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Abstract  

The recent increase in obesity levels across many countries is likely to be driven by 

nongenetic factors. The epigenetic modification DNA methylation may help to explore this as 

it is sensitive to both genetic and environmental exposures. While the relationship between 

DNAm and body fat traits has been extensively studied, there is limited literature on the 

shared associations of DNAm variation across such traits. Akin to genetic correlation 

estimates, here we introduce an approach to evaluate the similarities in DNAm associations 

between traits, DNAm correlations. As DNAm can be both a cause and consequence of 

complex traits, DNAm correlations have the potential to provide insights into trait 

relationships above that currently obtained from genetic and phenotypic correlations. 

Utilising 7,519 unrelated individuals from Generation Scotland with DNAm from the EPIC 

array, we calculated DNAm correlations between body fat and adiposity related traits using 

the bivariate OREML framework in the OSCA software. For each trait we also estimated the 

shared contribution of DNAm between sexes. We identified strong, positive DNAm 

correlations between each of the body fat traits (BMI, body fat % and waist to hip ratio; 

ranging from 0.96 to 1.00), finding larger associations than those identified by genetic and 

phenotypic correlations. We identified a significant deviation from 1 in the DNAm 

correlations for BMI between males and females, with sex-specific DNAm changes 

associated with BMI identified at eight DNAm probes. Employing genome-wide DNAm 

correlations to evaluate the similarities in the associations of DNAm with complex traits has 

provided insight into obesity related traits beyond that provided by genetic correlations. 

 

Introduction 

Obesity constitutes a growing healthcare burden and is a major risk factor for several chronic 

diseases including cardiovascular diseases and diabetes 1,2. Body mass index (BMI), the most 
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widely used measure of obesity, results from the complex interplay between genetic, 

environmental, and modifiable lifestyle factors. The increase in BMI levels in recent years 3 

is likely to be driven by nongenetic factors. DNA methylation (DNAm) is a commonly 

studied epigenetic modification that is responsive to both genetics and the environment, 

making it an ideal target for studying the consequences of modifiable health factors, such as 

obesity. The relationship between DNAm and BMI, as well as other body fat and adiposity-

related biochemical traits, has been extensively studied 4-12. However, the shared associations 

of DNAm variation across such traits represents an important gap in our understanding of the 

biological processes pertaining to obesity.  

 

Akin to genetic correlation (rG) estimates, which measure the degree of common genetic 

control between two traits, here, we introduce an approach to evaluate the similarities in 

DNAm associations between traits, DNAm correlations (rDNAm). In contrast to genetic 

variants, DNAm is responsive to a wide range of environmental exposures and may reflect 

the cumulative burden of adverse exposures throughout the life course. In addition, variation 

in DNAm has been implicated as arising from individual differences in traits such as BMI 

and smoking 8,13, with some evidence suggesting BMI in childhood may be predictive of 

adolescent DNAm levels at sites throughout the genome 4. Thus, while genetic correlations 

capture causal effects on the traits, DNAm correlations will capture consequence too. 

Ascertaining effects from both directions may result in the detection of additional biological 

mechanisms underlying the relationship between these traits. We also recognise that with a 

large portion of the DNA methylome under genetic control 14, DNAm correlations will likely 

capture part of the shared genetic contribution between these traits. However, recent work 

7,8,13,15 has demonstrated that DNAm associated with BMI trait variance is independent of 

genetic variation. This indicates that DNAm correlations have the potential to provide 
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insights into trait relationships as well as the molecular underpinnings and subsequent 

consequences of these traits above that currently obtained from genetic correlations. 

 

We estimate DNAm correlations for six body fat and adiposity-related biochemical traits for 

7,519 unrelated individuals from Generation Scotland (GS). DNAm correlations are 

estimated by extending the OREML method in the OSCA software 16 to a bivariate model, 

akin to bivariate GREML as implemented in the GCTA software 17,18. These DNAm 

correlation estimates provide a measure of the shared similarity of DNAm variation between 

phenotypes, noting that while SNPs explain the variation in traits, DNAm only captures this 

variation and reflects both cause and consequence. We compared these DNAm correlations to 

genetic and phenotypic correlations to investigate if they provide insights into the shared 

genomic control of traits.  

 

Material and methods 

Study cohort 

All data for the study came from Generation Scotland: Scottish Family Health Study (GS). 

The family-based genetic epidemiological cohort consists of over 24,000 volunteers which 

has been described previously 19,20. Recruitment took place between 2006 and 2011, when 

individuals and their family members aged 18+ years were invited to a baseline clinic visit 

that included health questionnaires and blood or saliva sample donation for genomic 

analyses. All DNAm samples were measure in blood. This study uses phenotypic, DNAm 

and genetic data from unrelated samples (N = 7,519, GRM<0.05), with DNAm levels 

quantified in three sets based on time of DNAm array processing. 
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Ethics approval 

All components of GS received ethical approval from the NHS Tayside Committee on 

Medical Research Ethics (REC Reference Number: 05/S1401/89). GS has also been granted 

Research Tissue Bank status by the East of Scotland Research Ethics Service (REC 

Reference Number: 20-ES-0021), providing generic ethical approval for a wide range of uses 

within medical research.  

 

Phenotypic data  

Three anthropometric measurements and three biochemical phenotypes were investigated: 

body mass index (BMI; kg/m2), body fat percentage (%), waist to hip ratio, glucose 

(mmol/L), high-density lipoprotein (HDL) cholesterol (mmol/L) and total cholesterol 

(mmol/L). All phenotypes were trimmed for outliers (values that were ± 4 SDs from the 

mean). In addition, BMI was trimmed for extreme values at <17 and >50 kg/m2. For each 

trait we stratified the samples by sex then adjusted the phenotype for age and standardized the 

residuals by rank based inverse normal transformation before recombining the data. There 

was no adjustment for set as there were minimal differences in the mean across sets. 

Residualised phenotypes were entered as dependent variables in the subsequent analysis. 

Smoking pack years were calculated by multiplying the number of packs of cigarettes 

smoked per day by the number of years the individual has smoked and used in the adjustment 

of DNAm data. 

 

Genetic data 

Genome wide genotypic details have been described previously 21. Briefly, GS participants 

were genotyped with either Illumina HumanOmniExpressExome8v1-2_A or 

HumanOmniExpressExome-8v1_A arrays. SNPs were excluded for missing genotype call 
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rate (>2%), and marked departure from Hardy–Weinberg equilibrium (HWE; p < 1 × 10−6), 

low MAF (<1%). Duplicate samples were removed alongside individuals with gender 

mismatch and missing genotype call rate (>2%). Genotype data was imputed against HRC 

panel v1.1 22. Unrelated individuals were retained (GRM< 0.05) using the GCTA software 18. 

