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1. Introduction

The magnetohydrodynamic(MHD) boundary layer system was derived by understanding the high
Reynolds number limit to the incompressible viscous MHD system ( [3,5,23]) in a domain with non-
slip boundary when both the Reynolds number and the magnetic Reynolds number have the same order.
In this paper, we investigate the local existence of the solutions to the following initial boundary value
problem for the 2D MHD system in a periodic domain Ri ={(t,x,y):t€]0,T],x € T,y € R}, which
reads as follows

A + (u° - Vyu? — (H° - VYHE + Vp? = peAw?,
O H° — V x (u° x H?) = keAH, (1.1)
V-uwr=0, V-H =0,

where T stands for a torus or a periodic domain and R, = [0, +c0). Here, we suppose the viscosity

and resistivity coefficients have the same order of a small parameter €, u® = (u;°, u,®) denotes the
. . -~ &2
velocity vector, H® = (h,°, h,°) stands for the magnetic field, and the total pressure p® = p® + %
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with p® represents the pressure of the fluid. Parameters u and « are the viscosity and heat conductivity
coeflicients, respectively.
The initial data of (1.1) is given by

W, =0 = (U5, hy). (1.2)
The no-slip boundary conditions are imposed on the velocity field and the magnetic field
(®, H®)|y=0 = 0. (1.3)
The far fields boundary conditions are

lim (u;,b;) = (U, B). (1.4)
y—+00

Formally, system (1.1) yields the incompressible ideal MHD system when &€ = 0. However, there
is no match for the tangential velocity between the equations (1.1) and the limiting equations on the
boundary value y = 0. This is why a boundary layer forms in the vanishing viscosity and resistivity
limit process. To look for the term of system (1.1) whose contribution is essential for the boundary
layer, we use the same transform as the one used in [20],

1
t=t, x=x, y=¢g2y,

then we set
ui(t, x,y) = ui(t,x,y), bi(t,x,5) = hi@ x,y),
(1, x,5) = £U5(1, x,Y), ba(t, %, 5) = 67T h5(1, x, ),
and
p(t,x) = p°(t, x).
Next, by taking the limit £ — 0, the Eqs (1.1)—(1.4) are transformed into the following 2D MHD
boundary layer equations

(9,141 + I/tlaxbtl + ugayul = blaxbl + bzaybl + 8§u1 - axp,

d:b1 + 0\(urby — w1 by) = 33191,

Oty + Oyup =0, 8.:by + 0yby =0, (1.5)
(w1, uz, by, bZ)ly:O =0, yg{rllw(ul’ by) = (U, B),

(1, b1)|i=0 = (uo, bo)(x,y).

Functions (U(t, x), B(t, x)), and p(¢, x) are the values on the boundary of the Euler’s tangential
velocity and Euler’s pressure of the outflow, which satisfy the Bernoulli’s law,

o,U+UoU—-BoB+0,p=0,
0,B+Ud.B—- Bd, U =0.

Before exhibiting the main results in this paper, let us briefly review some known results to the
problem (1.5). Specifically, when the magnetic field (b, b,) are some constants in (1.5), the system
reduces to the classical Prandtl equations, which was first introduced formally by Prandtl [21] in 1904.
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This system is the foundation of the boundary layer equations. It describes that the away from the
boundary part can be considered as general ideal fluid, but the near a rigid wall part is deeply affected
by the viscous force. Formally, the asymptotic limit of the Navier-Stokes equations can be denoted by
the Prandtl equations within the boundary layer and by the Euler equations away from boundary. About
sixty years later, under the monotonicity condition on the tangential velocity field in the normal variable
to the boundary, Oleinik [19] proved the local-in-time well-posedness to the 2D Prandtl equations by
using the Crocco transformation, which is the first systematic work in strictly mathematics. This
result together with an expanded introduction to the boundary layer theory was showed in Oleinik-
Samokhin’s classical book [20]. Additionally, under the Oleinik’s monotonicity assumption, some
authors [2,17,31] proved the well-posedness of solution for 2D Prandtl equations by using the energy
method and constructing a new unknown function to eliminate the difficult term from the convection
term. In addition to Oleinik’s monotonicity assumption on the tangential velocity field, Xin et al. [30]
obtained the existence of global weak solutions to the Prandtl equation when the pressure is favourable
(0cp < 0).

When the velocity field equation is coupled with the magnetic field equation, the phenomenon of
the boundary layer is different since the boundary layers of the magnetic field may exist and they
are more complicated than the classical Prandtl equations. It should be highlighted that the MHD
boundary layer equations are an important problem in the investigation of plasma with many known
results; See [9,22,26]. There are some results in [3,6] on the so-called Hartmann boundary layer when
the magnetic field is transversal to the boundary.

However, we are concerned with the case that the magnetic field is tangent to the boundary in this
paper, that is, the Eq (1.5). There are some results in an analytic framework for the 2D MHD boundary
layer equations. For example, Xie et al. [28] considered the global existence of solutions to the 2D
MHD boundary layer equations in the mixed Prandtl and Hartmann regime when initial data is a small
perturbation of the Hartmann profile, and they found that the solution in analytic norm is exponential
decay in time. Recently, Liu et al. [16] established the global existence and asymptotic decay estimate
of solutions to the 2D MHD boundary layer equations with small initial data. Xie et al. [29] investigated
the lifespan of solution to the 2D MHD boundary layer system by using the cancellation mechanism
and obtained that the lifespan of solution has a lower bound. Liu et al. [13] studied the well-posedness
of solutions to the 2D MHD in an analytic framework. Moreover, inspired by [8] on the classical
Prandtl equations, they proved that if the tangential magnetic field is degenerate sufficiently, then the
nondegenerate critical point in the tangential velocity does not prevent the formation of singularity.
Chen et al. [4] investigated the well-posedness of the MHD boundary layer equation without resistivity
by using the paralinearization methods in Sobolev space. Under the assumption that the tangential
component of magnetic fields dominates, Li et al. [11] proved the existence and uniqueness of solutions
to the MHD boundary layer equations without viscosity in Sobolev spaces. So far, in addition to the
well-posedness of solutions in the Sobolev and analystic frameworks, there are some results on the
vanishing limits for the incompressible MHD systems; We refer to [25-27] and the references therein
for the recent progress.

Under the assumption that the initial tangential magnetic field has a lower bound d, > 0, there are
some results to the 2D MHD boundary layer equations. Liu et al. [14] investigated the local existence
and uniqueness of solutions in weighed Sobolev space H;"(m > 5) for the two-dimensional nonlinear
MHD boundary layer equations by using the energy method. As a continuation of [14], the same
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authors [15] proved the validity of the Prandtl boundary layer expansion and gave an L™ estimate on the
error by multi-scale analysis under the assumptions that both the viscosity and resistivity coefficients
with the same order and the initial tangential magnetic field on the boundary are not degenerate. Liu et
al. [12] proved the local well-posedness to the 2D MHD boundary layer equations in Sobolev spaces
and found the linear instability of the 2D MHD boundary layer when the tangential magnetic field is
degenerate at one point. Gao et al. [7] investigated the local well-posedness of solution in weighted
conormal Sobolev spaces to the 2D MHD boundary layer equations with any large initial data by energy
methods. Huang et al. [10] attained the local well-posedness of solutions to the 2D MHD system in
weighted Sobolev spaces by applying the classical iteration scheme.

