at 550 nm sampled at 13:30 IST over the
four AERONET stations shown in Fig. 1b: from top to bottom, Jaipur, Kanpur, Gandhi College and Lahore.

model biases; for example, high contributions from dust in
the MOSAIC scheme could lead to overestimations (Geor-
giou et al., 2018). Overestimated modelled dust aerosols
were also observed by Kalenderski et al. (2013) and Zhao
et al. (2010), who tuned the online dust emission flux cal-
culation based on region-specific AERONET measurements
for a dust event and found modelled AOD estimates to im-
prove. The lack of aqueous-phase chemistry in our model
framework further adds some biases in reproducing accurate
amounts of secondary aerosol components of PM (such as
SO2−

4 , NH+4 and NO−3 ) and their subsequent scavenging by
aqueous chemistry in the cloud or water droplets (Tuccella et
al., 2012; Balzarini et al., 2015). Furthermore, underestima-
tions in modelled PM2.5 concentrations across Delhi could
also be due to the lack of input emissions of hydrogen chlo-
ride (HCl) gas, typically from seasonal local rubbish and crop
residue burning, which adds substantial chloride aerosols
to total PM2.5 by its partitioning between gas and aerosol
phases (Cash et al., 2021; Lalchandani et al., 2022; Pawar et
al., 2023). The temporal mismatch due to changes in emis-
sions between the anthropogenic emissions inventory (2010)

and the simulated year (2016) also contributes to the likely
underestimation in the modelled PM2.5 and its components
for our study period. Notably, a few studies simulating other
years also report positive seasonal biases in simulating sur-
face and column concentrations of trace gases like NOx (Ku-
mar et al., 2012a) and concentrations of SO2 (Conibear et al.,
2018) over urban areas in India . These biases further con-
tribute to uncertainties in simulating reactive trace gas and
secondary PM2.5 subspecies.

Significant post-harvest crop residue burning takes place
in north-western states of India from late October to mid-
November (Jethva et al., 2019), which impacts the air quality
locally as well as in downwind regions of central and eastern
IGP (Bhardwaj et al., 2016; Kanawade et al., 2020; Kulkarni
et al., 2020; Singh et al., 2021; Mhawish et al., 2022; Govard-
han et al., 2023a). Other uncertainties in simulating PM2.5
concentrations arise from errors in scaling biomass burn-
ing emissions estimates, which largely depend on the lim-
ited number of daily satellite-based retrievals and are some-
times compromised by dense smoke from fires being mis-
represented as cloud cover in the detection algorithm (Cus-
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worth et al., 2018). In their study, Singh et al. (2021) report
the annual mean contribution of biomass burning to PM2.5
over India to be 8 % but with a strong seasonal dependence
(up to 39 % in October–November in Delhi). As previously
discussed in the literature, MODIS fire detection is suscepti-
ble to missing small fires like agricultural burning (Cusworth
et al., 2018; Roozitalab et al., 2021). In addition to the sur-
face measurements, comparisons with MERRA-2 products
highlight a good agreement between the WRF-Chem sim-
ulations and the reanalysis approach of employing satellite
data assimilations. Navinya et al. (2020) and others, however,
find MERRA-2 to underestimate simulated PM2.5 over India
in comparison to the measurements. As noted in Sect. 2.5,
several factors need to be considered when comparing the
WRF-Chem aerosol concentrations with MERRA-2 reanaly-
sis products. These include (but are not limited to) a coarser
resolution of MERRA-2; limited observations data available
for assimilation; input anthropogenic emissions lacking sea-
sonal variability; the GOCART chemistry scheme missing
nitrate and SOA treatment; and the quality of aerosol trans-
port dynamics from the GEOS-5/GOCART model, wherein
the reanalysed aerosol mass concentrations are not directly
constrained by the observations as is the case with the AOD
(Buchard et al., 2017). These points, therefore, suggest the
use of aerosol assimilation capabilities in combination with
the chemistry representing complex aerosol processes is po-
tentially a more accurate way to predict air quality across
polluted regions such as northern India.

Overall, the evaluation of the WRF-Chem-simulated
chemistry demonstrates adequate performance during Oc-
tober and November for PM2.5 and is found to be suitable
for investigating the atmospheric dynamics during extreme-
pollution events. The modelled results presented here, and in
other studies of pollution episodes and aerosol climatology
over India, clearly show that the October–November period
has higher aerosol loading over most of the domain compared
to other times of the year. A mix of factors like emission
patterns, meteorology shifts and topography intensify the ex-
isting high-pollution levels in some parts of India (Kulkarni
et al., 2020; M. Kumar et al., 2018; Mhawish et al., 2022;
Kanawade et al., 2020). Sawlani et al. (2019) and Kanawade
et al. (2020) attribute the 2016 haze episode to a mix of co-
inciding factors: local emissions from fireworks, enhanced
fire counts from agricultural crop residue burning in north-
western states, stagnant conditions resulting from low tem-
peratures, shallow PBL, weaker north-westerly winds and
high ambient RH. The crop residue burning in 2016 (over
Punjab, Haryana and Uttar Pradesh in north-west India and
Pakistan) detected by combined VIIRS and MODIS sensors
reveals higher total burning events by up to 30 % and 41 %
compared to 2017 and 2018, respectively (Chhabra et al.,
2019). Similar high-pollution events have been reported dur-
ing post-monsoon months in later years (Dekker et al., 2019;
Kulkarni et al., 2020; Takigawa et al., 2020; Roozitalab et
al., 2021; Beig et al., 2021; Mhawish et al., 2022). Addi-