All subsequent analyses were conducted on the unrelated individuals using HapMap3 SNPs 

only. 

 

DNA methylation data 

Genome-wide blood-based DNA methylation profiled using the Illumina Methylation EPIC 

array and was processed in three separate sets. DNAm quality control was performed as 

reported previously 23. Briefly, outliers were excluded based on the visual inspection of 

methylated to unmethylated log intensities, in addition to poorly performing probes and 

samples, and sex mismatches. Further filtering was performed to exclude non-autosomal CpG 

sites, CpGs that were predicted to cross-hybridise and those with polymorphisms at the target 

site which can alter probe binding 24,25. Poor performing probes, X/Y chromosome probes 

and participants with unreliable self-report data (self-reported 'yes' for all diseases in the 

questionnaire), saliva samples (with no blood sample provided) and potential XXY genotype 

were excluded along with probes with almost invariable beta values across individuals 

(standard deviation < 0.02). All 3 sets were normalised together with the final discovery 

dataset comprised M values at 781,379 loci for 7,519 participants. Before analysis, DNAm 

was adjusted in the OSCA software for age, sex, batch (to correct for samples that were 

processed at the same time within each set), slide (to correct for samples included on the 

same array), cell type proportions (estimated using the algorithm proposed by Houseman et 

al. 26), smoking status and pack years. 
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Variance component analyses 

Utilising 7,519 unrelated individuals from GS, we estimate the proportion of phenotypic 

variance captured by genome-wide DNAm across six body fat and adiposity-related 

biochemical traits using omics-restricted maximum likelihood (OREML) framework in the 

OSCA software. This method fits all DNAm probes jointly in a random effects model, 

meaning each DNAm probe is fitted conditioning on the joint effects of all other probes. This 

is performed through the construction of a DNAm relationship matrix (MRM) based on all 

DNAm probes and which is used to model the covariance between individuals. In doing so 

the model is able to account of the lack of independence between DNAm probes similar to 

how GREML accounts for LD between SNPs 27. This allows us to estimate the proportion of 

variation for each trait captured by all probes via restricted maximum likelihood which is 

analogous to that of estimating SNP-based heritability based on genetic data 18,27. Unlike 

SNP-based heritability, we note that the proportion of variance captured by all probes may be 

capturing both cause and consequence of the phenotype. The GCTA software 18 was used to 

calculate the GRM and similarly implemented in the OSCA software to estimate SNP-based 

heritability, referred to here as the proportion of phenotypic variance explained by all SNPs. 

We also estimated these quantities jointly in the OSCA software using --multi-orm which 

allows for multiple random effects. 

 

DNAm correlations 

We estimate the DNAm correlation between phenotypes implemented using the bivariate 

OREML framework in OSCA utilising DNAm relationship matrices rather than the standard 

GRM, where the DNAm correlation is estimated from the one of the covariance components. 

Here the phenotypic and DNAm information came from the same unrelated individuals. This 

approach estimates the shared contribution of DNAm based on the MRM between 
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phenotypes. Likelihood ratio tests were performed to test the hypotheses of fixing the 

correlations at both zero and one. We additionally estimated genetic correlations using GCTA 

and phenotypic correlations using Pearson’s correlation and compared these with rDNAm to 

investigate if this metric provides insights into the molecular underpinnings of these traits. 

Joint estimation of rG and rDNAm was not reported as the models were unable to converge.  

 

Results 

Generation Scotland (GS) is a Scottish family-based study with over 24,000 participants 

recruited between 2006 and 2011 19,20 . We analysed data from 7,519 unrelated individuals 

(genetic relationship matrix (GRM) pruned at 0.05) from the larger GS dataset to avoid 

confounding between genetic relatedness and epigenetic similarity. Blood-based DNAm 

levels at 781,379 DNAm sites were quantified using the Illumina Methylation EPIC array in 

three sets based on time of generation of DNAm array processing. Three anthropometric 

measurements and three biochemical phenotypes were investigated: body mass index (BMI; 

kg/m2), body fat percentage (%), waist to hip ratio (WHR), glucose (mmol/L), high-density 

lipoprotein cholesterol (HDL, mmol/L) and total cholesterol (mmol/L). Demographic and 

summary information from GS for the six phenotypes are presented in Table 1. We estimated 

the proportion of phenotypic variation captured by DNAm for each trait based on a 

methylation relationship matrix (MRM) using OSCA 16, the variation explained by SNPs 

based on a GRM, as well as that captured jointly by DNAm and SNPs. As demonstrated 

previously 13, we observed non-zero estimates for the proportion of variance captured by 

DNAm when estimated jointly with SNPs which demonstrates that some of the variation 

captured by DNAm is additional to that being captured by SNPs (see Supplemental Results, 

Figure S1 and Table S1). The additional variation captured by DNAm indicates that there is a 
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potential to gain insights into trait relationships with DNAm correlations that are not 

currently captured by genetic correlations based on common SNPs. 

We extended the OREML approach of the OSCA software to a bivariate model that 

simultaneously estimates the proportion of variance in the two traits captured by DNAm as 

well as quantifying the shared associations between DNAm and the two traits. We term this 

shared association as a DNAm correlation, or rDNAm, reflecting the similarity of the approach 

to estimating genetic correlations via the GREML model. 

 

DNAm correlation between sets 

As a proof-of-principle illustration of the application of genetic correlation methods to 

DNAm, and to demonstrate strong concordance between the three sample sets with GS, we 

estimated the DNAm correlation of the six traits across sample set. The underlying 

assumption is that there should be no inter-set variation in contribution of DNAm to each of 

the traits and thus the DNAm correlation estimates should not be different from 1. We first 

test this assumption by performing EWAS within each set for each trait to determine if there 

is concordance in probe effects using simple linear regression in the OSCA software 16. Due 

to differences in sample size between the sets which impacts discovery, only those probes 

that were nominally significant across all sets (p<0.001) were compared. The concordance in 

probe association coefficients was evaluated using Pearson’s correlation and was found to be 

very high (𝜌𝜌 ≥0.95) between all sets (Figure S2). This suggests that the estimated effect sizes 

between DNAm and each of the traits is consistent between sets. We subsequently calculated 

the DNAm correlation between sets for each trait. Most of the correlations were found to not 

significantly deviate from 1 (p>0.05) consistent with our expectation (Figure 1, Table S2). 

We note that the slight deviations from 1 observed for glucose and HDL cholesterol as well 

as large standard errors, while not significant after adjusting for multiple testing using a 
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Bonferroni correction, may reflect deviations from sample collection protocols and 

measurement errors rather than a reflection of the method. 