The main differences between our results and those in [14] are as follows: Liu et al. [ 14] investigated
the local existence and uniqueness of solutions in weighed Sobolev space H}'(m > 5) for the 2D
nonlinear MHD boundary layer equations. However, in this paper, we investigate the local existence
of solutions to the 2D MHD equations in weighted Sobolev space Hy,, by the energy method, which
is a complement for the previous results [14]. The monotonicity condition on the velocity field is not
needed for the well-posedness of the 2D MHD boundary layer equations in this work. We use the
tangential magnetic field, which has a lower positive bound instead of the monotonicity assumption,
on the tangential velocity in the normal direction to the boundary. We first get the boundedness of
the approximate solutions to the regularized MHD boundary layer equations in H} , by calculating the
lower order derivative boundary values of variable y for the Eq (4.1) and combine it with Corollary 5.1
in Subsection 5.1. Second, we get the estimates of D:(u, h) with |8 = 4 by constructing two new
unknown functions in Subsection 5.2. We finally obtain the existence of solution to problem (3.1) in
Hlil'

To investigate the existence of solution to problem (1.5), we encounter some difficulties. Similar
to the Prandtl equation, the difficulty of solving problem (1.5) in the Sobolev framework is the loss of
x-derivative in the terms u,d,u; — b,0,b; and u,0,b, — b,0,u; in the first and second equations of (1.5),
respectively. In other words, u, = —a;‘axul and b, = —0;18xb1 by the divergence-free conditions and
the boundary conditions. Thus, it creates a loss of the x-derivative and a y-integration to the y-variable,
then the standard energy estimates do not work. To overcome this essential difficulty, inspired by
recent results in [7, 14], we only need the following two new observations, which can remove the
difficult terms in the convection terms. The first one observation is that ¢ := d; 'b, satisfies

O + by — u1by = Y.

Another observation is that under the assumption on the nondegeneracy of /;, we use the following
unknown functions to lead the cancellation

ayul "  am 8yb1 "
b—lax W, by =07b, - b—lax v.

With the help of (u,,, b,,), the difficulties in the analysis on 07u,0,u; — 07b,0,b, and 87u,0,b, —
0'¢b,0,u; mentioned above can be overcame. The detail of the equivalent for (u,,, b,,) and (07 u;, 0;'b,)
in the weighted Sobolev framework will be showed in Subsection 5.2.

The paper is arranged as follows. In Section 2, we introduce some notations and main results in
this paper. In Section 3, we give the compatibility condition of the MHD boundary layer equations. In
Section 4, we prove some propositions of the initial boundary value to the nonlinear regularized MHD

Uy =0 Uy —
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boundary layer equations. In Section 5, we derive the existence of the approximate solutions to the
MHD boundary layer equations and prove Theorem 2.1.
Hereafter, let letter C be a general positive constant, which may vary from line to line at each step.

2. Preliminaries and main results

As a preparation, we give some notations. We use the tangential derivative operator
= 5?'552, B = (B1,82) €N, |8l =B + fa.
and then denote the derivative operator (in both time and space) by
D" = &8, for (B1.f2. k) €N, || = By + B + k.

Next, we introduce the weighted Sobolev spaces H;,, and Sobolev norms as follows

IF@Ie = > I D £,

a<4

where (y) = 1 +y.
We now state our main result as following.

Theorem 2.1. Let k > % [ > 0 be real numbers. Assume the initial data (uy, by) € H,irl satisfies the

compatibility conditions up to 6 order. Additionally, there exists a small enough 6 € (0, 1) such that

k+l+1 oi -1 ;—
{ 1616 o, b= < 671, for i = 1,2 o

bo(x, y) > 6,

then there exists a T := T(6, k, I, ||(uo, b0)||§{4 ) such that the initial boundary value problem (1.5) has a
k+1

classical solution (u, b) satisfying (u, b) € H,‘(‘H.
Before proving the theorem, we introduce some important inequalities. The following inequalities
will be used frequently in this paper, whose proofs are given in [14,31].

Lemma 2.2. For the proper functions f, g, h, the following inequalities hold:

(i) Forany [ € R, 1> 1, aninteger m > 3, and any @ = (8,k) € N*, B = (B, 8,) € N witha+f3 < m,
I(Dg - 5‘%;1}1)(% Mez,, < Cligley, 1ol - (2.2)

(i) For any / € R, an integer m > 3, and any a = (8,k) e N°, @ = (8,k) € N’ with o + & < m,
I(D*f - D7), Nz, < Cllfllapllglley s ¥ I+ 12 = 1. (2.3)

() If A > —% and )h_)rg f(x,y) =0, then,

1Y fll g2y < CIOY' B, fllogez), 2.4)
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3. The compatibility condition of the MHD boundary layer equations

For simplicity, we consider the case of a uniform outflow (U, B) = (1, 1) in this work, which implies
that the pressure p is a constant. Thus, the MHD boundary layer Eq (1.5) is reduced to

oy + 10,1 + l/tzayul =b0,b; + bzaybl + (9§u1,

0:b1 + 0\(uxby — u1by) = ﬁﬁbl,

Oy +0yup =0, 8.:by + 0yby = 0, (3.1)
(1, uy, blab2)|y:0 =0, yl_i)rgo(ul,bl) =(1,1),

(1, b1)li=0 = (uo, bo)(x, y).

We assume the shear flow u* is the solution of the following heat equation

ou* — 65 $ =0, (t,y) e Ry xRy,
u'ly—o =0, and lim u’ =1, (3.2)

y—+00

Wli=o = up(y)-

At the moment, we also suppose that

uy=u*+u, by=1+>,
{ u =v, by=g, (33)
then, the MHD boundary layer Eq (3.1) becomes
O — Bou + (¥ + w)dsu + vyu — (1 + b)dyb — gdyb + voyu® = 0,
0.b - (9519 + ® +u)db +vo,b — (1 + b)o,u — goyu — goyu* = 0,
uli=o = uo — uy, Dli=o = bo — 1, (3.4)
(u,v,b,8)ly=0 =0, lim (u,b) = (0,0).
y—+00
Integrating Eq (3.4), over [0, y] yields that
y y
8,f bdy +v(1 +b) — (' +u)g = (?3 f bdy, (3.5)
0 0
where we have used the boundary conditions b|,—¢ = vl = gl,=0 = 0.
Define y
v = [ bay
0
and ones yields
O +v(1 +b) — (u’ + u)g = O3y (3.6)

Next, we give the following basic estimates of a shear flow u* for the heat Eq (3.2); See [31].

Lemma 3.1. Let u’(t,y) be the solution of (3.2), then for any T > 0, it holds that for 1 < p < 6,
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021 (1, )| < () *P, V(e y) € [0, T] X R.,

where ¢; > 0 depends on 7.

(3.7

At this moment, let us state the precise version of the compatibility condition for the nonlinear

MHD boundary layer Eq (3.4) and give the boundary values.

Proposition 3.2. Assume that (u, b) is a smooth solution of the system (3.4), then the initial data (uy, by)

has to satisfy the following compatibility conditions up to 6 order:

up(x,0) =0, bo(x,0) =0,
Hiuo(x, 0)=0, 6)2,b0(x, 0)=0,
aiuo(x, 0) = 0,0,udyu(0, x,0) + 0,0,ud,u’*(0,0) — 4,0,b0,b(0, x, 0),

8*bo(x,0) = 8,60, 3,u(0, x,0) + 8,8,b(0, x, 0)3,u(0, x, 0) + 38,*(0, 0)3,8,b(0, x, 0).

Moreover,
Oug(x,0) = —2038,b0,u(0, x,0) + 8,0,udu(0, x,0)
—2870,b(0, x,0)8,u* (0, 0) + 8,0,u(0, x,0)8;u°(0, 0)
—83b0,0,b(0, x,0) + 20,b5>9,u(0, x, 0)
+ ) CHO + WD Tu + Oy u = 9)(1 + b)D,I} b
1<j<3
018837 + dlvdy u’)(0, x,0),
and

89bo(x,0) = —(30b + 40,0,u)0,0yu(0, x,0) — 8,b(40,0u + 2870,b)(0, x, 0)
+(40,05b + 2070,u)0,u(0, x, 0) + 8:0,b(305u + 49.,0,b)(0, x, 0)
+3051°0,0,b(0, x,0) + 8,u’ (40,0,b + 2870,u)(0, x, 0)
+ ) CH)w +wddi b - 888} u
1<j<3
—0i(1 + b0} /u + 6]vdy b — 0] Iu’)(0, x, 0).
Proof: By virtue of the Eqs (3.4), , and the boundary condition (3.4),, we get
dru(x,0) = 0, 85b(x,0) = 0.

