Edinburgh Research Explorer

A Vehicular Trust Blockchain Framework with Scalable Byzantine
Consensus

Citation for published version:

Chen, X, Xue, G, Yu, R, Wu, H & Wang, D 2023, 'A Vehicular Trust Blockchain Framework with Scalable
Byzantine Consensus', IEEE Transactions on Mobile Computing, pp. 1-13.
https://doi.org/10.1109/TMC.2023.3294968

Digital Object Identifier (DOI):
10.1109/TMC.2023.3294968

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
IEEE Transactions on Mobile Computing

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 11. May. 2024

https://doi.org/10.1109/TMC.2023.3294968
https://doi.org/10.1109/TMC.2023.3294968
https://www.research.ed.ac.uk/en/publications/baad58cf-e15c-430d-a869-a31bdcea5ffa

Xiao Chen, Guoliang Xue, Fellow, IEEE, Ruozhou Yu, Senior Member, IEEE, Haiqin Wu, and Dawei Wang

A Vehicular Trust Blockchain Framework with
Scalable Byzantine Consensus

Abstract—The maturing blockchain technology has gradually promoted decentralized data storage from cryptocurrencies to other
applications, such as trust management, resulting in new challenges based on specific scenarios. Taking the mobile trust blockchain
within a vehicular network as an example, many users require the system to process massive traffic information for accurate trust
assessment, preserve data reliably, and respond quickly. While existing vehicular blockchain systems ensure immutability,
transparency, and traceability, they are limited in terms of scalability, performance, and security. To address these issues, this paper
proposes a novel decentralized vehicle trust management solution and a well-matched blockchain framework that provides both
security and performance. The paper primarily addresses two issues: i) To provide accurate trust evaluation, the trust model adopts a
decentralized and peer-review-based trust computation method secured by trusted execution environments (TEEs). ii) To ensure
reliable trust management, a multi-shard blockchain framework is developed with a novel hierarchical Byzantine consensus protocol,
improving efficiency and security while providing high scalability and performance. The proposed scheme combines the decentralized
trust model with a multi-shard blockchain, preserving trust information through a hierarchical consensus protocol. Finally, real-world

experiments are conducted by developing a testbed deployed on both local and cloud servers for performance measurements.

Index Terms—Trust management, blockchain, multi-shard consensus, Byzantine fault-tolerance, TEE.

1 INTRODUCTION

Trust management, introduced by Matt Blaze [1], aids in the
automated verification of actions against security policies. It
symbolically automates social decisions regarding trust, pre-
venting services from unfairness and equivocation caused
by dishonest users. In recent years, numerous trust man-
agement models have been developed for various domains,
including wireless sensor networks, social networks, peer-
to-peer systems, and the social Internet of Things/Vehicles
[2]-[6]. Trust management plays a crucial role in vehicular
networks by enabling the evaluation of message reliability
from vehicles and providing a means to detect malicious
vehicles. For instance, vehicles with trust levels below a
predefined threshold are considered malicious and should
be removed from the system. Although these schemes con-
tribute to trust evaluation with the shared objective of find-
ing a practical and reliable solution, many of them still rely
on gathering trust parameters from a large number of nodes
to compute the trustworthiness of service providers. How-
ever, some of these nodes may produce inaccurate rating
results due to being unaware of the actions being evaluated.
The involvement of numerous nodes in the trust evaluation
process consumes substantial communication and compu-
tation resources, resulting in significant competition with

o X. Chen is with the School of Informatics, University of Edinburgh,
Edinburgh, UK, EH8 9AB. Email: xiao.chen@ed.ac.uk

o G. Xue is with the School of Computing and Augmented Intelligence, Ari-
zona State University, Tempe, AZ 85287-8809, USA. Email: xue@asu.edu

e R. Yu is with the Computer Science Department, North Carolina State
University, Raleigh, NC 27606. Email: ryu5@ncsu.edu

e H. Wu is with the Department of Software Engineering, East China Nor-
mal University, Shanghai, 200062, China. Email: hquu@sei.ecnu.edu.cn

e D. Wang is with School of Computer Science and Communication Engi-
neering, Jiangsu University, Zhenjiang, 212000, China.

other applications and performance issues, particularly in
mobile scenarios such as the Internet of Vehicles (IoVs) or
other Internet of Things (IoTs) applications [7], [8].

On the other hand, these schemes employ a classic
trust management design where trust computation relies on
centralized computing clusters. This design offers efficient
calculation and fast response within the Infrastructure as a
Service (IaaS) paradigm [9]. Although laaS provides cost-
effective computational resources, the lack of trust in the
opaque evaluation process hampers user adoption of the
results. Consequently, classic trust management continually
faces a significant challenge: C1: how to ensure an efficient and
trustworthy trust evaluation process, as well as accurate and fair
trust evaluation results, in a mobile scenario, such as IoVs?

To address the aforementioned issue, researchers have
recently turned their attention to blockchain technologies,
which offer several key advantages, such as immutability,
transparency, and traceability. BlockTDM [10] is a trust data
management scheme that leverages blockchain and is built
on the Hyperledger Fabric [11]. It specifically addresses
fraud, dishonest data, and unauthorized use of data on IoT
devices or edge terminals. Li et al. [12] utilize blockchain-
based trust management to optimize the distributed k-
anonymity algorithm, which prevents the leakage of real
information in communication within VANETs. Kouicem et
al. [13] explore trust management by considering the mobil-
ity feature of IoT devices. Their proposed BC-Trust solution,
based on Tendermint [14], enables mobile nodes to accu-
rately assess and share trust recommendations about other
nodes. These recent schemes focus on preserving trust data
through mutual blockchain platforms, but they overlook
the key challenge C1. Additionally, the blockchain systems
employed in these schemes still encounter scalability issues,
particularly when employing Byzantine consensus in large-

scale networks.

To enhance scalability, sharding has emerged as a prac-
tical solution for achieving a scale-out blockchain system,
enabling simultaneous computation, storage, and process-
ing. Building upon pioneering proposals such as RSCoin
and Elastico [16], [17], sharding technology divides the
blockchain network into multiple subnetworks, or shards.
These shards are processed concurrently in parallel, en-
abling the simultaneous handling of numerous transac-
tions. The capacity and throughput of the system can
scale linearly with the number of shards or participating
nodes. Various blockchains, such as Elastico, Chainspace,
and Omniledger [17]-[19], adopt multiple shards to execute
Byzantine consensus concurrently, resulting in high scalabil-
ity and throughput. However, a challenge arises in shard-
ing blockchains: the implementation of classic Byzantin
fault tolerance (BFT) protocols (e.g., PBFT) on independent
shards leads to quadratic message complexity, causing per-
formance bottlenecks within each shard. Therefore, another
challenge is presented: C2: how to improve the efficiency of
blockchain consensus while maintaining scalability?

Based on the previous discussions, we put forth a novel
vehicular trust blockchain named VT-chain. This system
aims to establish a dependable trust evaluation model on
a scalable blockchain.

To address the challenge C1, we present a novel vehic-
ular trust evaluation (VT-Eva) model. This model incorpo-
rates a peer-review-based trust evaluation method and a
secure computation design using Trusted Execution Envi-
ronments (TEEs). In contrast to previous schemes such as
those proposed in [10], [12], [13], the VI-Eva assigns trust-
rating requests to groups of raters with similar attributes to
the requested object. For instance, a real-time traffic infor-
mation request is assigned to qualified raters in the same
area, enabling them to assess the actual road conditions and
provide accurate evaluations. As a result, this peer-review-
based approach enhances trust evaluation accuracy. More-
over, since this method only involves congeneric nodes (i.e.
qualified raters), it significantly reduces the message traffic
and processing overhead in vehicular networks, thereby
improving communication efficiency. Additionally, the trust
computation process leverages built-in TEEs to ensure data
confidentiality and computation integrity, mitigating the
risk of malicious entities compromising the system [15].
These design elements collectively enhance the evaluation
accuracy, communication efficiency, and computation secu-
rity of the VT-Eva model, making it particularly suitable for
vehicular scenarios.

To tackle challenge C2, the proposed scalable blockchain
scheme is designed to support a trust management system
in vehicular networks. This blockchain scheme ensures a
trustworthy and equitable trust management process while
incorporating a scalable and efficient consensus mechanism
specifically tailored for vehicular networks. We introduce an
innovative HierBFT, which is a hierarchical BFT consensus
framework. In this framework, the traditional three-phase
PBFT (refer to [21]) is evolved into a hierarchical struc-
ture to achieve scalable consensus. In comparison to PBFT
and its variants such as HotStuff [27] and MinBFT [28],
HierBFT is capable of seamlessly integrating into a multi-
shard blockchain system and executing consensus services

2

in parallel. As a result, it achieves higher scalability and
increased throughput in consensus. Unlike the conventional
sharding schemes described in [17], [18], HierBFT employs
an aggregated signature scheme, which reduces the message
complexity from the quadratic to a linear level. This reduc-
tion in message complexity contributes to enhanced consen-
sus efficiency by requiring fewer messages. Consequently,
HierBFT combines the benefits of a hierarchical multi-shard
consensus framework, ensuring high scalability, with the
linear message complexity, resulting in improved efficiency.
The main contributions are as follows:

o Decentralized and hardware-secured trust evaluation: The
proposed VT-Eva model employs a peer-review-
based method to ensure dependable trust evaluation,
and it utilizes TEEs for secure computation, thereby
ensuring the integrity and confidentiality of the eval-
uation process.

e Scalable trust blockchain with hierarchical consensus:
The proposed VI-chain incorporates a multi-shard
blockchain scheme to guarantee trustworthy and fair
trust management. Additionally, it integrates a hier-
archical BFT consensus framework, which enhances
scalability and efficiency in the system.

o Practical experiments: To validate the effectiveness
of the proposed solutions, practical experiments
are conducted by deploying testbeds on distributed
cloud servers. The real-world testbed experiments
demonstrate that VT-chain achieves significantly im-
proved throughput as the network size, i.e., the num-
ber of consensus nodes, increases.