 

DNAm Correlation between traits 

We estimated the DNAm correlation between the six body fat related phenotypes using the 

bivariate OREML framework that estimates the similarity of DNAm associations between 

traits. The DNAm correlations are presented in Figure 2 (Table S3) alongside genetic 

correlations calculated using the bivariate GREML framework with a GRM implemented in 

the GCTA software 18 and phenotypic correlations. We identified strong, positive DNAm 

correlations between each of the body fat traits (BMI, body fat % and waist to hip ratio; 

ranging from 0.96 to 1.00), with correlation between BMI and waist to hip ratio found to be 

not significant different from 1 (rDNAm=1.00, se=0.0005). These associations were observed 

to be of greater magnitude than both genetic (rG ranging from 0.65 to 0.86) and phenotypic 

correlations (rP ranging from 0.51 to 0.85). The body fat traits demonstrated moderate DNAm 

correlations with glucose (rDNAm ranging from 0.42 to 0.62), again of a greater magnitude 

than both genetic and phenotypic correlations. We observed negative DNAm correlations 

between each of the body fat traits and HDL cholesterol, with a slightly stronger correlation 

observed for BMI. These correlations were in the same direction as genetic correlations, with 

a similar magnitude while phenotypic correlations were observed to be closer to zero. DNAm 

correlations for each of the body fat traits with total cholesterol were found to not be 

significantly different from zero. This is consistent with genetic correlations between total 

cholesterol and both BMI and body fat %, while the genetic correlation between waist to hip 

ratio and total cholesterol was non zero (rDNAm=0.43, se=0.22, pvalue=0.02). Similarly, 

DNAm correlations between HDL cholesterol and glucose were observed to be similar to 

genetic correlations although of slightly less magnitude. We observed moderate positive 



 11 

DNAm correlation between total cholesterol and both glucose and HDL cholesterol while the 

genetic correlation was found to be not significantly different from zero between these trait 

pairs. Further, we demonstrate these results are independent of variance attributable to data 

structure, by finding practically identical estimates for DNAm correlations when adjusting 

for the first 20 principal components of the DNAm levels and the first 20 principal 

components of the genetic data (Table S4). 

 

DNAm correlations between sexes 

Given previously reported genetic 28-30 and DNAm 7,31 sex differences for body fat-related 

traits, we investigated if the contribution of DNAm for each trait was consistent across sex. 

First, we estimated the proportion of variance captured by DNAm in each sex. For BMI and 

body fat percentage, the proportion of variance captured by DNAm was largely consistent 

across sexes while for waist to hip ratio, glucose, HDL cholesterol and total cholesterol the 

variance captured by DNAm in males was greater than that captured in females (Figure 3, 

Table S5). Next, DNAm correlations were calculated for each trait between sexes. Two traits 

were identified as having DNAm correlations significantly different from 1 however only 

BMI survived multiple testing using a Bonferroni correction (BMI rDNAm=0.79, se 0.07, 

pvalue=7.0x10-4; WHR rDNAm=0.95, se=0.04, pvalue=0.016; Figure 3 and Table S6). Several 

previous studies have presented genetic correlations for BMI between the sexes that were 

significantly different from 1 (ranging from 0.93 to 0.96; 28-30) however the greater deviation 

between the sexes captured by DNAm correlation potentially suggests the presence of sex 

differential biological consequences of BMI. 

 

We further examined sex differences in the contribution of DNAm for BMI by investigating 

the presence of probe-by-sex interactions. We performed an EWAS for BMI including probe, 
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sex and the interaction between probe and sex as covariates in a linear model. We identified 

eight probes across four chromosomes with significant probe-by-sex interactions at p<6.4x10-

8, which is Bonferroni corrected for the number of DNAm probes analysed. We note this set 

of probes represented six independent probes, with two pairs of probes that were closely 

located together likely co-methylated (correlation between DNAm M-values>0.8 between 

probe pairs: cg16936953 and cg12054453, and cg18181703 and cg11047325). For all eight 

probes DNAm was higher for females as BMI increased, with no significant association 

observed in males (Table 2), with trend plots provided in Figure S3. This may reflect a 

unique response in females to BMI levels. 

 

Discussion 

We investigated the shared associations of DNAm variation between body fat and adiposity-

related biochemical traits by extending the OREML framework to a bivariate model, similar 

to the estimation of genetic correlations through GREML. For the majority of trait pairs the 

DNAm correlations, whilst strongly concordant in direction, were observed to be greater in 

magnitude compared to both genetic and phenotypic correlations, particularly between body 

fat traits. There are several potential explanations for this. DNAm is known to capture risk 

factors beyond genetics, suggesting DNAm correlations are likely capturing common 

environmental or lifestyle factors between traits such as dietary factors. DNAm correlation 

may also be capturing common consequence of these traits, that is the consequence of both 

traits affecting downstream pathways e.g. inflammation. This hypothesis is supported by 

previous studies which have demonstrated that while large amounts of the phenotypic 

variance can be captured by DNAm for some traits (e.g. BMI and smoking), for the most part 

these have been implicated as arising from trait consequence 8,13. In particular, Wahl et al. 

suggested that changes in DNAm (measured in blood and adiposity tissue) associated with 
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BMI may be the consequence of changes in lipid and glucose metabolism associated with 

BMI 8. This ascertainment of both causal and consequential effects may explain why DNAm 

correlations were observed to be of greater magnitude than their genetic counterparts. The 

strong positive DNAm correlations between each of the body fat traits is consistent with 

DNAm derived from whole blood reflecting a general response to adiposity, while genetic 

correlations are capturing differences in the genetic control of specific fat distribution. 

Support for such a conclusion in literature is conflicting. A recent study of DNAm in adipose 

tissue in women identified associations with body fat distribution, of which 50% of sites 

replicated whole blood derived DNAm 32. Several other studies have demonstrated strong 

overlap between CpG sites associated with BMI, waist circumference and body fat % 

indicating common methylation sites are similarly influenced by both general and abdominal 

obesity 33-35. However, Crocker et al. 35 found a low degree of overlap between waist 

circumference and body fat percentage from subsequent gene ontology enrichment and 

differentially methylated region analyses, suggesting these measurements represent 

biologically distinct concepts. We note the inconsistency in conclusions from Crocker et al. 

may have been impacted by the investigation of overlap in significant results rather than 

formally testing for differences and additionally limited by sample size (N=2,325). 