Applying the operator d, on (3.4), ,, respectively, we can derive that

B0y — Bu + 0,((® + wdyu + vd,u) = 3y((1 + b)Y + g,b) + 0,(vdu’) = 0,
B,0yb — 8b + 0,((u® + WA + vd,b) — B,((1 + b)d,u + gdyu) — 0,(gdyu*) = 0.

(3.8)

(3.9)

(3.10)

(3.11)
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Hence, using Eqs (3.2), , and Eq (3.4),, from the above equations, we infer that

_ 33
{ 0,:0,u(t, x,0) = Fu(t, x,0) + 8,8,b(t, x, 0), (3.12)

8,0,b(t, x,0) = éﬁb(t, x,0) + 8,0,u(t, x,0).
Differentiating Eq (3.4), with respect to y twice, it follows that
0:03u — Byu + 5((u® + W + vdyu +voyu’) — 9,((1 + b)d,8,b + gdb) = 0. (3.13)
Invoking the Leibniz formula, we can deduce that

(?5((u“' + u)0,u + voyu + voyu')
= 03’ + u)dyu + OovOyu + Ivd,u°
+(u® + u)&xé‘iu + v@iu + v@ius
+20, (1’ + u)0,0yu + 2(9yv0§u + 2(')),v8§us.

Therefore,
6;‘u(t, x,0) = 0,0,udyu(t, x,0) + 0,0,ud,u’(t,0) — 0,0,b0,b(t, x,0), (3.14)

where we used the facts 0§ius(x, 0)=0,0<2i<4.
Differentiating (3.14) with respect to ¢ and using the equality (3.12),, it follows that

8:0,u(t, x,0)
(0:0u + 870,b)d,u(t, x,0) + 0,0,u(dyu + 0,0,b)(t, x,0)
+(0,0u + 070,b)(1, x,0)d,u* (1, 0) + 0,8,u(t, x,0)8u’(1,0)
—(0,0,b + 370,u)(1, x,0)0,b(t, x,0) — (8, + 0,0,u)(t, x, 0)0,0,b(t, x, 0)
(0x05u + 030,b)d,u(t, x,0) + 8,0,udu(t, x,0)
+(0,0u + 870,b)(1, x,0)d,u’ (£, 0) + 0,8,u(t, x,0)8;u’(1,0)
—(0,0,b + 020,u)(1, x,0)8,b(t, x,0) — 83b(t, x, 0)0:0,b(t, x, 0). (3.15)

Similar to (3.13), we have the following the results about the magnetic velocity b
8,03b — b + 83((u' + u)d,b + vyb — (1 + b)dyu — gdyu — gdyu') = 0. (3.16)
However, by a direct calculation, we infer that

05 ((u’ + )b + voyb — gdyu*)
= 0,(u’ + b + F}vo,b — 8,80 ,u’°
+(u’ + u)ﬁ,ﬁib + v@ib — gaius
+20,(u’ + u)d,0,b + 20,vd;b — 20,801°,

and

O;((1 + b)d.u + gdyu) = 05(1 + b)d,u + 0;g0yu + (1 + b);du + gou
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+20,(1 + b)d,0.u + 20,80 u.
Therefore, we can arrive at

Oib(t, x,0) = =30,b(t, x,0)0,0,u(t, x,0) + 30,0,b(t, x, 0)0,u(t, 0)
+30,u’(t,0)0,0,b(t, x, 0). (3.17)

Differentiating (3.17) with respect to ¢ and using equality (3.12),, it follows that
0,0,b(t, x,0) = =3(83b + 0,0,u)0.dyu(t, x,0) — 30,b(0,0u + 90,b)(t, x,0)
+3(0:05b + 030,u)0,u(t, x, 0) + 30,0,b(03u + 0,0,b)(t, x,0)
+305u°0.,0,b(1, x,0) + 30,u°(0,0b + 870,u)(1, x, 0). (3.18)

Differentiating the Eq (3.4), with respect to y four times, it follows that

d,04u + (" + wdsu + vdyu — (1 + b)d,b — gdyb + vou') = du (3.19)

y

and using the Leibniz formula again brings

ai((u“ + u)ou + voyu — (1 + b)o,b — go,b + vayus)
= 0)(u’ + wdu + Ovoyu — (1 + b)dsb — 8,80,b + Fyvd,u’
+(u® + B Oyu +vou — (1 + b)d0yb — gdb + vou’
+ > CHO + WD Tu + Ova u— 9)(1 + b)d,0} b
1<j<3
01803 b + 0]vd}ur). (3.20)
Thus, it follows from (3.15) and (3.19)—(3.20) that

Au(t, x,0)
8,0}u(t, x,0) — 0,05udyu(t, x,0) + 0,0,b0,b(1, x,0) — 8,0,u(t, x, 0)d,u’ (£, 0)
—~0,0b(1,x,0) + > CH0(u* + 03,0} u + d)vdyu— 9](1 + b)d,3} b
1<j<3
01883 b + 0lvdy u’ (1, x, 0)
= —2030,b0,u(t, x,0) + 0,0,udu(t, x,0)
—2870,b(1, x,0)d,u*(£,0) + 0,0,u(t, x,0)8,u’(z,0)
—83b0,0,b(t, x,0) + 28,b03d,u(t, x,0)
+ > CHO + WD Tu + Ova u = 9)(1 + b)D,3} b
1<j<3

0207 b + 0Jvy u’ (¢, x, 0). (3.21)

Analogously, derivating (3.4), with respect to y four times, it follows that

0,05b + 03w’ + w)dsb — gdyu — (1 + b)d,u + vd,b — gdyu') = b, (3.22)
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and using the Leibniz formula again,

(" +1wdb — gdyu — (1 + b)d,u + vdyb — gdyu)

= 0)(u’ + w)db — 8,80,u — 9;(1 + b)d.u + 9yvd,b — 8}g0,u’

@' +w)0,0)b — g0u = (1 +b),Fu +v8b — gdhu’
£ 3 3 + a3 b~ 3l Tu - 31 + )9,

1<j<3

i 25— o a5—j s
+0v0} b — 0]gd}ur). (3.23)
Therefore, it follows from (3.18) and (3.22)—(3.23) that

b(t, x,0)
= —(30,b + 40,0,u)0.0,u(t, x,0) — 8,b(40,0u + 2070,b)(t, x,0)
+(40.05b + 2070,u)d,u(t, x,0) + 0,0,b(305u + 49.0,b)(t, x,0)
+3031°0,0,b(1, x,0) + Ayu’ (40,03b + 2070,u)(1, x, 0)
+ > CH Ol + w9 b - 88w - 31 + b)dI

1<j<3

+0[v03 b — 6]gd} (¢, x, 0), (3.24)

then we take that the value at ¢t = O for (3.11) (3.14), (3.17), (3.21) and (3.24) can obtain the desired
results.

4. Nonlinear regularized MHD boundary layer equations

To investigate the existence of solution of the MHD boundary layer, we consider a parabolic
regularized system for problem (3.4), which we can attain the local existence of the solution by using
classical energy methods. More specifically, we discuss the following nonlinear MHD systems, for
O<ex<l,

ouf — s[)ius - (')fug + (U + u®)0u® +voou® — (1 + b°)0,b° — g°0,b° + v?ou’ =0,
0:b° — £0°b° — 8/%[9‘9 + (U + u®)0b® +v°0,b° — (1 + b*)0.u® — g°0,u® — g°0,u’ = 0,
(U, b%)\ico = (U, B) = (g, bo) + (U, 115, @1
(u€9 Vs» bs’ g8)|y:() = 0’ lim (uE9 bé) = 0’
y—+00

where we can use the system (4.1) to construct the corrector terms &(uf, 43), such that the initial data
(1o, bo) + e(uf, u5) satisfies the compatibility conditions up to 6 order for the regularized systems (4.1).
We show the boundary data of the solution for the regularized system (4.1), which also gives the
accurate edition of the compatibility conditions for the system (4.1).