To the best of our knowledge, this study represents the
initial exploration of decentralized mobile trust manage-
ment in conjunction with TEEs and multi-shard blockchain
technology, aiming to achieve trustworthy evaluation of
trust and scalable consensus on the blockchain. Our findings
demonstrate that the proposed VT-chain exhibits excep-
tional performance in TEE-based trust evaluation and multi-
shard Byzantine consensus. This scheme holds significant
potential for practical implementation, particularly within
mobile trust management systems that prioritize both secu-
rity and performance.

2 SYSTEM OVERVIEW

Vehicular Trust Management Architecture. Fig. 1 depicts the
architecture of the VT-chain system, which is built on a
two-layer (i.e., road-side unit (RSU) layer and vehicle layer)
vehicular service system. The key notations used in the
design are defined in Table 1.

In the RSU layer, each RSU, first of all, plays a lead-
ing role in its dominated area. As a local leader, it re-
ceives/sends information from/to the local vehicles and
other RSUs, which guarantees the message transmission
when implementing trust evaluation and management
models. The communication can be secured by employing
related security protocols. The second role of RSUs is to
execute trust computations based on raters’ feedback. In
addition, RSUs operate the hierarchical Byzantine consensus
for updating the trust results to the blockchain. In the vehi-
cle layer, vehicle nodes behave as either service requesters

RSU Layer

Unit

p . , .

— R —)

() (A e A Roadside
D / — P —

. Coverage|
" Area

@& 1gE

Validator|

4

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

) 5
IVTchain | [BlockHash __|j«.__ ||BlockHash _ |je-.___ [BlockHash | !
| PreBlockHash 1 LPreBlockHash ~7 [PreBlockHash }
! Nonce | [Time] |—> | [Nonce | [Time || ——> |[Nonce] [Time |
| [MerkleRoot] [MerkleRoot] [MerkleRoot] I
I !

Fig. 1. The Architecture of VT-chain System.

or providers. To run the trust model, vehicle nodes can be
selected to perform a rating task, i.e., as raters; and to run the
consensus protocol, these nodes also behave as validators.

In vehicular trust management, trust computation in-
volves evaluating vehicle trustworthiness and transmitted
information within a network. Various sources contribute to
trust computation: 1) Direct vehicle interactions: Trust stems
from collaborations, behavior, traffic adherence, and reliable
communication. 2) Message verification and authentication:
Techniques like digital signatures, certificates, and cryptog-
raphy ensure data integrity and authenticity. 3) Trust net-
works and recommendations: Vehicles establish trust networks
through interactions and receive endorsements from trusted
peers. 4) Sensor data and environmental context: Reliability and
credibility of a vehicle’s perception rely on accurate sensor
data, including GPS, speed, collision detection, and envi-
ronmental sensors. 5) Trust authorities and history: Trusted
third-party entities, such as traffic control centers, govern-
ment agencies, or service providers, offer trust evaluation
services. Historical data on performance, reliability, and
rule adherence are considered. Combining and weighting
these sources depend on the network’s objectives and trust
management mechanism. Adaptation is crucial to accom-
modate dynamic trust information, employing algorithms
that adjust values based on changing circumstances and
evolving sources.

Key Distribution and Management. It is worth noting that,
traditionally, vehicle registration, key distribution (or cer-
tificate issuance), update, and revocation have relied on a
trusted authority (TA), such as the department of motor
vehicles [34]-[36]. However, in order to address concerns
regarding trust and centralization, recent years have seen
the emergence of decentralized key or certificate manage-
ment mechanisms based on blockchain technology [31]-[33].
For instance, Ma et al. [33] proposed a system that employs
smart contracts to enable automatic public key manage-
ment. In this system, the blockchain records information
pertaining to user’s public key registration, update, and
revocation, which is submitted by an honest-but-curious
authority instead of a trusted TA. Similarly, Sang et al. [32]
introduced an on-chain certificate management mechanism
for IoVs. Our proposed VI-chain framework is is orthogonal
to public key management, and any of the existing mecha-
nisms can be inserted into our solution. Consequently, in
this paper, we exclude the TA from the system architecture
depicted in Fig. 1, as well as the associated system setup,

authentication, and key management procedures.

Hierarchical Consensus Framework. Based on the architec-
ture shown in Fig. 1, the node sets (i.e., the RSU-node-set
ri € R and vehicle-node set v; € V) are divided into a number
of node-shards (i.e., shards) including a root shard (denoted
S) formed by all RSU nodes and several consensus shards
(denoted S*) in which each S* contains an adequate number
of nodes from one or more vehicle-node sets. S connected by
all S*s forms a hierarchical consensus framework in which S
undertakes the signature verification and block generation.
In each S*, a Byzantine consensus protocol is executed to
ensure the local consistency on a block (named a micro block).
Moreover, in S, all micro blocks will be combined to a final
block ensuring the total order, which must be agreed upon
by running another round of Byzantine consensus among all
members of S. Finally, all nodes in the system must verify
the final block proposed by S to reach the global consensus
before appending it to their local chains. Overall, in the local
consensus, each S* runs concurrently to ensure the local
consistency, while S confirms the global consistency (i.e.,
total order) of the final block through running another con-
sensus round. The global consensus is eventually reached
among the correct nodes of all shards after they successfully
commit to the final block.

Network Model. Nodes in the VT-chain system need to
know the state of their neighbours, whose network layer
enables nodes to exchange messages in a peer-to-peer (P2P)
communication setting. The VT-chain is assumed to run on
an asynchronous network that cannot provide any guaran-
tee of message delay. In other words, messages can be arbi-
trarily delayed and no upper bound in time can be estimated
on these deliveries due to the lack of a clock synchronisation
service or the adversary over the communication channels
(e.g., intended message delay or duplication). However, the
VT-chain is assumed a partially synchronous system, in which
an upper bound (i.e., a timeout A) on message delivery
time exists. The timeout can provide termination for the
consensus by triggering a view change when the timeout
expires. Therefore, we consider the Byzantine fault model
in which the total number of nodes is N > 3f+1, where
/ is the maximum number of nodes that may have faulty
behaviours in the system.

Threat Model. In this study, we present a comprehensive
threat model that outlines the various types of threats the
proposed protocol can withstand. Our analysis encompasses
both internal and external threats. Internal threats primar-
ily arise from either faulty or malicious nodes within the
system, which can be classified into two main categories:
fail-stop faults and Byzantine faults. Fail-stop faults occur
when nodes become unresponsive and fail to restart au-
tonomously, resulting in a crash failure. Such failures can be
attributed to factors such as power shutdowns, software or
hardware errors, or denial-of-service (DoS) attacks. In con-
trast, nodes experiencing Byzantine faults exhibit arbitrary
behavior but appear normal when compared to other nodes.
Byzantine nodes may deliberately withhold messages they
should have sent (i.e., omission fault caused by a routing
attack) or send conflicting messages to disrupt consensus
(i.e., commission fault caused by an eclipse attack, poten-
tially leading to double spending attacks). Furthermore,
multiple Byzantine nodes may collude under the control

TABLE 1

Commonly Used Notations in This Paper
Notations Description
vi, Vit A vehicle node with a unique ID 7 in the system, and a vehicular node set at RSU k with in the time-cycle .
Vrka’z, Ve’ﬁ;f1 A set of vehicular nodes behaving as raters, and a set of vehicular nodes behaving as evaluators.
i, R An RSU with ID k, and an RSU set.
as, Ay, A message attribute with type s; an attribute set of vehicle node v;.
ms e The ;" message in attribute type s sent by vehicle ¢ within the coverage of RSU k and time-cycle .
M ¢ A message set including all messages sent by vehicles within the coverage of RSU & and time-cycle ¢.

v -
€t Pkt

The v;’s rating result of the message m;; ; ¢ in the set E; ; 1 ;; a rating result set for the message m, ; . ¢-

H; . A rating result set for all messages sent by vehicle v; within the time-cycle ¢.

l(l}i,t)

An individual trust value of sending node v; based on a specific rating result of it.
A trust value set for each evaluator, which includes a set of trust values generated on all of its rating results.

Ly

Tond(Viy t), Trat (vi, t) The trust values for message senders and raters within the time-cycle ¢, respectively.

7(vi, t), T(vi, t') The current and history global trust values of node v;, respectively, within the time-cycle .
msgRtLt,, k.t A list of rating results given by the vehicle node v; within the coverage of RSU k and time-cycle ¢.
mTrsLty A list of global rating values of all messages within the time-cycle ¢.

sndTrsLtt A list of final trust degrees of all message senders within the time-cycle ¢.

ratTrsLty A list of final trust degrees of all message raters within the time-cycle ¢.

ndGTrsLty A list of global trust degree of all nodes within the time-cycle ¢.

vadLty, A list of validators selected at RSU k and within time-cycle ¢.

u, U, m, mk, M Client; client set; message; message accepted by shard k; universal message set.

seq, d, k, K Sequence number; message digest; consensus shard number, total numbers of shards.

Sk S, fk k" consensus shard (k € [1, K — 1]); root shard (k = 0); number of faulty replicas in the k' shard.
pf; bf; R;|R| =N Primary node of Sk (i = 0); the it backup node of Sk (i € [1,NF—1]); replica set in system; size of replica set.
RE; |RF| = N* Replica set in the shard k; number of replicas in the shard k.