 

We also recognise that, given a large portion of the DNA methylome is under genetic control 

14, DNAm correlations are likely capturing part of the shared genetic contribution between 

these traits. We demonstrated that a large portion of the phenotypic variation captured by 

DNAm is separate from that being explained by SNPs, a conclusion which is supported in the 

literature 7,8,13,15. Further, we identified independence between the MRM and GRM when fit 

as random effects in the univariate GREML framework using the CORE-GREML approach. 

Despite this, we were unable to formally determine if the contribution of DNAm which was 
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shared between traits was similarly separate of the shared genetic influence. This limitation in 

our study was likely due to sample size, with joint MRM and GRM bivariate REML models 

unable to converge and therefore unable to estimate DNAm correlations conditional on SNPs.  

 

Given previously reported genetic 28-30 and DNAm 7,31 sex differences for body fat related 

traits, we investigated whether these are also captured by DNAm correlations. We identified 

a significant deviation from 1 in the DNAm correlation for BMI between males and females. 

Several previous studies have presented genetic correlations for BMI between the sexes that 

were significantly different from 1 (ranging from 0.93 to 0.96; 28-30). The greater deviation 

captured by the DNAm correlation however potentially suggests the presence of sex 

differential biological consequences of BMI. We further identified eight DNAm probe-by-sex 

interactions for BMI (which represent six independent DNAm sites), observing 

hypermethylation in females as BMI increased, with no associated observed in males. Of 

note, all but one of these probes having been previously shown to be associated with BMI 

7,8,34,36,37. In particular, probe cg18181703 is located the SOCS3 gene, a suppressor of the 

cytokine signalling pathway, and has been found to be inversely associated with BMI, waist 

to hip ratio, triglycerides and metabolic syndrome, and positively associated with HDL 7. It 

has also been shown to moderate the effect of cumulative stress on obesity 38. DNAm of 

cg09349128 located in PIM3, a gene involved in energy metabolism, has been found to 

mediate the association between famine exposure and BMI. Additionally, probes cg16936953 

and cg12054453 are located in the VMP1 gene, which has been implicated broadly in lipid 

homeostasis and regulation in the formation of lipid droplets and lipoproteins, for which 

dysregulation is involved in a variety of diseases including obesity, fatty liver disease and 

cholesterol ester storage 39,40. We also found evidence for a probe-by-sex interaction with 

DNAm at probe cg12269535 located in the SRF gene, which is associated with insulin 
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resistance and may contribute to the pathogenesis of Type 2 Diabetes 41. We note that probe-

by-sex interactions have been previously investigated in the context of BMI 7,42, with each 

study identifying only a single CpG, however we were unable to replicate any previous 

findings (Figure S4).  

 

We recognise there are some caveats and further considerations for this work. The EPIC 

array captures only a small proportion of the methylome, with Hillary et al. previously 

demonstrating that decreasing the number of methylation sites reduces estimates of variance 

captured by DNAm and prediction metrics 43. This impacts the interpretability our analyses 

as a low variance captured by DNAm doesn’t necessarily indicate a lack of correlation 

between DNAm and traits as DNAm sites which are unmeasured may contribute to the 

association. As such, greater coverage may resultingly influence DNAm correlation 

estimates. Similarly, while variance component estimation based on DNAm requires smaller 

samples sizes than needed for accurate estimation of genetic correlation due to the MRM 

capturing more variance, there is value in increasing sample sizes as well. In these analyses 

we were unable to report on DNAm correlations conditional on SNPs as joint MRM and 

GRM bivariate REML models were unable to convergence. We attempt to address this by 

adjusting univariate and bivariate OREML models based on DNAm with covariate 

adjustment for first 20 principal components of the genetic data. We find models with and 

without these adjustments yield practically identical estimates for both proportion of variance 

captured and DNAm correlations.  

 

While it has been previously shown that much of the genetic control of DNAm is shared 

across populations 44-47, as DNAm is also responsive to the environment, it would not be 

unexpected for such estimates to vary by ancestry, or geography. While we suspect our 
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results will be generalisable across comparable samples, replication in similar populations as 

well as populations of different ancestry, ethnicity or geography would provide greater 

insight into these results. We also acknowledge the DNAm correlations represent the shared 

associations in DNAm variation between traits at a snapshot in time and within a particular 

tissue. DNAm levels are known to change over time, both as a progressive response to aging 

as well as due to environmental and stochastic influence and resultingly, there may be 

variation in the estimated DNAm correlations within a population over time. Further, while 

this study examines DNAm correlations in whole blood, whether these samples accurately 

reflect the degree of shared DNAm associations in other tissues needs further validation. 

Lastly, while DNAm correlations demonstrate the degree of similarity in epigenetic processes 

underlying these traits, as this metric is quantified at the genome-wide level it does not 

provide direct insights into specific processes (i.e. identifying individual loci, genes or 

molecular pathways that are shared between traits). As such the estimation of DNAm 

correlations can serve as an initial step in identification of the underlying epigenetic 

processes shared between traits and subsequently guide further investigation to uncover the 

specific molecular pathways involved. Longitudinal studies may elucidate timings of the 

shared response at individual points in the genome, provide insight into whether the shared 

epigenetic processes are causal or a consequence of disease, and direct potential follow-up 

approaches that could be undertaken to gain insights into the shared molecular pathways 

between traits. 

 

Overall, we present an approach to investigating shared biology across traits using DNAm 

correlations. This has provided insight into obesity related traits, showing the shared 

associations of DNAm between BMI, waist to hip ratio and body fat %, beyond that 
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recognised through genetic correlation analysis and has identified sex specific DNAm 

changes associated with BMI.  

 

Figures 

Figure 1: DNAm correlation between sets for each trait. The DNAm correlations between 

each of the set pairs is displayed on the x-axis with standard errors indicated by error bars. P-

values from a log likelihood test for the hypothesis of fixing the DNAm correlation at 1 are 

presented in text below each estimate and in Table S2. 

 

Figure 2: DNAm (left), genetic (middle) and phenotypic (right) correlations among six traits. 

Red, positive correlation; blue, negative correlation. DNAm correlations are estimated using 

bivariate OREML, genetic correlations using bivariate GREML and phenotypic correlations 

using’s Pearson correlation. Corresponding standard errors are in Table S3 along with P-

values from a log likelihood test for the hypothesis of fixing the DNAm correlation at both 1 

and 0. 

 

Figure 3: Differences in associations between DNAm and each of the traits in males and 

females. A) The proportion of phenotypic variance captured by DNAm by sex for each trait. 

B) The DNAm correlation between sexes for each trait. Standard errors are indicated by error 

bars. P-values from a log likelihood test for the hypothesis of fixing the DNAm correlation at 

1 are presented in text below each estimate and in Table S6. 
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Tables 

Table 1: Cohort summary for Generation Scotland (GS; N=7,519). Smoking pack years were 

calculated by multiplying the number of packs of cigarettes smoked per day by the number of 

years the individual has smoked and used in the adjustment of DNAm data. Cell type 

proportions estimated using the algorithm proposed by Houseman et al 26.  