Proposition 4.1. Let k > %, [ > 0 be real numbers. Assume that (uy, by) satisfies the compatibility

conditions (3.8)—(3.10) for the equations (3.4) and (u3, 45) € H,? ; such that (ug, by) + e(uf, u5) satisfies

+

the compatibility conditions up to 6 order for the regularized system (4.1). If (u®, b®) is a solution to
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the problem (4.1) in [0, T and satisfies (u®, b®) € L=([0,T]; H2+1)’ then we have
u?(0,x,0) =0, b°(0,x,0) =0, x € XR,

8§u8(0, x,0) =0, 8§b5(0, x,0) =0,

(9;‘u8(0, x,0) = 0,0,u®d,u®(0, x, 0) + 9,0,u®0,u’(0,0) — 0,0,b°0,b°(0, x, 0),

6Su8(0, x,0) = —28§8yb86yu8(0, x,0) + axayusa; u®(0, x,0)
~2829,b%(0, x,0)8,u*(0, 0) + 8,8,u°(0, x, 0)Fu*(0, 0)
~93b°9,0,b°(0, x,0) + 20,b°33,u*(0, x,0)

+288§8},b88x8yb‘9(0, x,0) — 286§8yu‘98x(9yu8(0, x,0)

+ B1eje CHAW + 42,0} 0 + 8)v°0] u® = 3)(1 + b°)0,0, /b°
—~0]g°d,'b" + 6)v°0) 'u’)(0, x, 0),

Ab7(0, x,0) = (38357 + 40,0,u°)3,0,u° (0, x, 0) — 0,b(40,03u” + 2820,b°)(0, x, 0)
+(40,33b° + 2020,u)3,u” (0, x, 0) + 8,0,b(303u° + 49,9,6°)(0, x, 0)
+383 u’0,0,b°(0, x,0) + 6yus(4é)x(9;b‘9 + 20§8},u8)(0, x,0)
+68(0§6),u58x6yb8 - aiaybaaxa),u‘?)(o, x,0)

+ B1ejer CHO W + 40,0, 'b° = 8]g°0) ue — 0)(1 + b°)0,0)
+0)v°0; 'b® - 3¢°0,'1°)(0, x, 0).

Proof: Looking back to the boundary condition in (4.1)

u®(¢,x,0) =0, v¥(t,x,0) = 0, b*(z,x,0) =0,
gt x,0) =0, (t,x)€[0,T]XR,

the following results are clear:

0,07 (u®, b°)(t, x,0) = 0, 0,07(v°, g°)(t,x,0) =0, (t,x)€[0,T]xR,0<n<4.

Applying (4.1) and the boundary conditions (4.3), we have
Oully=0 = 0, 9b°l,—o = 0.
In addition, we can also derive
O100uly—0 = 0, 810,69 =0, (t,x) €[0,T]xR,0<n<4.

Derivating the equation of (4.1) with respect to y,

£010yU° = B,0,u° — O5u° + 0y((u® + u®)dxu® + VO + v°d,u’)
—(1 +b)0,0,b° — g&b°,

and using the boundary conditions (4.4), we deduce

3 2
8,0,%20 = Bulyco + 0,06, + £80,1%]2o.

F2b°(0, x,0) = ~30,b°0,0,u*(0, x,0) + 30.8,b°(0, x,0)3,u* (0, x, 0) + 38,u*(0, 0)8,8,b°(0, x, 0),

4.2)

4.3)

4.4)

4.5)

(4.6)

4.7)
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Similarly, derivating the equation of (4.1), with respect to y
B,0,b" = B3b° + B3((u' + u%)3,b° + v 0,b° = (1 + b)Du’ — gOu — gdyu’)
= £020,b°, (4.8)
and using the boundary condition (4.4) again, then we get
010,b°|y=0 = 6%l + Bx0yu%)y—0 + £070,b°1,—. (4.9)
Differentiating (4.6) with respect to y, it follows that

202 ¢ _ 2 & 4 e 2 s & & & & & K
£0,0,u° = 0,0,u° — 9ju® + 9, ((u' + u®)0.u® +v°0,u° +v°o,u’)

—0y((1 + b)0,0,b° + g°02b°), (4.10)
and applying the Leibniz formula,

63((us + u®)0u® + voyu® + v°oyu’)
= 8§(u5 + u®)0u° + aivgayus + 6§v‘96yus

+(u® + us)axagus + vsaiug + vg(?ius

+20,(u” + u°)0,0,u° + 20,V°0ou” + 20,v° . (4.11)
Therefore, we can derive
Ou°ly=0 = B0,U°BU°| =g + Bx0,u° Dy’ (1, 0) — 8,0,b°0,b%),—q, (4.12)

where we used the facts 6§iu“(x, 0)=0,0<2i<4.
Differentiating (4.12) with respect to ¢ and using (4.7) and (4.9), it follows that
0:0,u°)y=o
= (0.00u° + 020,b° + £030,U°)D\u° |0 + 0. Oyu” (u° + £070,u°)]y—0
+HO,00° + 80,b° + £0,0,u°) =00y’ (1, 0) + 0,0,u°y—o &1’ (2, 0)
—0,0,b°(Ob° + £070,6°)|y—g — O,b°(005D° + 870u + £5,0,b%)]—. (4.13)
Analogously, we can arrive at

O3b°y=0 = —30,b°0,0,u)y—g + 30,0,b%|,—00,u° (1, 0) + 30,1 (1, 0)0,0,b°),-0, (4.14)
and
8:0,b°|y—o
= =30° + 0. 0,u° + £070,b°)0,0,u°|s—0 — 30,b°(0.03u° + Fr0,b° + £010,1°)|,=0

+3(0:050° + 0:0,u° + £5,0,b°)0yu° = + 30,0,b°(O3u° + 0,0,b° + £570,u°))s—0
+3051°0,0,b°|— + 30,1’ (0,0,6° + 020,u° + £070,b°)],—. (4.15)
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Differentiating (4.1); with respect to y four times, it follows
Ou’ + £0200° = 0,05u° + (' + U)o +v°O,u°
—(1 + b°)3,b° - g°0,b° +v°d,u’), (4.16)
and using the Leibniz formula again,

O + u)du” + v U — (1 + b3, b° — g°0,b° + v*du')
= 0y’ + u)du® + N Oyu° — 8 (1 + b°)0,b° — 838°0,b° + 0}V O, u’
+ut' + u)dOyu” + v u” — (1 + b0, Bb° — g°9b° + v'ou’
+ > CH Ol + u)dy I + Ol DUt = BI(1 + b)3,0) b
1<j<3

i £95-j1.& . £95—j..s
—0jg°0)Ib" + )"l u). (4.17)
Hence, using (4.12) and (4.14), we have

Buly-o = —2870,b°0,u°|,= + B0, D U]y
—2070,b%y—00y1’ (1, 0) + 0, 0yu°ly—o 01’ (2, 0)
—03b°0,0,b%|,— + 20,b°070,u°),—g
+80°0,u° (0, + Oyu’) — £020,b°0,b° + £020,u°0,0,u° — £070,b°0,0,b°
—85i6§u8|y:0
+ > CHOl" + u)ddy I + Ol I Tut = D)1 + b)3,01 b
1<j<3
—~0Jg°0)Ib" + A0} Y=o
= =2030,b°0,u°|y—0 + 0. 0,u° I’ o
—2070,b%y-00y1° (1, 0) + 0, Oyu°ly—o &1’ (2, 0)
—03b°0,0,b%)y—0 + 20,b° 010" |,=
+28070,b°0,0,b%_ — 2£070,u°0Oyu° =g