RE =RE\ {pr}; IRF| Set of replicas in the shard k excluding p*; Number of replicas in shard k excluding p*.

o, O, z, O An operation; the operations set; an operation result; the operations’ results set.

pk, sk; I, h Public key; private key; lower/upper bound of a message sequence number, respectively.

PK, 0, ou, 0p, op

Public key set; multi-signature; signature of a client; signature a primary; signature of a backup.

of one or more adversaries, thereby launching collusion
attacks. Unlike the Bitcoin system that relies on proof of
work, our proposed VT-chain system necessitates an access
management mechanism to prevent malicious nodes from
assuming multiple identities simultaneously (Sybil attack).
Specifically, when a vehicle submits a message rating, other
vehicle and RSU nodes may seek to ascertain the rating
value and the true identity of the vehicle. Moreover, RSU
nodes may maliciously tamper with the global rating result
if the calculation process lacks security measures. In this
research, we assume that each RSU server is equipped with
TEE-enabled hardware (e.g., Intel CPUs with SGX [22]),
providing secure memory and execution that are isolated
from the external operating system and other applications
and ensuring the correct configuration of TEEs ascertained
by a remote attestation [23]. TEEs build secure networking
through their authentication and encryption.

External threats originate from adversaries who intercept
communication channels within vehicular networks with
the intent to infer the true identities of legitimate vehicles
and compromise rating confidentiality and integrity. These
external attackers may also impersonate legal vehicles to
gain access to the system and send unauthorized messages.
To safeguard identity privacy, existing techniques such as
pseudonym-based approaches [37], [38] or group/blind
signature-based techniques [39], [40] can be employed to
achieve anonymity with appropriate adjustments. Concern-
ing illegitimate participation, we assume that vehicles un-
dergo authentication prior to joining and interacting with
other vehicles, an area of active research in the field of
IoVs [37]-[39], [41]. Additionally, the system can authen-
ticate Byzantine nodes by verifying the correct signing of
transmitted messages by the message sender.

3 THE VEHICULAR TRUST EVALUATION MODEL

VT-chain contains a core component named the vehicular
trust evaluation (VI-Eva) model using a decentralized and
peer-review-based trust computation design. In this way,
events/messages awaiting trust assessment will be pro-
cessed by a group of raters/nodes (in the Vehicle Layer in
Fig. 1) with similar attributes to the events so that the raters
can make the best decisions on events, which improves the
accuracy of trust evaluation.

On the other hand, the VI-Eva model uses trusted exe-
cution environments (TEEs) to improve the security of trust
computation based on RSUs. Since RSUs may be malicious
and break the data confidentiality and computation integrity
(i.e., modify the trust computation results), our designed
scheme uses built-in TEEs to secure the trust computation
at RSUs and provides VI-Eva with enhanced security, such
as TEE.sort_rating() and TEFE.cal_rating() in Algorithm 2
as well as the four functions in Algorithm 3. This section
presents the VT-Eva model design based on Algorithms 1-3.

According to the workflow of the VI-Eva model, the
trust evaluation process starts with the message classifi-
cation and evaluator selection. Next, the message quality
rating on each vehicle node side (see Algorithm 1), and the
global rating calculation for messages is secured by RSUs’
TEEs and then executed based on Algorithm 2. The last step
is to compute the trust values of nodes, including message
senders and raters and eventually generate a global trust
degree for each participating node based on Algorithm 3.

To maintain the global node trust, we present the VT-
chain as a solution, which enhances trust management
through blockchain technology. The VT-chain incorporates
additional features such as immutability, transparency, and
traceability, as discussed in Section 4.

Algorithm 1: Message Quality Rating (Node-side)

Input: All messages at each 7,
Output: msgRt Lty k.4
1 foreach v; € VT’Z’Z do
foreach m;,i’kyt € My, do
if as € Ay, and v; accepts rating mission then
L Rate each m? with a value €%, . , € [0, 1];

Jyik,t Jyi,k,t

Add (m?; 4, e;}i,k,» in a list msgRtLt,, i ¢

@ e W N

6 Sign msgRtLt,, 1 ¢ with v;’s secret key and derive
Sig(msgRtLt,, k.t);

7 Encrypt Sig(msgRtLt,, 1) with r;’s public key,
Encrypted(Sig(msgRtLt,, 1.t));

8 Return Encrypted(Sig(msgRtLt,, 1)) to ry;

3.1 Message Classification and Rater Selection

To improve trust evaluation accuracy, the peer-review-based
VT-Eva model starts by classifying messages awaiting eval-
uation into different groups in terms of their attributes and
then continues to assign each group to a set of raters who
have the same attribute. More specifically, each message
(denoted mj ; ;. ;) indicates the Gth message sent by vehicle
1 within the coverage of RSU £ and time-cycle ¢, in which
s is the message attribute indicating a type of information.
In vehicular services, s could be a type of “information”
such as accidents, traffic, parking, road conditions, and
cooperative awareness.

Message classification: Once a new round of trust evalu-
ation starts, each base station collects messages during the
past time segment in its coverage, so all the messages will
eventually be collected by the system. Next, the base station
(e.g., i) groups these messages m; ; ;s into different lists
(atbLt, rs) based on their corresponding attributes. Then,
for each atbLt,, i, the RSU rj generates an index list that
contains an attribute ID and the number of messages in
atbLt,, . Finally, r;, broadcasts the index list to other base
stations for message evaluator selection.

Message rater selection: Based on each message group’s
index list, a number of evaluation candidates can be se-
lected by calculating the similarity of the attributes between
the message group and the vehicle node through Jaccard
similarity. The appropriate nodes are selected raters for this
message group. Then, evaluation requests are sent to these
raters for their acceptance of the message evaluation until a
sufficient number of raters are confirmed. Once the raters
are confirmed for each message group, message quality
rating will be operated as defined in Algorithm 1.

3.2 Message Rating at Vehicle Nodes

Algorithm 1 defines the operations of message quality
rating over the network. The message quality rating aims to
assess the credibility of this information via a set of rating
nodes' V%! grouped by each RSU r;. Every node in the
coverage of r; can join the set to be a rater. The rating details
are as follows:

Step 1: Each rater initially confirms whether it has appro-
priate attribute similarity with a targeted message; if yes, it
can choose to accept the rating mission. Otherwise, the rater

1. Assume that certain incentive mechanisms are applied to encour-
age vehicles to provide sufficient ratings.

Algorithm 2: Message Global Rating Calculation
and Node Trust Evaluation (RSU’s TEE)

Input: msgRtLt,, k ;-
Output: mTrsLty, ¢, Transactions of node trust value: Tz, .
After Algorithm 1, v, decrypts
Encrypted(Sig(msgRtLt,, 1.t));
2 7}, then re-encrypts and broadcasts every Sig(msgRtLt,, 1..+)
with other RSUs’ public keys, respectively;

[

3 Stepl: RSU-side calculation for global rating values.
/*Sort every message rating list and group rating values by
each message.*/
Function TEE.sort_rating() :
foreach msgRtLt,, ¢ do

foreach <m?, ., e]vv,ii’k,t >€ msgRtLt,, 1+ do

L if m3, . ; € My, then

v 4 3 L. .
L Add e}’ , , to its associated £ ; k¢

'S

© ® N o W

10 | Returnall Ej; x :5;

11 /*Calculate the global rating value of each message based on a
et of associated rating values.*/
12 Function TEE .cal_rating() :

2]

13 foreach E; ; . ; do

14 Calculate the global rating value, ¢(m ; k,¢), of
message m; ; ¢ through the Baysian inference ;

15 Add < LS d(mj i k,e) >inmTrsLiy, ;

16 | Save mTrsLty ; in the trusted storage at ry;

17 Step2: Node trust evaluation and transaction generation.

18 Observe all msgRtLt,, r s and mTrsLiy ;s;

19 while an unevaluated node trust (v, t) still exists based on the

observation do

20 /* RSU needs to calculate the global trust value of each
node by Algorithm 3 and broadcasts each value as a
transaction over the network.*/

21 Calculate 7(v;, t) by invoking Node Trust Evaluation

(Algorithm 3);
2 Broadcast 7(v;,t) as a transaction Tz, ,+ over network;

may not accept the mission, lest an inaccurate rating result
is generated, which leads to trust degradation.

Step 2: Once the rater accepts the mission, it is required
to provide a rating value ¢}’ , , for a given message m; ; i .,
and save the rating result pair (mj; e},) in a list
msgRtLty, k.

Step 3: After completing all missions, the rater submits
the list msgRtLt,; . to r at which it starts the rating.
ri then broadcasts all received lists (i.e., all msgRtLt,, k.S
returned by the raters in the coverage of r;) to other RSUs.
Note that, during the submission and broadcasting process,
the message rating lists are first signed by the rater for data
integrity, and are then encrypted for data confidentiality.

The VI-Eva model executes trust evaluation based on
time cycles, which periodically set a timestamp (denoted
t) indicating the start point of a time cycle. Once a time
cycle starts, the RSU will broadcast some rating tasks to the
vehicle nodes in the coverage area and will continue to be in
charge of these tasks until the end of the cycle. The vehicle
node may move to another area with a different RSU when
completing the accepted tasks. However, the vehicle node
needs to return the results to the RSU from which it received
the tasks. Once the current time cycle expires, vehicle nodes
can accept new tasks from the nearest RSU. If nodes behave
as message senders, they can perform message-sending at
any time and the messages can be buffered in the RSU while
waiting to be proposed as new rating tasks.