Covariates N Mean Sd 

Age 7,519 51.7 13.2 

 N N Female % Female 

Sex 7,519 4,261 56.7 

 N  % 

Set 1 1,988  26.4 

Set 2 4,228  56.2 

Set 3 1,303  17.3 

    

Traits N Mean Sd 

BMI 7,452 26.9 5.0 

Body Fat % 7,324 30.4 9.3 

Waist to hip ratio 7,403 0.9 0.1 

Glucose 7,291 4.8 0.6 

HDL Cholesterol 7,438 1.5 0.4 

Total Cholesterol 7,455 5.2 1.1 

Pack Years 7,519 8.1 15.1 

Smoking Status 7,519 Current Smokers: 

1,192 (15.9%) 
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  Quit <12months 

ago: 164 (2.2%) 

 

  Quit >12months 

ago: 2,244 (29.8%) 

 

  Never: 3,871 

(51.5%) 

 

  Unknown: 48 

(0.6%) 

 

Cell Type 

Proportions 

N Mean Sd 

CD8T 7,519 0.04 0.04 

CD4T 7,519 0.18 0.06 

NK 7,519 0.07 0.05 

Bcell 7,519 0.06 0.03 

Mono 7,519 0.06 0.02 

Gran 7,519 0.58 0.09 
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Table 2: DNAm probes identified with probe by sex interactions (p<6.4x10-8) with BMI. Probe association statistics (effect, se and pvalue) were 

estimated from Female and Male only models for each DNAm probe. Interaction (between sex and probe) association statistics interaction were 

estimated from a model containing both sexes. Effect sizes are in M-values. 

Probe ID CHR Probe BP 

(CRCh37) 

CpG 

Island 

Related 

Gene 

In Females In Males Interaction 

Probe 

effect  

Probe 

SE  

Probe 

pvalue  

Probe 

effect 

Probe 

SE  

Probe 

pvalue  

Effect SE  pvalue 

cg12269535 6 43142014 Shore SRF -0.66 0.07 6.0x10-20 -0.06 0.08 0.44 0.60 0.11 4.0x10-08 

cg16936953 17 57915665 Open sea VMP1 -0.37 0.05 20.x10-14 0.03 0.05 0.56 0.40 0.07 3.3x10-08 

cg12054453 17 57915717 Open sea VMP1 -0.27 0.04 9.4x10-14 0.04 0.04 0.28 0.31 0.05 9.0x10-09 

cg19748455 17 76274856 Open sea  -0.75 0.06 2.4x10-30 -0.12 0.08 0.12 0.63 0.10 2.2x10-10 

cg18181703 17 76354621 Shore SOCS3 -0.79 0.07 1.2x10-27 -0.18 0.08 0.02 0.60 0.11 1.3x10-08 

cg11047325 17 76354934 Island SOCS3 -0.43 0.04 4.8x10-25 -0.08 0.04 0.06 0.35 0.06 1.1x10-08 

cg00840791 19 16453259 Intergenic  -0.45 0.03 2.1x10-46 -0.16 0.03 2.4x10-6 0.29 0.05 7.4x10-10 

cg09349128 22 50327986 Shore CRELD2 -1.05 0.08 5.2x10-39 -0.26 0.09 0.01 0.79 0.12 1.3x10-10 
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Additional Material 

Additional File 1: Supplemental Figures and Supplemental Results 

Additional File 2: Supplemental Tables 

 

Supplemental Tables 

Table S1: The proportion of variance captured for each trait. Variance components for 

DNAm (MRM) and SNPs (GRM) were estimated both marginally and jointly. The 

proportion of phenotypic variance captured for each trait (Variance) for each model is 

provided alongside the associated standard error (SE), pvalue (Pval) and sample size (N).  

 

Table S2: DNAm Correlation estimates by set for each trait. DNAm correlations 

(Correlation) are presented, alongside the associated standard error (SE) and sample size (N). 

Pvalues from the LRT are presented for the hypothesis of fixing the DNAm correlation at 

both 1 (Pval_1) and 0 (Pval_0). The proportion of variance in each trait for each set captured 

by DNAm as determined from the bivariate OREML model is also presented (V(O)/Vp_tr1, 

V(O)/Vp_tr2) as well as associated standard errors (SE).  

 

Table S3: Correlation estimates between traits calculated using each, DNAm, genetics and 

phenotypes. For each of the correlation measures, correlations (Correlation) are presented, 

alongside the associated standard error (SE) and sample size (N). For DNAm and genetic 

correlations, Pvalues from the LRT are presented for the hypothesis of fixing the DNAm 

correlation at both 1 (Pval_1) and 0 (Pval_0). The proportion of variance in each trait for 

each set captured by DNAm as determined from the bivariate OREML model is also 

presented (V(O)/Vp_tr1, V(O)/Vp_tr2) as well as associated standard errors (SE). For 

phenotypic correlations, the pvalue form Pearson’s correlation is presented (Pval).  



 22 

 

Table S4: Sensitivity analyses for the bivariate OREML model for each trait. Sensitivity 

analyses were performed with covariate adjustment for the first 20 principal components of 

the DNAm levels (DNAm PC adjustment) and the first 20 principal components of the 

genetic data (SNP PC adjustment). For each model, DNAm correlations (Correlation) are 

presented, alongside the associated standard error (SE) and sample size (N). Pvalues from the 

LRT are presented for the hypothesis of fixing the DNAm correlation at both 1 (Pval_1) and 

0 (Pval_0). The proportion of variance in each trait for each set captured by DNAm as 

determined from the bivariate OREML model is also presented (V(O)/Vp_tr1, V(O)/Vp_tr2) 

as well as associated standard errors (SE).  

 

Table S5: The proportion of variance captured by DNAm for each trait by sex (Female and 

Male). The proportion of phenotypic variance captured for each trait (Variance) for each sex 

is provided alongside the associated standard error (SE), pvalue (Pval) and sample size (N).  

 

Table S6: DNAm Correlation estimates by sex for each trait. DNAm correlations 

(Correlation) are presented, alongside the associated standard error (SE) and sample size (N). 

Pvalues from the LRT are presented for the hypothesis of fixing the DNAm correlation at 

both 1 (Pval_1) and 0 (Pval_0). The proportion of variance in each trait for each set captured 

by DNAm as determined from the bivariate OREML model is also presented (V(O)/Vp_tr1, 

V(O)/Vp_tr2) as well as associated standard errors (SE).  