+ > CHOl" + u)d.Byuf + Ol I Tut = B)(1 + b)3,5Y b
1<j<3
—~0Jg°0y7Ib" + )v° 0" )|y=o. (4.18)
Similarly, derivating (4.1), with respect to y four times, it follows that
b + £0°0%b° = 0,0%b° + FY((u' + u*)d,b° — g Ot
—(1 + b)) + V7 0,b° - g°d,u’), (4.19)
and using the Leibniz formula again,

8;‘((u5 +u®)0,b° — g°0u” — (1 + b°)0.u° +1v°0,b° — gg(?yus)
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= O)(u’ + u®)db° — 8)8°0,u° — (1 + b)du® + IV 0,b° — 8,8°0yu’
+u' + u)B05b° — gFRu° — (1 + b*)d,Oyu° + V0" — g°du’
+ Z CHolu* + u)d,0377b" - 3ig°dy Tuf — BI(1 + b°),9}
1<,<3
+0v° 05 b° - 8jg"0 ). (4.20)
Thus, using (4.9), (4.15), and (4.20), we derive
aSbslyzo
= —(BOD° + 40, 0,u°)0 0y y—g — Oyb(40,05u° + 2870,b%)]y—0
+(40,05D° + 2070,u")B,u° |, + O:0yb(3IU° + 40,0,b°),=0
+3051°0,0,b°|,— + Oy’ (40,0)b° + 2070,u°) =0
+68(020,u°8,0,b° — 820,b°0,0,u° )|y~
+ ) CHOJw + u)d,0y b - 8jg"d)Iut = B](1 + b)0, I u?
1<j<3

+a§;\)€(r)§_jbg _ af)g&af—]us) (421)

Similar to (3.8) and (3.9), we can deduce the desired results. Additionally, we can see that the
equalities (3.21) and (3.24) are different from (4.18) and (4.21), respectively. It is obviously that the
underlined terms are new terms. The proof is completed. O.

According to the relational expressions of the compatibility conditions (ug,by) and (i, b)),
respectively, we can also obtain the expression of the corrector terms 8§i (ui,145), (0 <i <3). Thus, we
have the following corollary.

Corollary 4.1. Assume that (ug, bj) satisfies the compatibility conditions (4.2) for the Eq (4.1) and
(ug, by) € L>([0, T];H,f ), then for any 0 < & < 1, there exists (uj,u5) € H,f , such that (ug, by) +

+1 +

e(uf, pu5) satisfies the compatibility conditions up to 6 order for the regularized system (4.1),

3
||M5||H;‘+,(R3) + ||bS||H,§+,<R3) < §(||Mo||H,§+,(R§) + ||bo||H,§+,<R3))a 4.22)

and

lim 15, 55) = (a0, b0l s2) = 0. (4.23)

Proof: We use the proof of the Proposition 4.1 to prove this corollary. Taking the value at ¢ = O for (4.5)
we have the following functions (uf, ¢5) from (4.5):

(@105, 0i00u5) = 0, xeR
and

Fyug(x,0) + £ (x, 0)
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= (0.0yup + £0,0,u7)(Oyug + £0yu7)(x, 0) + Oyu’ (0,0yuy + £0,0,17)(x, 0)
—(0ybo + €0,u5)(0,0,bg + £0,0,15)(x, 0).

Therefore, we get

ﬁi,u‘f(x, 0) = 0.0,updyu7(x, 0) + Oyup0,0yui(x, 0) + £0,u;0,0,u7(x, 0)

+0,15(0)0,0,f1 (x, 0) — 0ybg 0,015 (x, 0) — 0,0,bo0yi5(x, 0) — £0,u50,0,145(x, 0).

Likewise, we can also derive that uf satisfies

8;‘/13 = =3(0,bo0,0yu7 + 00,0yt + £0,0,u50,145)
+3(0yup 0,055 + 0,0,boOyu] + 0,0, 150,147) + 30,u(0)0. 0,15

Taking the values at ¢ = 0 for (4.19), we attain a restraint condition for ((95;1‘? , 8§,u§ ,

O (x,0) = =2(830,body 5 + 030,1150,u0 + £070,1150,5)(x, 0)
(0.0 uoO 5 + 0,0,1150 1o + £0,0,150145)(x, 0)
+6§u58x3y,uf(x, 0) — 20,u*820,u5(x, 0)
—(83b00. 0115 + 01150, 0yby + 051150, 0,5)(x, 0)
+2(0,bo020, 115 + Dyu5020yup + €0 UEFOUE)(x, 0)
+2(0,0ybg020,bg + £0,0,U5020,by + £0,0,bo020, 115 + £70,0,u5020,15)(x, 0)
—2(8)2C8yu08x8yu0 + 8(9)2C6yu0(')x6y/1‘»f + sazﬁy,u 10,0,up + szﬁzﬁy,ulﬁ Oyui)(x, 0)
+ Z C;(@;(us + uo)axﬁi_" Ui+ 0;,@6)56;_] uy + saiy‘f@x@ff_]u‘f)(x, 0)

1<j<3
- Z CH(0,0] o3 /s + 0,07 1503 ug + 20,00 150115 ) (x, 0)

1<j<3
— > Ci(8Ibod. 0y s + 5005 by + 05005 115 )(x, 0

Jj OJCyIJZ yl’LZXy 0 ylu2xyl'l2(’)

1<j<3

+ ) CH0.0] bod s + 0,0] 50 by + £0,0] 1503 15)(x, 0)

1<j<3
= ) Gl Tuy(0)0,0] ' 5 (x, 0).

1<j<3

Similar to above,

(93/15 = —3(6$b08x8y,u“f + 83/158 Oyup + 8(9),1158 Oyt)ly=0
+4(20,0,u00, 0y + £0,0,170,0,u7)ly=0
—4(8ybo0. O + 0,150, 03ug + £0,150, 005 y=0
—2(8,bo020, 15 + Dyt aza ,bo + 80415020485 ]y=0
+4(0, 63b08y,u1 +0 ay,lza Uy + £0,0° 50,1 )] y=0
+2(020,u0 0, + O20uED Uy + 8020, 1ED ) =0

(4.24)

(4.25)

(4.26)

(4.27)
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+3(0:0,bo03 5 + 0,0,1503u + €0, D500
+4(0,0,bod Ot + OxOu150,0,bo + £0x0u1150,0,415) =0
+305u3(0)0, 0,115 ]y—0 + O, (0)(40, 03115 + 200,115 s—o
+6(0,0,bo020,11g + £0,0,bod20,E + ga O 5020l + £20,0,15020,15)] =0
6(826 by0,0yug + 80 0ybo0, 0y + sazay,u 0,0yup + 8628) 50:0,u7)y=0
+ ), CHOIW + 0.0y 4 + B)450.0) bo + s0)u50,05 /45 ) (x, 0)

1<j<3

+ Z Cj(ax(?;‘lboai—fﬂf + 3xa§:_lu23§_j U + sﬁxai_lugai_juf)(x, 0)
1<j<3
- Z C?(o');'boax@i‘_j My + aiﬂiaxaﬁ_j uy + 88§p§0x8§_ju‘f)(x, 0)
1<j<3
- Z Cﬁ(axﬁi‘luoéf‘fﬂi + (?xai_l,u‘fﬁg‘j by + saxﬁ}’;_lu‘fai_jug)(x, 0)
1<j<3
Z 4 95— Jj—1
+ Cja MO(O)a 6 M5 5(x,0). (4.28)

1<j<3

It is clear that (0§u§(x, 0), Gguﬁ(x, 0)) are determined by the low order derivatives of (uf,u5) and
those of initial data (uq, by). The underlined terms in (4.27) and (4.28) are deduced from the underlined
terms in (4.18) and (4.21), respectively. All these underlined terms are from the added regularizing
terms £0%u® and £92b° in the Eqs (4.1), ,, respectively. This means that the regularizing terms 92u® and
0%b® have an affect on the boundary. This also explains why we add corrector terms for the initial data
in (4.1);.