3.3 Global Rating Calculation at RSUs

Algorithm 2 calculates the global rating value of messages
based on the outputs of Algorithm 1, and then computes
the global trust value for each participating node, which
form a transaction for the trust blockchain. The operations
of Algorithm 2 are executed by built-in TEEs of RSUs that
include the following two core steps:

Step 1 calculates the global rating value at a TEE-based
RSU. The main operations are as follows: 1) All messages
need to be aggregated by each RSU r, at which these
messages are initially proposed for rating. 2) The r; veri-
fies Sig(msgRtLt,, k) With v;’s public key to ensure data
integrity. Then, it classifies all rating results e}’ , ;s for each
message m;; ;. and adds the rating results into a corre-
sponding set Ej; .. Thereafter, r, obtains all aggregated
rating results stored in several Ej;.s. 3) Based on each
Ej ik, T calculates the global rating value, ¢(my i ,:), for
message m; i,k using the Baysian inference [24], and then
adds the computed (m] ; 1.+, ¢(mj,ik,¢)) into mTrsLiy ;.

Step 2 evaluates the global trust for each node by invok-
ing Algorithm 3 and then forms a transaction containing the
latest trust value of a node.

This step eventually returns a global rating result for
each rating request and updates a computed global node
trust by generating a transaction that will be accepted by a
consensus shard for the blockchain update (see Section 4).

3.4 Node Trust Evaluation at RSUs

Algorithm 3, namely the node trust evaluation algorithm,
specifies a collection of operations to quantify the trust
degree of each node based on their behaviors. According
to the design paradigm, the trust values of message senders
and raters are calculated respectively, and then the global
trust value of a node is obtained by taking the weighted
average of its trust value behaving as a sender, trust value
as a rater, and historical trust value. The detailed operations
are as follows:

Step 1: Trust evaluation for message senders is conducted
according to all message rating results of each sender. The
algorithm first sorts all messages as well as their rating
values (i.e., (myj, i k¢, o(mj,ik,¢))) in terms of every sender v;,
and then groups each sender’s messages and their corre-
sponding rating values in a set H;,.. Thereafter, the overall
trust value (i.e., Tsnd(vi,t)) of each sender is calculated on
the basis of message rating values stored in the associated
set H;, through a Bayesian inference, and each 7s,4(v;, t) can
be saved in a list sndTrsLt,.

Step 2: The trust evaluation for message raters is imple-
mented firstly by calculating the relative difference and ab-
solute difference between each message rating result e;,;
generated from an evaluator and the overall rating value
&é(mj,ik,e) of the calculated message. Then, the algorithm
determines the trust degree of a rater by comparing it to a set
of trust-degree thresholds (i.e., § and ¢’) and yields a degree-
value I(v;,t) for the sender with respect to a given message.
Finally, the overall trust value 7.q¢(vs,t) of a sending node
v; is obtained by the Bayesian inference based on all i(v;, t)s
(saved in L;) of the sending node.

Step 3: Global trust evaluation is conducted by calculating
the weighted average of the sender trust value 7sna(vi,t),

Algorithm 3: Node Trust Evaluation (RSUs” TEE)
Input: msgRtLt,, i +s; mTrsLty ;s.
Output: ndGTrsLty,.

1 Step 1: Trust evaluation for message senders.
2 Function TEE.sort_sendMsg()

3 Generate a set H; ; for each sending node.
4 foreach mTrsLty ; do
5 foreach (m; ; k¢, ¢(m;j i k) do
6 if m ; 1,¢ is sent by v; then
7 | Add (my i k,e, 9(Mj,ik,e)) to Hit;
8 | Return all H; ts;
9 Function TEE.cal_sendTrus()
10 /*Calculate overall trust value of each sender with
H; s/
11 foreach H; ; do
12 Calculate the overall trust value of the corresponding
sender through Bayesian inference, i.e.,
Tsnd(Vist) = p(vi|Hit);
13 Add current v; and its 75y, 4(vi, t) in sndTrsLte;
14 | Save sndT'rsLt: in the trusted storage at r;
15 Step 2: Trust evaluation for message raters.
16 Function TEE.sort_rateMsg()
17 Generate a set L; ¢ for each rating node;
18 foreach msgRtLt,, . ; do
Vs
19 foreacl‘l €l kot ;l(o |
PR RN Rl AU RN R
20 if Smyis) > 5O,and
lej,i,k,t — @(Mj.4,k,6)| > 0p then
21 ‘ l(vi, t) € [0,0.3]
. lej ik, e =@My k,0)l
2 els/e if 50 > Sy i) / > 61 and
50 = lejik — ¢(my,i k)| > 6 then
23 | U(vi,t) € (0.3,0.7]
24 else
25 | (v, t) € (0.7,1.0]
26 | Add the l(v;,t) to its corresponding L; ¢ ;
27 | Returnall L; ;s;
28 Function TEE.cal_rateTrus()
29 foreach L; ; do
30 Calculate the overall trust value of the corresponding
rater through Bayesian inference, i.e.,
Trat(vi, t) = p(vi|Li,t) ;
31 Add current v; and its Trq¢(vi, t) in ratTrsLis ;
2 | Save ratT'rsLt; in the trusted storage at r;
33 Step 3: Global trust evaluation.
34 Function TEE.cal_GlobTrus()
35 foreach v; do
36 Sort sndT'rsLty, for the v;’s trust value 75,4(vi, t) as a
sender; if not exist, set 75pq(vi,t) =0;
37 Sort ratTrsLty, for the v;’s trust value 7rqt(vi, t) as a
rater; if not exist, set Trqt(vi,t) =0 ;
38 Sort ndGT'rsLty, for the v;’s history global trust value
7/ (v;,t'), if not exist, set 7/ (v;,t') =0 ;
39 Calculate the current global trust value:
T(Ui7 t) = Wsnd * Tsnd(Uh t) + Wrat * Trat ('Uia t) +
Whis - T (Vi, 1), Wsnd + Wrat + Whis = 1;
40 L Update ndGT'rsLt; with the current 7(v;,t) ;
a | Save ndGTrsLt; in the trusted storage at ry;

evaluator trust value 7.4¢(vs,t), and history trust value
7'(vi,t'), since a node in the system can act as the message
sender, evaluator, or both. All obtained global trust values
i.e., 7(vs,t)s are temporally preserved in the list ndGTrsLt;.

In this algorithm, the trust degree of the node is bounded
in [0, 1]. Such a degree-value is initialized with zero for each
node, which means that nodes must behave as evaluators
to gain enough trust credits to participate in blockchain

Algorithm 4: Verifier Selection (RSU-side)

Input: ndGTrsLt;
Output: vadLty, 4;

1 /*Each RSU randomly selects validators from v; candidates
who have appropriate 7/ (v;) > 6-. /

2 foreach v; do

3 if v; € Vi, and 7/ (v;) > 87 and v; agrees to be a validator
then

4 Add v; in validator list vad Lty +;

5 Notify v; the permission of validating;

6 Save vadLty ; in the trusted storage at ry;

consensus behaving as validators. The rating results and
the computed global trust values will be temporally stored
in the TEEs by RSUs until the blockchain is updated after
executing the consensus.

In conclusion, the VT-Eva model has a decentralized
structure that uses a peer-review-based and TEE-secured
trust evaluation scheme, which provides increased accuracy
and reliability compared to the traditional trust computation
methods. On the other hand, in case of data corruption
caused by possible device failure, hacker intrusion, or even
malicious data holders, the VI-Eva model is integrated into
blockchain-based trust storage in which all trust records are
maintained by all participants rather than a centralized TTP
(i.e., a trusted third party). To further overcome the low
scalability issue in existing blockchains, in Section 4, we
will introduce a decentralized vehicular trust management
blockchain built with blockchain-sharding technologies and
a novel hierarchical BFT consensus protocol.

Complexity. In this paper, we focus on studying the com-
putation/time complexity at an RSU during a time cycle.
Recall that in Algorithm 1, each rater v; evaluates each
message m$, ; in the message set M, ;. Therefore, the time
complexity on each rater side depends on the number of
messages | My, |. Let the number of raters be [V,%;/|, the time
complexity of Algorithm 1 is O(|V;%!| - |Mj|). In Step 1 of
Algorithm 2, there are |V,%!| - |M; ,| rating results classified
into E; ; 1+, and then for each E; ; 1.+, a global rating value is
calculated through Bayesian inference. Therefore, the time
complexity is O(|VXE| - |My.|). In Algorithm 3, the time
complexity in Step 1 depends on the number of messages
| My, +| and the total number of vehicles, |V, ;|, in the coverage
area of RSU (i.e., O(| My +|) + |Vi,:|)). The time complexity in
Steps 2 and 3 is O(|V%!| - |My.|) and O(|Vj.|), respectively.
Therefore, the overall time complexity of the algorithm is
O(IVEL - My 4| + |Vi])- In Algorithm 4, the computation
complexity is both O(|V}|). As analyses, the overall time
complexity of our scheme is O(|V,%!| - My, ¢| + [V c)-

4 VEHICULAR TRUST BLOCKCHAIN

This section presents a vehicular trust blockchain (i.e., VT-
chain) to preserve nodes’ trust degree values computed in
Algorithm 3. When an RSU node completes the global trust
for a node, it generates a transaction, denoted mF = (Ui, T)ry,
containing the node information v; and the computed trust
result 7, and then broadcasts all transactions in the current
time cycle to a consensus shard (i.e., S*)?. At the end of the

2. Assume that all transactions generated by the same RUS in a time
cycle must be sent to the same consensus shard.

7

time cycle (also known as the block interval in blockchains),
the primary node will propose all transactions and start the
consensus in the shard. In our design, the VT-chain adopts a
multi-shard blockchain system and a novel hierarchical BFT
(i-e., HierBFT) consensus framework for scalable consensus
and efficient trust management.