 

Table S7: Likelihood ratio test comparing CORE GREML and GREML to estimate the 

covariance between MRM and GRM. This was performed for each trait in the univariate 

GREML framework.  
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Table S8: Sensitivity analyses for the univariate OREML model for each trait. Sensitivity 

analyses were performed with covariate adjustment for the first 20 principal components of 

the DNAm levels (DNAm PC adjustment) and the first 20 principal components of the 

genetic data (SNP PC adjustment). For each model the proportion of variance captured by 

DNAm for each trait is presented (Variance), alongside the associated standard error (SE) 

and pvalue (Pval).  

 

Declarations 

Data and Code Availability  

According to the terms of consent for Generation Scotland participants, access to data must 

be reviewed by the Generation Scotland Access Committee. Applications should be made to 

access@generationscotland.org. 

The datasets generated during the current study are available in the supplemental tables. 

 

Declaration of Interests 

REM is a scientific advisor to the Epigenetic Clock Development Foundation and Optima 

Partners. RFH has received consultant fees from Illumina and acts as a scientific advisor to 

Optima Partners.  

 

Acknowledgements 

GS received core support from the Chief Scientist Office of the Scottish Government Health 

Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). Genotyping and 

DNA methylation profiling of the GS samples was carried out by the Genetics Core 

Laboratory at the Edinburgh Clinical Research Facility, Edinburgh, Scotland, and was funded 



 24 

by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic 

Award Stratifying Resilience and Depression Longitudinally (STRADL; Reference 

104036/Z/14/Z). The DNA methylation data assayed for Generation Scotland was partially 

funded by a 2018 NARSAD Young Investigator Grant from the Brain & Behavior Research 

Foundation (Ref: 27404; awardee: Dr David M Howard) and by a JMAS SIM fellowship 

from the Royal College of Physicians of Edinburgh (Awardee: Dr Heather C Whalley).  

AAH is supported by an Australian Government Research Training Program (RTP) 

Scholarship. AFM is supported by an Australian Research Council Future Fellowship 

(FT200100837). 

 

Authors' contributions 

AAH contributed to the conception and design, analysis, interpretation, drafting, production, 

and revision of the manuscript. 

RFH contributed to the data analysis, interpretation, and revision of the manuscript. 

EB contributed to the interpretation and revision of the manuscript. 

DLM contributed to the data generation, interpretation, and revision of the manuscript. 

REM contributed to the conception and design, interpretation, drafting, production, and 

revision of the manuscript. 

AFM contributed to the conception and design, drafting, production, and revision of the 

manuscript. 

All authors read and approved the final manuscript. 

 

References 
 

1. Williams, E.P., Mesidor, M., Winters, K., Dubbert, P.M., and Wyatt, S.B. (2015). 
Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public 
Health Problem. Current Obesity Reports 4, 363-370. 10.1007/s13679-015-0169-4. 



 25 

2. Guh, D.P., Zhang, W., Bansback, N., Amarsi, Z., Birmingham, C.L., and Anis, A.H. 
(2009). The incidence of co-morbidities related to obesity and overweight: A 
systematic review and meta-analysis. BMC Public Health 9, 88. 10.1186/1471-2458-
9-88. 

3. Afshin, A., Forouzanfar, M.H., Reitsma, M.B., Sur, P., Estep, K., Lee, A., Marczak, L., 
Mokdad, A.H., Moradi-Lakeh, M., Naghavi, M., et al. (2017). Health Effects of 
Overweight and Obesity in 195 Countries over 25 Years. New England Journal of 
Medicine 377, 13-27. 10.1056/NEJMoa1614362. 

4. Reed, Z.E., Suderman, M.J., Relton, C.L., Davis, O.S.P., and Hemani, G. (2020). The 
association of DNA methylation with body mass index: distinguishing between 
predictors and biomarkers. Clinical Epigenetics 12, 50. 10.1186/s13148-020-00841-5. 

5. Do, W.L., Nguyen, S., Yao, J., Guo, X., Whitsel, E.A., Demerath, E., Rotter, J.I., Rich, 
S.S., Lange, L., Ding, J., et al. (2021). Associations between DNA methylation and BMI 
vary by metabolic health status: a potential link to disparate cardiovascular 
outcomes. Clinical Epigenetics 13, 230. 10.1186/s13148-021-01194-3. 

6. Bell, C.G. (2017). The Epigenomic Analysis of Human Obesity. Obesity 25, 1471-1481. 
10.1002/oby.21909. 

7. Mendelson, M.M., Marioni, R.E., Joehanes, R., Liu, C., Hedman Å, K., Aslibekyan, S., 
Demerath, E.W., Guan, W., Zhi, D., Yao, C., et al. (2017). Association of Body Mass 
Index with DNA Methylation and Gene Expression in Blood Cells and Relations to 
Cardiometabolic Disease: A Mendelian Randomization Approach. PLoS Med 14, 
e1002215. 10.1371/journal.pmed.1002215. 

8. Wahl, S., Drong, A., Lehne, B., Loh, M., Scott, W.R., Kunze, S., Tsai, P.C., Ried, J.S., 
Zhang, W., Yang, Y., et al. (2017). Epigenome-wide association study of body mass 
index, and the adverse outcomes of adiposity. Nature 541, 81-86. 
10.1038/nature20784. 

9. Klemp, I., Hoffmann, A., Müller, L., Hagemann, T., Horn, K., Rohde-Zimmermann, K., 
Tönjes, A., Thiery, J., Löffler, M., Burkhardt, R., et al. (2022). DNA methylation 
patterns reflect individual's lifestyle independent of obesity. Clinical and 
Translational Medicine 12, e851. 10.1002/ctm2.851. 

10. Cao, V.T., Lea, R.A., Sutherland, H.G., Benton, M.C., Pishva, R.S., Haupt, L.M., and 
Griffiths, L.R. (2021). A genome-wide methylation study of body fat traits in the 
Norfolk Island isolate. Nutrition, Metabolism and Cardiovascular Diseases 31, 1556-
1563. 10.1016/j.numecd.2021.01.027. 

11. Wu, Y., Tian, H., Wang, W., Li, W., Duan, H., and Zhang, D. (2022). DNA methylation 
and waist-to-hip ratio: an epigenome-wide association study in Chinese monozygotic 
twins. Journal of Endocrinological Investigation 45, 2365-2376. 10.1007/s40618-022-
01878-4. 

12. Jones, A.C., Irvin, M.R., Claas, S.A., and Arnett, D.K. (2021). Lipid Phenotypes and 
DNA Methylation: a Review of the Literature. Current Atherosclerosis Reports 23, 71. 
10.1007/s11883-021-00965-w. 