We now construct the polynomial functions uf(x, y) and u5(x, y) on y by the following forms

30 y0
Ai(x,y) = #1(X) and 5 (x,y) = /«lz(x) (4.29)

where
KE(x) = 2(8,0,bo020yb — 020,100, 0,10) and p5(x) = 6(8.0,bo020, 1y — 520,bo0,0, ).

We take ui(x,y) = «(Ei(x,y) and p5(x,y) = «()5(x,y) with « € C(R,); k(y) = 1,y €
[0, 1]; k(y) = 0,y > 2. Thus, the proof is completed. m]

Remark 4.1. Actually, if we take (u5(x,y), u5(x,y)) with

Of;uf(x, 0) = 0and Gfuz(x 0)=0,0<,<5,
then (4.27) and (4.28) imply

y,u](x 0) = —2626 Moa 0 U + 20,0 boa 0 bo,
LE(x, 0) = 60:ybodDto — F2,bodsdto)

which are not equal to zero, respectively. Thus, it is necessary to add the corrector terms uf and 5 for
the initial data of the regularized system, respectively.
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5. The approximate solutions of the MHD boundary layer equations

In this section, we prove the existence of approximate solutions by establishing a series of the
estimates of solutions for the nonlinear MHD boundary layer problem (4.1). To be more specific, we
plan to complete the proof of the solution for problem (4.1) by the following two subsections. In the
first subsection, we will attain the weighted estimates for D*(u, b) for a@ = (8, k) = (B1, 52, k), satisfying
a = |B|+k < 4 and |B| < 3, and the weighted estimates for Df(u, h) with |8| = 4 in the second subsection.

First, we introduce the following lemma, which is helpful to deal with the boundary value.

Lemma 5.1. ( [I]) Let 1 < p < co. If U € W™P(R™), then its trace u belongs to the space B =
m—1
B,,"(R") and

llulls < KI|UIlwmpner),
with the constant K > 0 independent of U.

Corollary 5.1. Let 1 < p < co. If U € W™P(R"™Y), then its trace u belongs to the space W 1-P(R")
and

llzell 1oy < KINU |lwmp gty
with the constant K > 0 independent of U.
Proof: Since 1 < p < oo, it follows from the fact W "P(R") = F Zf;l(R”) and the embedding theorem

B;’}’]‘(R") SN F[’ZEI(R") in [24] that BZ:,; (R") — BZ’;I(R”) — Wm=lP(R™), which gives

”u”Wm—lw(Rn) <]l .1

m—=

B, ," (R")

Together with Lemma 5.1, this completes the proof.

5.1. Weighted H}!,, with normal derivatives

We use energy methods to establish the weighted estimates for D*(u, b) with « = (B, k) = (81, B2, k),
a = |B| + k < 4, and |B| < 3. That is, we have the following lemma.

Lemma 5.2. Let k > % [ > 0 be real numbers. Assume that (u®,v?, g%, b®) is a solution to the problem
(4.1) in [0, T] and satisfies (u®,b%) € L*([0, T];H,f+l), then there exists a positive constant C, which

may be dependent on k, [ such that

d
(ZID" @ YOI, -+ lID" 00", bYW, + D9, ", b))
la|<4, |B8]<3

< ClI@ BN+ CINs, Ol - (5.1
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Proof: Applying the operator D* = 658’; on (4.1);, fora = (B, k) = (81,5, k) satisfying @ = |B| +k < 4
and |B| < 3,

0, D’ — 86§D“ & = 6§D“u8 - D“((u‘ + u®)0u® + veo,u’
~(1+ 69)0,b° — g°9,b° + Vo),

0;,Db® — £0°Db* = 8§D"b8 - D“((us +u)0,b° +v°0,b°
—(1 +b%)0u® — g°oyu’® — ggc')yus).

(5.2)

Multiplying the resulting Eqs (5.2), , by (»)***D?u® and (y)***'D*b*, respectively, and integrating
it by parts over R2, we derive that

1d
2dt

= f o WD dxdy + f 2 ry - (WD dxdy (5.3)
R2 R2

+ f O2D"u° - (y)***' D utdxdy + f 02D°b° - (y)****' Db dxdy,
R2 R2

Y D@, b)) + el D8 (", b)),

where

ri 2 =D + ) + VOt — (1 +b9)0b° — g°0,b° +v°ou’),
r 2 —D"((us +u®)0:b® +v°0,b° — (1 + b*)0u® — g°0,u® — g’st?yu").

Next, we will establish the estimates of the righthand side of nonlinear terms (5.3). First of all, we
deal with the first second terms. By the definitions of r; and r,, we have

r = —(( + u*)0, D" +v°0,Du — (1 + b*)3,D°b° - g°0,D"b°)
~(ID, @ + u?)1d.u® + [D*,v¥10,u° — [D*, (1 + b*)10,b° — [D°, g°16,b°)
+D*(v*oyu’)
L4+,

ry = ~((u + u*)3,Db" + v°0, Db — (1 + b*)3,Du° - g°9,D"u°)
—([D", (W' + uf)]0.b° + [D*,v¥18,b° — [D*, (1 + b*)1du — [D?, gs]ayus)
—-D"(g°0,u’)
L+ +r.

Therefore, we can divide the term

f - <y>2k+21Dau£dxdy + ro - <y>2k+21Da/b£dxdy,
R}

into the following three parts:

f r- WD dxdy + 1y - () Db dxdy

R}
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f rli A <y>2k+21Da/u8dxdy + ré X <y>2k+21Da/b8dxdy
RZ

+

1

é11+12+13,

3
=1

and the estimates of each term /; are as follows.
The estimate for /;:

f r% . <y>2k+21Dausdxdy + }’% X <y>2k+21Da/bsdxdy
R

=20k +1) f Y2, g YD uPdxdy + Db P)dxdy
R}

< CI07, gl 21 D e, b9,

< Cll@e, D)l )

where we have used the integration by parts.
The estimate for /,:
Notice that

2 a. £ 2 a7.E
<
L < 1R D"z, + 173l D6z

(5.4)

(5.5)

(5.6)

Therefore, we need to establish the estimates of the terms ||r12|| 2, and ||r§|| 2, However, we know
+ +
that the terms in ||| 12,, are similar to the terms in Il 12,,» S0 we will estimate only the L7, of ri.
+ +

For the commutator operator, we can rewrite it as

(D7, (' + w0 = > CL (W + u) "D,

a<a, 1<t
then for a < 4, we can obtain
5 2
D", " + u oz, < Clullg, + Iy, ).
Note that
(D)o = ) Ciafvo o,

a<a, 1<

Since 1 < |a], & < a, we have for |@ — &| < 3,

A Y
& e _ k €5 —
-0 _afayfo 0u dy—{

Thus, using Lemma 2.2, we can arrive at

6§1+ezaly<—€3ua, ]AC > 1,
y A ~ ~

f a§+e2ua 5, k=0.