4.1 Multi-shard Architecture

The multi-shard blockchain framework has been introduced
in Section 2. With this framework, the VT-chain can con-
currently run Byzantine consensus based on several local
shards, i.e., consensus shards denoted S*s. According to Al-
gorithm 4, the RSU decides a set of candidate validators (i.e.,
vadLty ;) from all connected vehicle nodes on the condition
that the trust degrees of these nodes are greater than a lower
bound (i.e., §-) and the nodes agree to be validators. Each
S* contains adequate vehicle nodes (i.e.,, N* >3f*+1, where
f¥ is the number of faulty nodes in S*) that are randomly
selected based on a d,. The selected nodes in each S* are
known as replicas, including a primary p* selected with a
policy (i.e., p" =v; modn; similar to PBFT [21]), and the rest
nodes named for backups are denoted as b*s and connect
to p”. The replicas communicate with each other through a
peer-to-peer network (see Section 2). In addition, all RSU
nodes join together and form the root shard denoted S
connected by all S*s, which performs signature verification
and block generation across the system.

S and all S*s build the multi-shard framework that
provides the blockchain scalability and also supports the
hierarchical consensus operations. With the framework, the
primary of a S* periodically combines all transactions re-
ceived from the same RSU and proposes a micro block for
the following consensus. All replicas of the S* execute a
hierarchical BFT protocol to reach a consensus on the micro
block among 2 f*+1 local replicas. After that, all micro blocks
proposed by different S*s are sent to S, in which all micro
blocks are combined into a final block with a specified total
order. All replicas of S then run another round of consensus
and ensure that 2f* +1 replicas of S agree on the same
final block. Lastly, the final block must be sent to all S*s,
where each local replica validates the final block before
appending it to the local chain. Section 4.2 presents the
detailed hierarchical BFT protocol.

4.2 The Hierarchical BFT Consensus Framework

With the global node trust degrees saved in the list
ndGTrsLt,, this section elaborates on how to efficiently
record these degree values on the blockchain by running the
proposed HierBFT consensus protocol. The protocol extends
the classic PBFT protocol to a hierarchical BFT paradigm
for scalable consensus and high throughput. Moreover, the
protocol improves consensus efficiency by using aggregated
signatures to minimise message complexity from O(n?) to
O(n) [25].

Normal Case Operations. Similar to the classic three-phase
BFT protocol (e.g., PBFT [21]), the normal case operations
include three classic phases: pre-prepare, prepare and commit
phases. Based on our multi-shard framework, these three
phases can be concurrently executed in different shards to
ensure consensus scalability and throughput. Furthermore,

the normal case operations also ensure that at least 2f + 1
replicas eventually commit to the final block. For the sake of
simplicity, we will describe the detailed normal case opera-
tions based on S and any S*, as others are implemented in
the same way. The protocol details are as follows:

Local Pre-prepare. When the node trust transactions (de-
noted T'zs) are broadcast to a S*, the primary p* combines
these latest T'zs into a micro block (denoted Bk). If all T'zs
in the Bk have not been processed, p* proposes a consensus
request m for the micro block in the from: m=(REQ, Bk).,
where REQ indicates the current state of the request and o,
is p*’s signature. Then p* orders m by assigning a unique
sequence number in the system, i.e., seg = (k,v, c), where k
is the consensus shard id, and v and c are the current view
number and counter value at the kth shard, respectively. Fi-
nally, p* generates a pre-prepare message (PREP, seq,m, d)o,
(where d = D(m)) for the ordered m and multicasts this
message to all backups of S*.

Local Prepare. Upon the receipt of (PREP, seq,m,d)s,,
each backup b* accepts the pre-prepare message if the mes-
sage includes a valid signature o, and a correct digest d, and
the bv*’s log does not contain another pre-prepare message
with seq’ = seq but d’ # d, which indicates an incorrect order
caused by a faulty p*. Thereafter, b* preserves Bk retrieved
from m after verifying m’s signature o,, and then validates
all Tzs included in Bk via signature verification . If all Txs
are valid, b* responds to p* by sending a prepare message:
(PRE, seq, d, pky)», where pk, is b*’s public key.

The p* waits and receives prepare messages from b*s and
builds a record bitmap (denoted ¢,..) for each valid receipt.
The ¢, proves that at least 2f*+1 replicas have voted their
prepare messages. After that, p* aggregates all public keys
contained in the received prepare messages into a single
fixed-length signature o,.. and generates an aggregated
prepare message: (PRE, seq, d, pre, Opre, t)s,, Where ¢ is a
timestamp.

Local Commit. In this phase, all replicas of S* are required
to validate the aggregated prepare message by verifying
¢pre and opre. If the prepare message is valid, all correct
replicas send p* their commit messages to generate an
aggregated commit message: (CMT, seq, m,d, Pemt, Oemt)o,-
Then p* sends the aggregated commit message to S for the
final block generation. In this process, all correct replicas
of S* also complete their local consensus and reach an
agreement on their local micro block Bk.

Total Ordering. In the root shard S, the primary of S,
first of all, uses the received commit messages to build a
final block (denoted BK) in which all micro blocks Bks can
be totally ordered based on their sequence numbers and
timestamps. Second, the primary starts another round of
consensus (the same to that in a local consensus shard)
to reach an agreement on a valid BK. During the root-
shard consensus, all correct replicas need to 1) verify the
aggregated signature contained in each commit message
using @em: and oeme, which checks whether at least 25 + 1
replicas have voted for the corresponding Bk in the local
commit phase; 2) validate every transaction in each Bk to
ensure that no two different transactions (i.e., seq’# seq)

3. Since each T'z is generated and signed by the TEE component of
the RSU, the valid signature indicates the integrity of the T'z.

8

have the same content d'=d (i.e., double spending); and
3) validate the total order of all Bks. If the above validations
are successful, all correct replicas of S eventually agree on
the same valid BK. Finally, BK will be sent to all S*s so that
it can be validated by replicas of each S* before appending
it to the blockchain.

Global Consensus. In the consensus process, the root shard
S supports the hierarchical consensus by allowing several
local S*s to execute concurrently. This design enables a
scalable consensus to ensure global consistency among mul-
tiple shards. Each S* submits a group of locally ordered
transactions to the S, in which all local transaction groups
(i-e., micro blocks) are combined into a block BK contain-
ing all transactions grouped by different micro blocks and
specified with a total order. The global consensus is a round
of Byzantine consensus executed in the S to validate and
agree on the totally ordered block BK, which ensures the
total order consistency of BK.

The HierBFT protocol incorporates a view change pro-
tocol to handle situations where primary peers encounter
failures, drawing inspiration from PBFT’s view change
mechanism [21]. This view change protocol is designed
to be executed concurrently and independently across all
shards in parallel. For the specific view-change operations
involved, please refer to Appendix A.

4.3 Cross-shard Transactions and Consensus

The hierarchical BFT protocol achieves global consensus
over several parallel shards by providing a consistent total
order of all valid transactions, including value transfers
within a local shard and across different shards. The cross-
shard transaction can be formed from multi-inputs to multi-
outputs based on nodes located in different shards. When
a transaction is generated from a consensus shard S*, the
proposed consensus request m must include the latest state
of input in the transaction operation. If two conflicting
transactions, including the same input but for different
outputs (e.g., a double-spending attack), are based on the
same shard, they can be detected by correct replicas of this
shard in the local prepare phase. However, according to the
threat model in Section 2, if a malicious client sends two
conflicting transactions referring to different shards, these
conflicting transactions cannot be directly validated within a
local shard. In this case, the hierarchical BFT protocol needs
to work with the widely used two-phase commit (2PC)
protocol [26] to handle cross-shard transactions.

In the 2PC protocol, there is a coordinator who is re-
sponsible for collecting the availability certificate of inputs
and transmitting them to the related participating shard.
The availability certificate is used to prove the currently
available inputs based on all outputs that have been pro-
posed. Taking the client-driven 2PC protocol as an example
[19], when the client holds two cross-shard transactions
(i.e., Tz1 and Tz2) from Input Shard 1 to Output Shards
2 and 3, it first sends a prepare request to Shard 1 to check
whether the input is available. In this prepare step, replicas
of Shard 1 must locally run Byzantine consensus to generate
an availability certificate for each of two transactions. After
that, in the commit step, the client sends two transactions
and their availability certificates to Output Shards 2 and 3,

respectively, as well as Input Shard 1. Then, Tz and Tz
will be proposed in Shards 2 and 3, respectively. Following
the hierarchical BFT protocol, Tz; and Tz2 will be totally
ordered in a final block and committed by all correct replicas
in the system. In this process, correct replicas can detect the
conflicting transaction based on the availability certificate
and identify a Byzantine fault. The validation for cross-
shard transactions can be executed in S before generating
a total order and executed in S* before committing the final
block (see Section 4.2). Therefore, a global consensus can
be reached by the correct replicas of all shards if there is a
successful validation for the final block. Compared to the
output shards, replicas of the Input Shard 1 only commit to
the final block including these two transactions if they are
validated, and then update their local chains.

4.4 Message Complexity

The hierarchical BFT protocol improves message-exchange
by using multisignatures [25], which reduces the message
complexity from O(N2?) to O(1) in the local shard and
O(N) in the system compared to the classic BFT algorithm
(e.g., O(N?) at PBFT [21]) and even some state-of-the-art
algorithms (e.g., O(N) at HotStuff [27]). To compute the
message complexity, we use N to represent the average
number of replicas in the consensus shard S*. According to
the consensus protocol, the local pre-prepare phase generates
Ny —1 message multicasts, and the following local prepare
phase also includes N, —1 voting message. Moreover, the
local commit phase comprises a message round trip, which
is equal to 2(N, —1) passing messages. Thus, each local
Sk requires 4(N, —1) exchanged messages in total for each
consensus round. In addition, since the hierarchical BFT
protocol implements cross-shard consensus, all local S*s
reply on the root shard to achieve global consensus in which
there is another round of normal case operations for the
final block. Therefore, the total message steps in the root
shard equals 5(N;, —1). Therefore, the local shard complexity
is O(4Ny, —4) ~ O(Ny), and the root shard complexity is
O(5Ny, —5) ~ O(Ny,). Since every shard usually has a fixed
number of nodes (i.e., Ny, is a constant denoted c), the shard-
level complexity can be considered O(c)~O(1).