13. Trejo Banos, D., McCartney, D.L., Patxot, M., Anchieri, L., Battram, T., Christiansen, 
C., Costeira, R., Walker, R.M., Morris, S.W., Campbell, A., et al. (2020). Bayesian 
reassessment of the epigenetic architecture of complex traits. Nature 
Communications 11, 2865. 10.1038/s41467-020-16520-1. 

14. Min, J.L., Hemani, G., Hannon, E., Dekkers, K.F., Castillo-Fernandez, J., Luijk, R., 
Carnero-Montoro, E., Lawson, D.J., Burrows, K., Suderman, M., et al. (2021). 



 26 

Genomic and phenotypic insights from an atlas of genetic effects on DNA 
methylation. Nature Genetics 53, 1311-1321. 10.1038/s41588-021-00923-x. 

15. Shah, S., Bonder, Marc J., Marioni, Riccardo E., Zhu, Z., McRae, Allan F., Zhernakova, 
A., Harris, Sarah E., Liewald, D., Henders, Anjali K., Mendelson, Michael M., et al. 
(2015). Improving Phenotypic Prediction by Combining Genetic and Epigenetic 
Associations. The American Journal of Human Genetics 97, 75-85. 
10.1016/j.ajhg.2015.05.014. 

16. Zhang, F., Chen, W., Zhu, Z., Zhang, Q., Nabais, M.F., Qi, T., Deary, I.J., Wray, N.R., 
Visscher, P.M., McRae, A.F., and Yang, J. (2019). OSCA: a tool for omic-data-based 
complex trait analysis. Genome Biol 20, 107. 10.1186/s13059-019-1718-z. 

17. Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M., and Wray, N.R. (2012). Estimation 
of pleiotropy between complex diseases using single-nucleotide polymorphism-
derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 
2540-2542. 10.1093/bioinformatics/bts474. 

18. Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011). GCTA: a tool for 
genome-wide complex trait analysis. American Journal Human Genetics 88, 76-82. 
10.1016/j.ajhg.2010.11.011. 

19. Smith, B.H., Campbell, A., Linksted, P., Fitzpatrick, B., Jackson, C., Kerr, S.M., Deary, 
I.J., MacIntyre, D.J., Campbell, H., McGilchrist, M., et al. (2012). Cohort Profile: 
Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its 
participants and their potential for genetic research on health and illness. 
International Journal of Epidemiology 42, 689-700. 10.1093/ije/dys084. 

20. Smith, B.H., Campbell, H., Blackwood, D., Connell, J., Connor, M., Deary, I.J., 
Dominiczak, A.F., Fitzpatrick, B., Ford, I., Jackson, C., et al. (2006). Generation 
Scotland: the Scottish Family Health Study; a new resource for researching genes and 
heritability. BMC Medical Genetics 7, 74. 10.1186/1471-2350-7-74. 

21. Marioni, R.E., Campbell, A., Scotland, G., Hayward, C., Porteous, D.J., and Deary, I.J. 
(2016). Differential effects of the APOE e4 allele on different domains of cognitive 
ability across the life-course. European Journal of Human Genetics 24, 919-923. 
10.1038/ejhg.2015.210. 

22. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A.R., Teumer, A., Kang, 
H.M., Fuchsberger, C., Danecek, P., Sharp, K., et al. (2016). A reference panel of 
64,976 haplotypes for genotype imputation. Nature Genetics 48, 1279-1283. 
10.1038/ng.3643. 

23. McCartney, D.L., Hillary, R.F., Stevenson, A.J., Ritchie, S.J., Walker, R.M., Zhang, Q., 
Morris, S.W., Bermingham, M.L., Campbell, A., Murray, A.D., et al. (2018). Epigenetic 
prediction of complex traits and death. Genome Biol 19, 136. 10.1186/s13059-018-
1514-1. 

24. Chen, Y.A., Lemire, M., Choufani, S., Butcher, D.T., Grafodatskaya, D., Zanke, B.W., 
Gallinger, S., Hudson, T.J., and Weksberg, R. (2013). Discovery of cross-reactive 
probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 
microarray. Epigenetics 8, 203-209. 10.4161/epi.23470. 

25. McCartney, D.L., Walker, R.M., Morris, S.W., McIntosh, A.M., Porteous, D.J., and 
Evans, K.L. (2016). Identification of polymorphic and off-target probe binding sites on 
the Illumina Infinium MethylationEPIC BeadChip. Genom Data 9, 22-24. 
10.1016/j.gdata.2016.05.012. 



 27 

26. Houseman, E.A., Accomando, W.P., Koestler, D.C., Christensen, B.C., Marsit, C.J., 
Nelson, H.H., Wiencke, J.K., and Kelsey, K.T. (2012). DNA methylation arrays as 
surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86. 
10.1186/1471-2105-13-86. 

27. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., 
Madden, P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., et al. (2010). Common 
SNPs explain a large proportion of the heritability for human height. Nature Genetics 
42, 565-569. 10.1038/ng.608. 

28. Bernabeu, E., Canela-Xandri, O., Rawlik, K., Talenti, A., Prendergast, J., and Tenesa, A. 
(2021). Sex differences in genetic architecture in the UK Biobank. Nature Genetics 
53, 1283-1289. 10.1038/s41588-021-00912-0. 

29. Traglia, M., Bseiso, D., Gusev, A., Adviento, B., Park, D.S., Mefford, J.A., Zaitlen, N., 
and Weiss, L.A. (2017). Genetic Mechanisms Leading to Sex Differences Across 
Common Diseases and Anthropometric Traits. Genetics 205, 979-992. 
10.1534/genetics.116.193623. 

30. Rawlik, K., Canela-Xandri, O., and Tenesa, A. (2016). Evidence for sex-specific genetic 
architectures across a spectrum of human complex traits. Genome Biol 17, 166. 
10.1186/s13059-016-1025-x. 

31. Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., Ferreira, T., Locke, A.E., Mägi, R., 
Strawbridge, R.J., Pers, T.H., Fischer, K., Justice, A.E., et al. (2015). New genetic loci 
link adipose and insulin biology to body fat distribution. Nature 518, 187-196. 
10.1038/nature14132. 

32. Divoux, A., Eroshkin, A., Erdos, E., Sandor, K., Osborne, T.F., and Smith, S.R. (2021). 
DNA Methylation as a Marker of Body Shape in Premenopausal Women. Frontiers in 
Genetics 12. 10.3389/fgene.2021.709342. 