10242085 ur 0, (1, M2 < Cllllpgs Nl
T y yeEAL AL, = H, Hy

and

10520001, iz, < Cllllgs 1l

AIMS Mathematics
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Combining (5.7) with (5.8), we derive
D" 18,z < CllI, -
Similarly, we also have
D%, (1 +b710:6)I1z, < CIB gz, + 16710 )

k+1

and
110", 10,8z, < CIBIL
Using the above three inequalities, we can attain
1711z, < CUIE Bl + 1, BN, ): (5.9)
+ + k+l
Similar to above for L; , of r3, we conclude that
12112, < CUIE, Bl + 1, BN, ) (5.10)
+ + k+l
Inserting (5.9) and (5.10) into (5.6), we have
L < C(||(u8,b€)||§12+[ + ||(u€,b8)||§1: 1)' (5.11)

The estimate for /5:
By a direct computation, we can get for |5| > 1, k + |8| < 4,

afl aﬂizal;(vsu}s)

|a|=B1+B2+k<4, k>1

LS v

la|<4, k=k'>1,8]<p1<3

_ K B Pl aBr+1 ak'—1 1B qk—k'+1 s
= Z CkCﬁ:ﬁf‘(')fz a9, vaa‘f 10,

lal<4, k>k'>1,8,<B1<3
Thus, for || < 4, we can get
@ < S < &
10"l < Clllgs -
Analogously, for |a| < 4, we also can derive
104 EONAY < &
107 u)llz, < CIb°lys -
Combining the above two inequalities with |a| < 4, we have

I3 < Cll(ug,bg)lli,2”. (5.12)
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Hence, we infer from (5.5), (5.11), and (5.12),
| f - OYD U dxdy + vy - (VD b dxdy| < OIS DO, + 6D, ). (5.13)
Rgr k+l k+l

In the following part, we will estimate the remainder terms. We first deal with the term
fM (YD E - D*utdxdy. Similarly, ng (¥*H2Db? - D*b*dxdy can be derived. Integrating
it by parts and using the boundary value (4.2), we arrive at

fk; <y>2k+ZIa§Daus . Dwusdxdy

= —[l** P8, D w7, = 20k + 1) f W*216,D - D udxdy
R2

+

+ f AyD*u* D" u®|,—odx. (5.14)
R
Applying the Cauchy-Schwarz inequality, we can get

1
2(k + 1 f 0,0 - D W dxdy < |, + Cllulll, (5.15)
R%r 8 k+l k+l
Now, we study the last term in (5.14), that is the boundary integral fR 0,Du?® D*u®|,—odx. By a direct
calculation, we know the boundary integral fRayDaugD“u‘glFodx = 0 when the cases are k = 1,2.

Therefore, we only consider the cases k = 3, 4.
Case 1: |5| = 1, k = 3, using Corollary 5.1 and the boundary conditions y = 0, we lead to

| f 00} - 9,0 |-odlx|

R
< [10:(0:0yuByu® + 8. Dyu” By’ — 0,0,b°0,b°|,0)l|0-05u° =0l
< [10:0,(8x0,u°Oyu” + Bx0,u°Dyu® — 8,0,b°0,b°)|[110:031°)|

1 e112 £112 e 1.&\[4
< - , . .
< S0l +Clully, + I )l (5.16)

Case 2: i = fr =0,k =4, ie., | [ 9,05 - 0.5, odx|

The estimate of this term is the main obstacle. Since there is a higher order partial derivation in y
on the boundary value, we use the Eq (4.1),, Corollary 5.1 and the boundary conditions to overcome
this difficulty. We first get the boundary value of 6§u8|y20 by using the Eq (4.1),,

O = 830" — e + (u* +u)du° + v O,u° — (1 + b0 D° — g°0,b° + Vo),
then using the boundary value (4.2), we can obtain
| fR 0D - 0.0 odlx

= | fR a;(atus - e@ius + (' + u®)0u’ +voout — (1 +b°)0,b° — g°0,b° + vsayw)

AIMS Mathematics Volume 9, Issue 3, 5294-5329.
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X(8:0,u 0, + 0,0, Dy’ = 90,0, y=odlx|
= | ‘fR ((9,8§u5 - eai(?;’u‘g + U’ + us)é?x@i & — (9x0§b5)
X(8.0,u 0, + 0,0, 0y’ = 3,0y, =odd x| (5.17)

From the above equality, we only establish the estimate of the term, which contains the term 379, u°
by performing an integration by parts in x and using Corollary 5.1; This is the main difficulty. Its
estimate shows as follows

- fR O203u°(0,0,u° Oy + 0,0,u°0\u° — B, 0,b°0, b )|,=odlx

- f 0,037 00,0y O + B, Dyu°Dyut’ — B,0,b°0,b° )|y-odx
R

< (10,030 _oll0.( 8.0y 0y + B, Dyu°Dyut” = B,0,b°0,b° )|yl

< 110,830 10,0y (8,0,u° Dy + B, Dyu° Dyut” — 8, 0,0, b° )|

1 £112 £112 e 1.&8\14
< 10,01+ CleIy, -+ CllGe, B (5.18)

Other terms are direct calculations in (5.17) by using the Holder and Young’s inequalities and
Corollary 5.1. Hence, we deduce

0.0 - 0,941, 0d| < SO IR + CIWE DR, + CINe, b 5.19

| 0 000 o] < GO+ CIGE DO + CINWE B (5.19)

Inserting (5.15), (5.16) and (5.19) into (5.14), we arrive at

5
‘ f 0D - (y>2k+2’D“usa’xa’y| < —§||ayu8||§,f +CINE, DO+ CINGE, D) (5.20)
R+ <+ +

k+l

Similar to (5.20), we easily conclude that

5
| L BD - (YD b dxdy| < =SB, + CIW D, + OB . (5.2D)

+

Plugging (5.13), (5.20) and (5.21) into (5.3), yields (5.1). The proof is thus completed. O

Lemma 5.3. Let k > % [ > 0 be real numbers. Assume that (u®,v?, g%, b®) is a solution to the problem

(4.1) in [0, T] and satisfies (u®,b%) € L*([0, T];H,f+l), then there exists a positive constant C, which
may be dependent on k, [ such that

d
2 (N b)Y, + 00, bYOIE, + 11086, b))
BI=4

C
< I D+ CIE B+ — I B (5.22)
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Proof: Applying the operator & = 887 on (4.1),, and || = 8| + |B,] = 4

8,08u° — 02 ue = ai(fu‘g — (9?((14‘ + u)0 U’ + Voo uf
—(1 + b*)0,b° — g°0,b° +v°ou’),

0,05b° — £02b° = B29b° — Y ((w® + ue)d.b° +v°0,b°
—(1 +b%)0u® — g°ou’® — ggc')yus).

(5.23)

Multiplying the resulting Eqs (5.23), , by (0**2@u® and (y)**2db?, respectively, and integrating
it by parts over R?, we derive that

> dt||<y>k”c9[”(u b )DI7, + ellyY 0, b))

= f R, - ()Y Pufdxdy + f R, - (y)Y* 2 Pb*dxdy (5.24)
R

RZ

+

+ f aﬁaﬁue . (y)2k+218fu€dxdy + f aiafbs . (y>2k+21(9fb’sdxdy,
R2 R2

where

R = —65((u5 +u®)0u® +veou® — (1 + b%)0,b* — g°0,b° + vgc')yus),
R, = —8‘5((145 +u®)0,b® +v°0,b° — (1 + b*)0u® — g°0,u® — g“’(?yus).

Next, we will establish the estimates of the righthand side terms (5.24). First of all, we deal with
the first second terms. By the definitions of R; and R,, we have

= —((u + uf)0, P’ +v°0, Fuf — (1 + b0, (9Bb‘9—g86 (9Eb8)
([a‘j, (@ + u®)]0 + [0, v10,u° — (02, (1 + b)10.b° — (6%, g°10,1°)
+ (v O,u’)
£ R +RI+ R,
(@ +u*)3,02b° + v0,0b° — (1 + b°)d,ur — g°0,0u°)
(107, (u* + )b + (07, v10,b° — [0, (1 + b)10,ue” — 6%, g°10yue”)
—~07(g" D)
2R +R+R;.