The total number of message exchanges based on all
shards in the system can be calculated by N, =5(NV, —1)+
Si=K-14(N, —1) where K —1 is the number of consensus
shards. Assuming that each shard has roughly the same
number of nodes, the overall system-level complexity ap-
proximates to O(4Ny, - K)~O(4N), where N is the total num-
ber of nodes in the system. Hence, the message complexity
in the system is confined to a linear level (i.e., O(4n)), and the
complexity in every shard can be minimized to a constant
level (i.e., O(1)).

5 SECURITY ANALYSIS
5.1

The proposed VT-Eva model operates with several RSUs
and a large number of vehicular nodes, which might be
challenged by various adversaries, such as compromised
vehicle/RSU nodes and malicious attackers. For this reason,
we consider the security design for the VT-Eva model based

VT-Eva Security

9

on the following aspects: 1) the security of temporary data
(e.g., message rating lists), 2) malicious nodes and their
behaviours (e.g., tampered/biased ratings), and 3) com-
promised RSUs, which have been analysed in detail (see
Theorems 1-3 in Appendix B).

Theorem 1. The message rating lists are well protected from
external attackers and other raters. Attackers cannot tamper with
the lists without being detected.

Theorem 2. Malicious nodes cannot change the truth of an event
by sending fake messages. Moreover, the message global rating
and node trust calculations are considered correct even if some
malicious vehicles report unfair ratings. Nobody can modify the
on-chain node trust .

Theorem 3. The node trust evaluation is secure even if there are
compromised/malicious RSUs. The security of VT-chain can be
guaranteed even if all RSUs are malicious .

5.2 HierBFT Correctness

The hierarchical BFT consensus protocol is designed for state
machine replication that tolerates Byzantine faults, and it can
be applied to any deterministic replicated service with a state
and a set of operations. The correctness of the protocol is
provided by specifying and proving safety and liveness.

Safety means that the replicated service satisfies linearis-
ability [21]. More specifically, an algorithm provides safety
if all non-faulty replicas agree on the sequence numbers of
requests that they commit locally. The proposed protocol is
proved to be safe when it satisfies Theorem 4, referring to
Appendix C.

Theorem 4 (Safety). Any correct replica holds a sequence of
requests in the total order (m,m’), then all other correct replicas
in the system hold them in the same total order.

Furthermore, the protocol can provide consensus imple-
mentation in an asynchronous system when the liveness is
guaranteed, i.e., clients eventually receive replies to their
requests, provided that at most | ®l=!| replicas are faulty
and the delay of reply to the message request at the time
point does not go beyond an indefinite delay-threshold (see
Theorem 5) [21].

Theorem 5. Liveness. All correct replicas will eventually reach
a decision for any ordered request, assuming that at most f* are
faulty in S* replicas and there is partial synchrony.

6 PERFORMANCE EVALUATION

We implemented testbeds for the VT-chain system, includ-
ing the vehicular trust evaluation model and hierarchical BFT
consensus mechanism, which have been deployed on both
local servers and cloud virtual machines for performance
measurements. The vehicular trust evaluation model is de-
veloped in C language, which implements the core trust
computation and message relay operations based on servers
equipped with TEEs. We use Intel Software Guard Exten-
sions (SGX) for TEEs. The Intel SGX helps protect data
in use via application isolation technology. By protecting
selected code and data from modification, developers can
partition their application into hardened enclaves or trusted
execution modules to increase application security [22], [23].

10

40 40 40 40
35 —+— Non-TEE((local) 6 —+—Non-TEE(local) 36 —+—Non-TEE(local) 36 —+— Non-TEE(local)
-~ TEE(local) -~ TEE(local) -~ TEE(local) --& - TEE(local)
32 —&— Non-TEE(cloud) 32 ——Non-TEE(cloud) 32 ——Non-TEE(cloud) 32 —=— Non-TEE(cloud)
% - - TEE(cloud) 28 -7 - TEE(cloud) 28 -~ TEE(cloud) 28 - v - TEE(cloud)
Zo4 524 ?24 ?24 . 1
$ 20 Smmgene e SNF v o-geoog B & 20 R S B2 oy, e tgoe
® L G - © B © | SEEE S A - SPTS Sa
16F 7 S S L S ®16 4 R - K16
12 12 12 12
8 8 8 8
I
4 4 - ~ 4 4 P e —
B . N — —
0 e e Ow;gfefe o a —t= N 0 e e —
3 6 9 12 15 18 21 24 27 30 1.2 3 4 5 6 7 8 9 10 3 6 9 12 15 18 21 24 27 30 1.2 3 4 5 6 7 8 9 10

Number of evaluating messages

Number of connected clients
(a) (b)

Fig. 2. Time of Message Rating Calculation in the Single-server Setting.

Number of evaluating messages Number of connected clients
a)

Fia. 3. Time of Messaae Ratina Calculation in the Multi-server Settina.

100

200

——Non-TEE(local) 180

~-o~ TEE(local)

—— Non-TEE(local)
- = - TEE(local)

80 —&—Non-TEE(cloud) 160 —s—Non-TEE(cloud)
70 -~ - TEE(cloud) ¥ 140 v - TEE(cloud)
> 60 ’E{/ - 120 . ui
g o] Ew - 1
2 40 P 2 5 = T
4 = © e
) - 60

I 204+ i
5o —o—o—=¢ —og--go-og oYX

100 100

——Non-TEE local)
90 -~ TEE(local) 0
80 —=—Non-TEE(cloud)| 80

- - TEE(cloud)

—+—Non-TEE(local)

-0~ TEE(local)

—o—Non-TEE(cloud)| -

- - TEE(cloud) o
=

70
. =
60 o /

3 Iy /
c 50 a8 c 50 e e
2 40 S 20 —
= S g7 L

30 5 30f @ /

20 e 20

] R
e 10 e G i G G
5

-y ---¥ i e Al
b4 &6 —o—e——o—

oy

0
3 6 9 12 15 18 21 24 27 30 1 2 3 4 5 6 7 8 9 10
Number of evaluating messages Number of connected clients
(a) (b)

Fig. 4. Time of Node Trust Calculation in the Single-server Setting.

6.1

To explore the performance of TEE-secured execution, the
experiments observe the latency and throughput by varying
the numbers of messages and clients on both local and
cloud servers. In the experiments, we use a local server
(with Intel 4-core i7 CPU, 16G RAM, and Ubuntu OS) and a
remote cloud server (Google Cloud VM with 4-core vCPU,
16G RAM, and Ubuntu OS) to deploy several RSU and
vehicle nodes, which simulates a vehicular network. In the
experiments, we set the average payload of trust messages
to 1 KB, respectively.

Latency of Message Rating Operations. This part anal-
yses the average latency of message rating operations based
on a single-server case (i.e., a local or remote server) and
a multi-server case (i.e., joint local and remote servers); see
Fig. 2 and Fig. 3, respectively. Fig. 2 shows that the TEE-
enabled model needs increased time to complete the same
message rating operations when using a single server. How-
ever, the time increment remains less than 20 us whenever
there is an increase in the number of request messages (from
3 to 30) or clients (from 1 to 10); see Fig. 2(a) and Fig. 2(b),
respectively. Moreover, Fig. 3 depicts a similar trend, which
indicates that the time increment of using TEEs is no more
than 20 ©s when jointly using multi-servers. Figs. 2 and 3
prove the fact that TEE consumes more time on encryption
and decryption operations to provide secured hardware
isolation. Fortunately, according to the results, such a minor
and stable increment will not have a serious impact on the
overall system performance.

Latency of Node-trust Computation. This part analyses
the average latency of node-trust computations based on a
single-server case (i.e., a local or remote server) and a multi-
server case (i.e., joint local and remote servers); see Fig. 4
and Fig. 5, respectively. As shown in Fig. 4, the latency of
node-trust computation in the local server has a much faster
increase, while the latency in the remote server remains
stable with a growing number of messages or clients. This
is because the remote server obtains the optimised context
switch from the cloud platform in contrast to local servers.
Fig.5 presents the latency measured from the execution

Analysis of TEE-secured Calculation

6 7 8 9 10
Number of connected clients

- > cltate S

3 6 9 12 15 18 21 24 27 30 1 2 3

Number of evaluating messages
(a)

Fig. 5. Time of Node Trust Calculation in the Multi-server Setting.

under multiple local and remote servers and shows a trend
similar to that in Fig. 4. In summary, the node-trust compu-
tation can be executed more stably in remote cloud servers.

6.2 Performance of VT-chain System

To evaluate the VT-chain system, we built a blockchain
testbed using C language, which implements all consensus
operations since clients (i.e., RSU nodes) broadcast requests
(i.e., transactions) to consensus shards. Nodes in the testbed
are connected by TCP/IP connections and deployed on
multiple remote servers. The testbed implements the VT-
Eva model and our proposed HierBFT consensus frame-
work in which each node behaves as one of four roles
(i.e., the consensus primary node, consensus backup node,
verification primary node, or verification backup node). To
achieve a maximally realistic experimental environment,
we deploy the VT-chain system based on 20 Google cloud
virtual machines (VMs), each of which has two cores and
8G RAM. Our experiments use 4 VM servers to deploy
RSU nodes (i.e., RSU Servers) and 16 VM servers to deploy
vehicle nodes at random (i.e., Vehicle Servers). Each RSU
server connects to four client servers and communicates via
TCP/IP connections.