tionally, a few studies also report a layer of biomass burning
smoke aerosols at 2–3 km altitude above the IGP region us-
ing CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations) retrievals (Shaik et al., 2019; M. Ku-
mar et al., 2018).

5 Conclusions

We comprehensively compare the WRF-Chem v4.2.1 mod-
elled meteorology and aerosol chemistry with a wide range
of observational data that include ground-based, satellite
and reanalysis products over northern India. The simula-
tions are performed at a spatial resolution of 12 km for
the 2016 monsoon (September) to post-monsoon (October–
November) transition, with a focus on the severe haze pollu-
tion episode from 30 October to 7 November.

The meteorological fields show strong seasonal and spa-
tial variability over the IGP region, with a marked de-
crease in temperature, WS and PBLH from monsoon to post-
monsoon, most notably for PBLH. Overall, we find that the
model accurately represents meteorology during the after-
noon hours. The surface daily and diurnal trend in temper-
ature is best reproduced by the model, followed by relative
humidity, with negligible biases across all sites. In contrast,
daily mean model wind speed is widely biased high (by 0.5–
0.8 m s−1), largely due to strong night-time overestimations
(up to 1.5 m s−1), while the afternoon WS is reasonably re-
produced by the model. This suggests a potential model fail-
ure in surface layer decoupling at night.

Comparison of upper-air meteorology with radiosonde
profiles shows negligible biases and excellent correlations
for temperature and virtual potential temperature (r > 0.9)
across all sites. The model overestimates wind speed in the
lowest layers, consistent with surface observation compar-
isons whilst matching well with observed WS aloft. In com-
parison to MERRA-2 reanalysis products, modelled PBLH
generally has negative mean bias of > 25 % in all the months
but agrees well spatially.

Modelled and observed PM2.5 concentrations show good
agreement (except during September) with overall slightly
better correlations for 8 sites averaged across Delhi (r > 0.6)
compared to 12 sites across the remaining domain (r > 0.5).
In September, model concentrations show large biases due
to overestimation in dust generation over the western arid
region and possible long-range transport across the measure-
ment sites.

The model simulates the high-pollution episode with no-
table peaks in daily mean PM2.5 concentrations but un-
derestimates the exceptionally high observed daily PM2.5
(300–750 µg m−3) by a factor of 2–3. Despite the accu-
rate representation of the vertical temperature gradient, the
model underestimates high surface PM2.5 concentrations due
to stronger simulated WS favouring the dispersion of the
surface pollutants, together with uncertainties in the emis-
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sions inventories. Both the model and surface measurements
show that Delhi experiences the highest PM2.5 concentra-
tions during the severe pollution episode, followed by the re-
gional dispersal of pollutants downwind. During the episode,
daily simulated anthropogenic PM2.5 composition comprised
high fractions of nitrate (5 %–25 %) and secondary organic
aerosols (10 %–20 %), consistent with previous measurement
and modelling studies. The contribution of BC and primary
organic matter to the total simulated PM2.5 mass also in-
creases in November.

Comparison with MERRA-2 reanalysis data shows the
spatiotemporal distribution of surface PM2.5 to have system-
atic high biases in September along the dry western region
of the domain and low bias in October–November in the
IGP region. However, the model captures the high PM2.5
and BC concentrations quite well over the IGP, including
Delhi and upwind biomass burning regions during Novem-
ber. Variability in modelled AOD compared with satellite
retrievals from MODIS is captured very well with r ≥ 0.8
in October–November. The model likewise compares well
with ground-based AERONET measurements of daily AOD
(r ≥ 0.7) across all sites except during September.

Our evaluations consistently reveal the best performance
of the model in simulating PM2.5 and BC concentrations is
for November followed by October, with model underesti-
mations largely stemming from the extreme episodic nature
of the pollution event. The lack of measurement data for in-
dividual PM2.5 components and the limited spatial coverage
of measurement sites restrict the extent of the evaluation of
this period. Overall, however, the model is found adequate
for investigation of the vertical distribution of particle com-
ponents and their interactions with meteorology through sen-
sitivity simulations, including investigation of different emis-
sions datasets, which forms part of our future work. Our
results also suggest that improved diurnal characterization
of boundary layer processes could considerably enhance the
model performance over this region.
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