33. Dhana, K., Braun, K.V.E., Nano, J., Voortman, T., Demerath, E.W., Guan, W., Fornage, 
M., van Meurs, J.B.J., Uitterlinden, A.G., Hofman, A., et al. (2018). An Epigenome-
Wide Association Study of Obesity-Related Traits. American Journal of Epidemiology 
187, 1662-1669. 10.1093/aje/kwy025. 

34. Chen, Y., Kassam, I., Lau, S.H., Kooner, J.S., Wilson, R., Peters, A., Winkelmann, J., 
Chambers, J.C., Chow, V.T., Khor, C.C., et al. (2021). Impact of BMI and waist 
circumference on epigenome-wide DNA methylation and identification of epigenetic 
biomarkers in blood: an EWAS in multi-ethnic Asian individuals. Clin Epigenetics 13, 
195. 10.1186/s13148-021-01162-x. 

35. Crocker, K.C., Domingo-Relloso, A., Haack, K., Fretts, A.M., Tang, W.Y., Herreros, M., 
Tellez-Plaza, M., Daniele Fallin, M., Cole, S.A., and Navas-Acien, A. (2020). DNA 
methylation and adiposity phenotypes: an epigenome-wide association study among 
adults in the Strong Heart Study. Int J Obes (Lond) 44, 2313-2322. 10.1038/s41366-
020-0646-z. 

36. Demerath, E.W., Guan, W., Grove, M.L., Aslibekyan, S., Mendelson, M., Zhou, Y.H., 
Hedman Å, K., Sandling, J.K., Li, L.A., Irvin, M.R., et al. (2015). Epigenome-wide 
association study (EWAS) of BMI, BMI change and waist circumference in African 
American adults identifies multiple replicated loci. Human Molecular Genetics 24, 
4464-4479. 10.1093/hmg/ddv161. 

37. Sun, D., Zhang, T., Su, S., Hao, G., Chen, T., Li, Q.Z., Bazzano, L., He, J., Wang, X., Li, S., 
and Chen, W. (2019). Body Mass Index Drives Changes in DNA Methylation: A 
Longitudinal Study. Circ Res 125, 824-833. 10.1161/circresaha.119.315397. 



 28 

38. Xu, K., Zhang, X., Wang, Z., Hu, Y., and Sinha, R. (2018). Epigenome-wide association 
analysis revealed that SOCS3 methylation influences the effect of cumulative stress 
on obesity. Biol Psychol 131, 63-71. 10.1016/j.biopsycho.2016.11.001. 

39. Li, Y.E., Wang, Y., Du, X., Zhang, T., Mak, H.Y., Hancock, S.E., McEwen, H., Pandzic, E., 
Whan, R.M., Aw, Y.C., et al. (2021). TMEM41B and VMP1 are scramblases and 
regulate the distribution of cholesterol and phosphatidylserine. J Cell Biol 220. 
10.1083/jcb.202103105. 

40. Ghanbarpour, A., Valverde, D.P., Melia, T.J., and Reinisch, K.M. (2021). A model for a 
partnership of lipid transfer proteins and scramblases in membrane expansion and 
organelle biogenesis. Proc Natl Acad Sci U S A 118. 10.1073/pnas.2101562118. 

41. Jin, W., Goldfine, A.B., Boes, T., Henry, R.R., Ciaraldi, T.P., Kim, E.Y., Emecan, M., 
Fitzpatrick, C., Sen, A., Shah, A., et al. (2011). Increased SRF transcriptional activity in 
human and mouse skeletal muscle is a signature of insulin resistance. J Clin Invest 
121, 918-929. 10.1172/jci41940. 

42. Wang, J., Zhang, H., Rezwan, F.I., Relton, C., Arshad, S.H., and Holloway, J.W. (2021). 
Pre-adolescence DNA methylation is associated with BMI status change from pre- to 
post-adolescence. Clin Epigenetics 13, 64. 10.1186/s13148-021-01042-4. 

43. Hillary, R.F., McCartney, D.L., McRae, A.F., Campbell, A., Walker, R.M., Hayward, C., 
Horvath, S., Porteous, D.J., Evans, K.L., and Marioni, R.E. (2022). Identification of 
influential probe types in epigenetic predictions of human traits: implications for 
microarray design. Clinical Epigenetics 14, 100. 10.1186/s13148-022-01320-9. 

44. Smith, A.K., Kilaru, V., Kocak, M., Almli, L.M., Mercer, K.B., Ressler, K.J., Tylavsky, 
F.A., and Conneely, K.N. (2014). Methylation quantitative trait loci (meQTLs) are 
consistently detected across ancestry, developmental stage, and tissue type. BMC 
Genomics 15, 145. 10.1186/1471-2164-15-145. 

45. Husquin, L.T., Rotival, M., Fagny, M., Quach, H., Zidane, N., McEwen, L.M., MacIsaac, 
J.L., Kobor, M.S., Aschard, H., Patin, E., and Quintana-Murci, L. (2018). Exploring the 
genetic basis of human population differences in DNA methylation and their causal 
impact on immune gene regulation. Genome Biol 19, 222-222. 10.1186/s13059-018-
1601-3. 

46. Kassam, I., Tan, S., Gan, F.F., Saw, W.-Y., Tan, L.W.-L., Moong, D.K.N., Soong, R., Teo, 
Y.-Y., and Loh, M. (2021). Genome-wide identification of cis DNA methylation 
quantitative trait loci in three Southeast Asian Populations. Human Molecular 
Genetics 30, 603-618. 10.1093/hmg/ddab038. 

47. Hawe, J.S., Wilson, R., Schmid, K.T., Zhou, L., Lakshmanan, L.N., Lehne, B.C., Kühnel, 
B., Scott, W.R., Wielscher, M., Yew, Y.W., et al. (2022). Genetic variation influencing 
DNA methylation provides insights into molecular mechanisms regulating genomic 
function. Nature Genetics 54, 18-29. 10.1038/s41588-021-00969-x. 

 


	Blood-based genome-wide DNA methylation correlations across body fat and adiposity-related biochemical traits
	Abstract
	Introduction
	Material and methods
	Study cohort
	Ethics approval

	All components of GS received ethical approval from the NHS Tayside Committee on Medical Research Ethics (REC Reference Number: 05/S1401/89). GS has also been granted Research Tissue Bank status by the East of Scotland Research Ethics Service (REC Ref...
	Phenotypic data
	Genetic data
	Variance component analyses
	DNAm correlations

	Results
	DNAm correlation between sets
	DNAm Correlation between traits
	DNAm correlations between sexes

	Discussion
	Figures
	Tables

	Additional Material
	Supplemental Tables
	Declarations
	Data and Code Availability
	The datasets generated during the current study are available in the supplemental tables.
	Declaration of Interests
	Acknowledgements
	Authors' contributions