Performance of Trust Evaluation Model. To evaluate the
performance of the VI-Eva model, we measured the system
throughput, i.e., the number of messages (including rating-
request messages and rating-result messages) per second.
Fig. 6 presents the throughput of VT-Eva execution based
on a varying number of clients and raters, seeing Fig. 6(a)
and Fig. 6(b), respectively. Fig. 6(a) shows the rating-request
throughput (i.e., the number of rating requests processed
per second) when using 100 raters and a group of 100 to 200
clients. With the increased number of clients, there will be a
growing number of rating requests sent to the system, which
means that the rating-request throughput will also increase
until the system reaches full capacity. As shown in Fig. 6(a),
the maximum throughput approaches 800 messages per
second (mps) even with 200 clients.

Fig. 6(b) presents the rating-result throughput (i.e., the
number of rating-result messages processed per second)

11

75 1500
—— Non-TEE(Cloud) ’777’777"‘\\ —e— HierBFT
< 800 =460 v TEE(Cloud) 560 T 1200 =" —+— HotStuff
Q — Q — a ™~ Y
_g //' _g "T"’:\\ _g i ~ - > CheapBFT
E300 2 Ea20 SR s L E 900 = PBFT
= '/ = S =
> / > N > - >
[=% 7 o SN a o
< 7 < Sl < B N s
5600 - 5380 o= $30| —— HierBFT — 2 600
= R ¥ o
<4 ~ e . IS —— HotStuff =
<= ¥ = =
F 5001 -~ —— Non-TEE(Cloud) = 340 F 15 CheapBFT 300 S ——
% = TEE(Cloud) = PBFT 1 ———% |
409 309 9 = 9
0 120 140 160 180 200 0 120 140 160 180 200 00 120 140 160 180 200 0 120 140 160 180 200

(a) - Number of Clients (b) - Number of Raters

Fig. 6. Throughput of Vehicular Trust Evaluation Operations.

when using 100 clients and a group of 100 to 200 raters.
In this figure, the throughput declines with the increased
number of raters. This is because more raters result in a
larger number of rating messages processed in the system
to compute a final rating result.

Performance of VT-chain. To evaluate the performance
of blockchain consensus, we use several protocols (ie.,
HotStuff [27], PBFT [21], and CheapBFT [29]) as baselines.
Moreover, our experiments adopt the same parameters for
each protocol, which mainly include a transaction message
size of 250 bytes, a micro block size of 1 MB, and a replica
set varying from 100 to 200. The selected sizes of the
transaction and block follow the general parameters of the
Bitcoin system, which is used by most researchers in their
experiments [27], [30]. The experiments collect statistical
results of throughput and latency based on micro blocks
- i.e., micro blocks per second (mbps) and milliseconds (ms).
Based on the size of the message and operation, each micro
block contains around 4200 transactions.

Fig. 7(a) shows that the proposed hierarchical BFT con-
sensus (i.e., HierBFT) protocol has much higher throughput
(around 50~75 mbps, with an increased replica set from 100
to 200) compared to PBFT and CheapBFT protocols, which
are all below five mbps with the same varying replica set.
HotStuff, a BFT-like protocol, still has less throughput of
around 20~60 mbps. The difference between the HierBFT
and HotStuff is more than doubles when the number of
replicas is nearly 200. This indicates that HierBFT has higher
scalability due to the hierarchical consensus design. On
the other hand, as HierBFT applies a two-layer framework
in consensus, it takes more time to achieve multi-layer
consensus and cross-shard communication. Therefore, as
shown in Fig. 7(b), the HierBFT protocol has a slightly
longer average latency than HotStuff. Nevertheless, such a
difference is diminishing with the growing replica set due
to the limited scalability of HotStuff. In summary, the recent
HierBFT and HotStuff protocols show their superior perfor-
mance compared to other classic protocols, but more than
that, the hierarchical design gives HierBFT an advantage in
scalability, particularly when serving a large-scale system.

Local Storage Utilisation. In the VT-chain system, the
usage of local hard drive storage can be limited by the
execution of garbage collection (see Appendix A). However,
each node instance implements a set of concurrent oper-
ations during the trust evaluation and blockchain consen-
sus processes, resulting in heavier memory footprints. It is
worth analysing the usage of local storage (RAM) on each
VM server. However, Table 2 presents the average usage
of RAM in terms of two types of servers (i.e.,, RSU and
client servers). With the growing number of clients from

(a) - Number of Replicas

Fig. 7. Throughput and Latency of Blockchain Consensus Protocols.

(b) - Number of Replicas

TABLE 2
Average Local RAM Usage (%)

Clients 100 120 140 160 180 200
RSU Server 61.1 662 685 714 729 758
Vehicle Server | 53.9 608 670 753 792 884

100 to 200, the average usage of RAM on RSU servers
increases by 15% while the average RAM usage increment
on vehicle servers is greater than 30%. This is because
when the increased number of vehicle clients results in
more concurrent operations based on each client instance.
However, the number of RSU instances remains the same
compared to the increased number of clients. Since the
increased clients generate more service requests which need
additional local storage on RSU servers, there is still a RAM
usage increment (i.e., 15%) on RSU servers but less than that
of vehicle servers.

7 VT-CHAIN DEPLOYMENT DISCUSSION

The proposed VT-chain introduces a blockchain framework
tailored for managing trust in vehicular networks, compati-
ble with existing open-source blockchain platforms like IBM
Hyperledger Fabric [11]. Specifically, our proposed VI-Eva
model, which defines decentralized trust evaluation, can
be implemented as smart contracts within the blockchain
system. According to our design, certain operations of the
VT-Eva model necessitate execution and security measures
provided by TEEs on participating servers. In the vehicular
network context, RSU servers and vehicle nodes collaborate
to implement the VT-Eva model by facilitating the exchange
of messages based on Algorithms 1-4.

Concurrently, RSU servers and vehicle nodes employ
a hierarchical consensus mechanism, as outlined in Sec-
tion 4.2, to achieve consensus on the trust evaluation results
prior to updating the blockchain. Within this consensus
process, vehicle nodes within each consensus shard inde-
pendently validate the results and concurrently cast their
votes. Meanwhile, the RSU servers forming the root shard
ensure global consistency of all valid trust evaluation results
and subsequently create blocks for each group of results.
The predefined vehicular trust management network ar-
chitecture (Fig. 1 in Section 2) supports the message com-
munication required for executing the VT-Eva model and
hierarchical consensus.

In general, the VT-chain system can be extended to other
use cases, such as the Internet of Things or smart homes.
However, for implementing the VT-chain in a specific use
case scenario, the participating nodes need to establish a
network architecture akin to the one depicted in Fig. 1, with
the nodes forming the root shard being mandated to enable
TEEs based on the design principles.

8 CONCLUSIONS

This paper proposed a vehicular trust blockchain (VT-chain)
system, firstly by including a novel trust evaluation model
that uses peer-review-based trust assessment and TEE-
enabled trust computation to improve accuracy and secu-
rity, respectively, and presented a multi-shard blockchain
framework for trust data management. Secondly, to build
the multi-shard blockchain, we proposed a hierarchical
BFT consensus protocol that allows several node groups
to concurrently run BFT consensus in the lower layer and
leverages a global node group to ensure the total order. Such
a design aims to improve blockchain scalability to adapt to
the requirements of a large-scale system (e.g., the vehicular
trust management system).

Our future work will explore another key challenge
which is the mobility of vehicles, which would raise diffi-
culties in trust evaluation and blockchain consensus due to
frequently changing network topology caused by the switch
across different RSUs. Furthermore, sharding configuration
optimisation would be required to adapt to such a dynamic
vehicular network environment, aiming for improved per-
formance while ensuring security.

REFERENCES

[1] M. Blaze, J. Feigenbaum and J. Lacy, “Decentralized trust manage-
ment,” in Proc. 1996 IEEE Symposium on Security and Privacy, pp.
164-173, 1996.

[2] F. Bao, R. Chen, M. Chang, and J.-H. Cho, “Hierarchical trust
management for wireless sensor networks and its applications to
trust-based routing and intrusion detection,” IEEE Trans. Netw.
Service Manag., vol. 9, no. 2, pp. 169-183, 2012.

[3] L. Guo, C. Zhang, and Y. Fang, “A trust-based privacy-preserving
friend recommendation scheme for online social networks,” IEEE
Trans. Dependable Secure Comput., vol. 12, no. 4, pp. 413-427, 2015.

[4] W.Jiang,]. Wu, F. Li, G. Wang and H. Zheng, “Trust Evaluation in
Online Social Networks Using Generalized Network Flow,” IEEE
Trans. Comput., vol. 65, no. 3, pp. 952-963, 2016.

[5] X. Meng and D. Liu, “Getrust: A guarantee-based trust model
in chord-based p2p networks,” IEEE Trans. Dependable Secure
Comput., vol. 15, no. 1, pp. 54-68, 2018.

[6] C.Marche and M. Nitti, “Trust-Related Attacks and Their Detection:
A Trust Management Model for the Social IoT,” IEEE Trans. Netw.
Service Manag., vol. 18, no. 3, pp. 3297-3308, 2021.

[7] R. Hussain, J. Lee and S. Zeadally, “Trust in VANET: A Survey of
Current Solutions and Future Research Opportunities,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 5, pp. 2553-2571, May 2021.

[8] A. Al-Fuqaha et al., “Internet of Things: A survey on enabling
technologies protocols and applications,” IEEE Commun. Surveys
Tuts., vol. 17, no. 4, pp. 2347-2376, 2015.

[9] S. Thakur and]. G. Breslin, “A Robust Reputation Management
Mechanism in the Federated Cloud,” IEEE Trans. Cloud Comput.,
vol. 7, no. 3, pp. 625-637, 2019.

[10] M. Zhaofeng, W. Xiaochang, D. K. Jain, H. Khan, G. Hongmin and
W. Zhen, “A Blockchain-Based Trusted Data Management Scheme
in Edge Computing,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp.
2013-2021, March 2020.

[11] E. Androulaki, et al., “Hyperledger fabric: a distributed operating
system for permissioned blockchains,” in Proc. of EuroSys’18, New
York, NY, USA, Article 30, pp. 1-15, 2018.

[12] B.Li et al., “Blockchain-Based Trust Management Model for Loca-
tion Privacy Preserving in VANET,” IEEE Trans. Ind. Informat., vol.
22, no. 6, pp. 3765-3775, June 2021.

[13] D. E. Kouicem, Y. Imine, A. Bouabdallah and H. Lakhlef, “A
Decentralized Blockchain-Based Trust Management Protocol for the
Internet of Things,” IEEE Trans. Dependable Secure Comput., vol.
19, no. 2, pp. 1292-1306, 2022.

[14] E. Buchman, “Tendermint: Byzantine Fault Tolerance in the Age
of Blockchains,” Doctoral dissertation, University of Guelph, 2016.

12

[15] M. Sabt, M. Achemlal and A. Bouabdallah, “Trusted Execution
Environment: What It is, and What It is Not,” in Proc. of 2015 IEEE
Trustcom/BigDataSE/ISPA, pp. 57-64, 2015.

[16] G. Danezis and S. Meiklejohn, “Centrally Banked Cryptocurren-
cies,” 2016. [Online]. Available: 10.48550/arXiv.1505.06895

[17] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P.
Saxena, “A Secure Sharding Protocol For Open Blockchains,” in
Proc. of CCS'16, pp.17-30, Vienna, Austria, 2016.

[18] M. Al-Bassam et al., “Chainspace: A Sharded Smart Contracts
Platform,” in Proc. of NDSS’18, San Diego, CA, 2018.

[19] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A Secure, Scale-Out, Decentralized Ledger
via Sharding,” in Proc. of S&P’18, San Francisco, US, 2018.

[20] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
Blockchain via Full Sharding,” in Proc. CCS, New York, NY, USA,
2018, pp. 931-948.

[21] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
Proc. of USENIX OSDI'99, New Orleans, USA, Feb. 1999.

[22] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptol.
ePrint Arch. vol. 2016, no. 86, 2016.

[23] Intel, “Software Guard Extensions Developer Guide,” 2018.

[24] X. Yang, Y. Guo and Y. Liu, Bayesian-Inference-Based Recommenda-
tion in Online Social Networks, IEEE Trans. Parallel Distrib. Syst., vol.
24, no. 4, pp. 642-651, April 2013.

[25] C. P. Schnorr, “Efficient Signature Generation by Smart Cards,” J.
Cryptol., vol.4, no.3, 1991.

[26] B. C. Desai, B. S. Boutros, “Performance of a Two-phase Commit
Protocol,” Inf. Softw. Technol., vol. 38, no. 9, pp. 581-599, 1996.

[27] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and 1. Abraham,
“HotStuff: BFT Consensus with Linearity and Responsiveness,” in
Proc. of PODC’19, pp. 347-356, Toronto ON, Canada, 2019.

[28] G.S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veris-
simo, “Efficient Byzantine Fault-tolerance,” IEEE Trans. Comput.,
vol.62, no.1, pp.16-30, Jan. 2013.

[29] R. Kapitza, J. Behl, C. Cachin, T. Distler, and S. Kuhnle, “Cheap-
BFT: Resource-efficient Byzantine Fault Tolerance,” in Proc. of Eu-
roSys’12, pp.295, Bern, Switzerland, 2012.

[30] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzantine
Consensus via Hardware-Assisted Secret Sharing,” IEEE Trans.
Comput., vol. 68, no. 1, pp. 139-151, Jan. 2019.

[31] Q. Wang, D. Gao, C. H. Foh, H. Zhang, and V. C. Leung, “De-
centralized CRL Management for Vehicular Networks with Permis-
sioned Blockchain,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp.
408-1420, 2022.

[32] G. Sang, J. Chen, Y. Liu, H. Wu, Y. Zhou, and S. Jiang, “PACM:
Privacy-preserving Authentication Scheme with On-chain Certifi-
cate Management for VANETs,” IEEE Trans. Netw. Service Manag.,
2022, doi:10.1109/ TNSM.2022.3201551.

[33] Z. Ma et al., “An Efficient Decentralized Key Management Mech-
anism for VANET with Blockchain,” IEEE Trans. Veh. Technol.,
vol. 69, no. 6, pp. 5836-5849, 2020.

[34] M. Azees, P. Vijayakumar, and L. J. Deboarh, “EAAP: Efficient
Anonymous Authentication with Conditional Privacy-preserving
Scheme for Vehicular Ad-hoc Networks,” IEEE Trans Intell. Transp.
Syst., vol. 18, no. 9, pp. 2467-2476, 2017.

[35] R. Lu et al., “A Dynamic Privacy-preserving Key Management
Scheme for Location-based Services in VANETs,” IEEE Trans Intell.
Transp. Syst., vol. 13, no. 1, pp.127-139, 2011.

[36] A.Mansour, K. Malik, A. Alkaff, and H. Kanaan, “ALMS: Asym-
metric Lightweight Centralized Group Key Management Protocol
for VANETs,” IEEE Trans Intell. Transp. Syst., vol. 22, no. 3, pp.
1663-1678, 2020.

[37] R. Sharma and S. Chakraborty, “BlockAPP: Using Blockchain for
Authentication and Privacy Preservation in IoV,” in Proc. of IEEE
Globecom Workshops (GC Wkshps), pp. 1-6, 2018.

[38] J. Qi and T. Gao, “An Anonymous Authentication Scheme Based
on Self-generated Pseudonym for VANETs,” in Proc. of IMIS'22, pp.
75-84, Kitakyushu, Japan, 2022.

[39] X.Zhu, S. Jiang, L. Wang, and H. Li, “Efficient Privacy-preserving
Authentication for Vehicular Ad-hoc Networks,” IEEE Trans. Veh.
Technol., vol. 63, no. 2, pp. 907-919, 2014.

[40] P. Wang and Y. Liu, “SEMA: Secure and efficient message authen-
tication protocol for VANETs,” IEEE Syst. J., vol. 15, no. 1, pp. 846—
855, 2021.

[41] V. T. Kilari, R. Yu, S. Misra and G. Xue, “"Robust Revocable
Anonymous Authentication for Vehicle to Grid Communications,”
IEEE Trans Intell. Transp. Syst., vol. 21, no. 11, pp. 4845-4857, 2020.

Xiao Chen received the M.Sc. and Ph.D. de-
grees in computing science from Newcastle Uni-
versity in 2009 and 2013, respectively. He is
currently a research fellow (Marie Sklodowska-
Curie) at School of Informatics in the Univer-
sity of Edinburgh (UK). He was a postdoctoral
research fellow in the School of Computing, In-
formatics and Decision Systems Engineering at
Arizona State University (USA). His research
interests include the formal method, stochastic
modelling, and Al-driven optimization for large-
scale systems; and a focus on the theory of consensus mechanisms,
privacy-preserving, trust management, and real-world blockchain appli-
cation development.

Guoliang Xue is a full professor of computer
science and engineering in the School of Com-
puting, Informatics and Decision Systems Engi-
neering at Arizona State University (ASU). He
received his ph.D. degree in computer science
from the University of Minnesota in 1991. Before
joining ASU as a tenured associate professor
in August 2001, he worked at the University of
Vermont as an assistant/associate professor of
computer science. His research interests are in
the areas of computer networks and optimiza-
tion. He has published over 180 refereed papers in these areas. He
is on the editorial boards of IEEE/ACM Transactions on Networking,
IEEE Transactions on Wireless Communications, IEEE Network, and
Computer Networks. He served as TPC Co-Chair of IEEE INFOCOM
2010, and is a Distinguished Lecturer of the IEEE Communications
Society for 2010 and 2011.

Ruozhou Yu (Student Member 2013, Member
2019, Senior Member 2021) is an Assistant Pro-
fessor of Computer Science at North Carolina
State University, USA. He received his PhD de-
gree (2019) in Computer Science from Arizona
State University, USA. His research interests in-
clude internet-of-things, cloud/edge computing,
smart networking, algorithms and optimization,
distributed machine learning, security and pri-
vacy, blockchain, etc. He has served on the or-
ganizing committees of IEEE INFOCOM 2022-
2023 and IEEE IPCCC 2020-2022, and as members of the technical
commitee of IEEE INFOCOM 2020-2022. He was a recipient of the NSF
CAREER Award in 2021.

Haigin Wu received her B.E. degree in Com-
puter Science and Ph.D degree in Computer
Application Technology from Jiangsu University
in 2014 and 2019, respectively. She is an As-
sociate Professor in the Department of Soft-
ware Engineering, East China Normal Univer-
sity, China. Before that, she was a postdoc-
toral researcher in the Department of Computer
Science, University of Copenhagen, Denmark.
She was also a visiting student in the School of
Computing, Informatics, and Decision Systems
Engineering at Arizona State University, US. Her research interests
include data security and privacy protection, mobile crowdsensing, and
blockchain-based applications.

Dawei Wang received his B.Sc. and M.Sc. de-
grees in computer science and technology at
Jiangsu University in 2018 and 2021, respec-
tively. He is currently a senior software engineer
of fintech information system. His research inter-
ests include blockchains, consensus protocols
and hardware security.

13