Hence, we can divide the term
‘fm;z Rl . <y>2k+218§M€dXdy + R2 . <y>2k+216§b8d)(fdy
into the following three parts:

f R] . <y>2k+216§usdxdy + R2 . <y>2k+216§b8dxdy
RZ

3
= Z f R - ()Y Pufdxdy + R) - (y)y* ! 0Pb*dxdy (5.25)
i=1

A
FAN)
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é.]1-|‘.]2+.]3,

and the estimates of each term J; are as follows.
The estimate for J;:

f R} . <y>2k+21(9€usdxdy + Ré . <y>2k+21(9fb8d)€dy
R%

=2k+1D) f W0, g0 (0ulPdxdy +192b° P d xdy
R}

< CIIOS, gl 21w, )17,
< Cll@®, 62l 1w, b g

where we have used integration by parts.
The estimate for J,:
Notice that

2 . £ 2 &
<
Iy < IRz Dl + IRl 86Tl

(5.26)

(5.27)

Therefore, we need to establish the estimates of the terms IIR%H 2, and |IR§I| 2, However, we know

that the terms in ||R3||,> are similar to the terms in [|R]]|2 , so we will estimate only the L? , of R.
k+l k+l

For the commutator operator, we can rewrite it as

[, (u® + u*)]0u® = Z Cﬁ@é(us + ug)aﬁ‘ﬁaxui
B<B, 1<B
then, for |8] = 4, we can obtain
I e + u oz, < CQlellys, + I ).
+ + k+l
Note that o A
[P0 = > v Four,
B<B, 1<B
Since 1 < |3], 8 < 8, we have for |3 — 3| < 3,

. LY y
—0Pv° = (ff u°dy = f Freutdy.
0 0
Thus, we have
1B P Poue(r, Mz, < Clellys 1l
1.e.,
100, V10,2, < ClleIR
Similarly,

I, (1 + 621062 < CUIB° Mg, + 1B, )
k+1 k+l K+l
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and
112, 810,87,z < ClIb*IE -
+ k+l
Combining the above inequalities, we can attain

IRz, < CAIGE, D), + 1", B ) (5.28)
Similar to the above estimates for L,f L of R?, we can conclude that
IR3lzz, < DO, + 11, BN ). (5.29)
Inserting (5.28) and (5.29) into (5.27), we have
Jr < C(||(u8,b8)||f12” + ||(u8,b£)||2:+l)- (5.30)

The estimate for J5:
By a direct computation, we can attain that || = 4,

6,61652(\/8”;)
1BI=1811+B21=4
S vt
1B11+1B21=4, B1<B1
> bt

1B11+1B21=4, B <B:

(')‘f(vgu‘y")

Therefore, |8| = 4, and we can get
1RO Ul < CllO )z
Analogously, || = 4, and we can also derive
10Uz, < ClALOEDI 2
Combining the above two inequalities with |8| = 4, we have
€ £ L,E|I12 C £ 1.€\]12
J3 < Ellﬁf(u SOOI+ =@, D)l - (5.31)
k+1 E k+1
Hence, we infer from (5.26), (5.30) and (5.31),
'f Rl . <y>2k+2la§usdxdy + R2 . <y>2k+218§b£dxdy‘
R}
< O DG, + 16,50, ). (5.32)

Now, we deal with the last two terms in (5.24). We first estimate the term ﬁ%z <y)2k+2’8§6{fus-6fusdxdy.
Similarly, the term &2 <y)2"+2’8§6‘5b€ - 8?bdxdy can be derived.
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Integrating it by parts and using the boundary value (4.2) and the Cauchy-Schwarz inequality, we
arrive at

f aiafus . <y>2k+21(9§M8dXdy
R

= =Ky **P0,08u°17, — 2(k + 1) f Oyu” - () Pt dxdy
RZ

+

1
Y PN, + SN0,y + Clllye
1 £112 £112
< =S IRaulll, + Cliully, - (5.33)
Similarly, we can deduce that
1
f 03007 - (Y bt dxdy < —=|1050,b°12, + CIIb°IlT,s - (5.34)
RE— 2 T+l k+l
Plugging (5.32)—(5.34) into (5.24), we can conclude the desired result. The proof is completed.

5.2. Weighted H,‘(‘H only in tangential derivatives

To investigate the existence of solution to problem (4.1), we encounter some difficulties. Similar to
the Prandtl equation, the difficulty of solving problem (4.1) in the Sobolev framework is the loss of the
x-derivative in the terms v*0,u® — g°0,b® and v*0,b° — g°0,u® in the first and second equations of (4.1),
respectively. In other words, v* = -0} 10,u® and g = -d; 16,b%, by the divergence-free conditions and
boundary conditions. Thus, it creates a loss of the x-derivative and a y-integration to the y-variable,
then the standard energy estimates do not work. To overcome this essential difficulty, inspired by recent
results in [7, 14], we only need the background tangential magnetic field (1 + ) > 6, 6 > 0 to have a
lower positive bound instead of Oleinik’s monotonicity assumption on the tangential velocity.

We now apply the differential operator 8‘f.(l,8| = 4) to the first two equations of (4.1). We have that

0, — 63 - 8(9)2( + (' + u®)o, + v“;@y)(fu‘9 + wa?yus

—(1 + b%)8,0°b° — Pg°0,b° + FVv°O,u° = r,e (5.35)
and
(0, — 0; — €0 + (U’ + u*)0, + "0’ + Fovd,b°
—(1 + b°)0,0°u° — 6§g86yu8 - (9fg‘98yus = e, (5.36)
where
re=— Y VP — [, (u + u)dJu + [, (1 + b)9,1b°
0<B<pB
+[62,0,b°1g° — [8°, 0,u’V* (5.37)
and

P == ) VPO — [, (u + u)O b + [, (1 + b, Juf
0<B<B
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+[0, 0,u1g°" + [0, 0,u’v°. (5.38)

Exploiting the expression (5.37) and the commutator operator, the L¥ -estimates of each terms
in (5.37) can be controlled, then we can conclude the estimates of ||r,:|| 2, and ||rpe|| 2, We establish
the estimate of the term ||| 2, by using the inequalities (2.2) and (2.3), and we derive

Iraellz | < CQlle 15N+ 1%, %)l ). (5.39)
The term ||rp=|| 12, can be estimated similarly:
Irellzz < CQ s 16N+ ", Bl ). (5.40)

Next, we consider the Eqgs (5.35) and (5.36). It is obvious that the major difficulty derives from the
terms

I ou° + I ou’ — 8igeo,b° = —(Byu° + O, 05 u) + 8, 92 b° 9, b° (5.41)
and
IO b° — (g 0u° + g 0u’) = —(8;' 02 u)0,b° + (Dyu° + Oyu) (8, 022 D°), (5.42)

which imply the 5"-order tangential derivatives, and they cannot be controlled by the standard energy
estimates.

To overcome this difficulty, inspired by recent results of [14], we depend on the following two main
observations. One is that from the divergence-free condition 0,b° + d,g° = 0, we give a stream funtion
Y? satisfing

O® = b°, 0" = =g°, Yl =0, (5.43)
then, using the Eq (4.1),, we can derive
(0, — 0; — €0 + (u’ + u"), + VO )Y° +1° = 0.
We apply the differential operator & to the above equation as follows
0 — 8} — £0% + (U + u®)d +V°0)W° + F°(1 + b°) = rye, (5.44)
where

Fye = —[8°, (u* + u®)o, 1y — Z a‘;—ﬁvgaéayw.

1<|B1<|8I<3

At the moment, by using the inequalities (2.2) and (2.3) and the commutator operator, we can
conclude the following estimate that |5| < 4,

Y rgellzz < IY1DE, @ + w20 oo + Y > v oo
B<p
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< I Y P + ol + I D v oy,

B<B B<B
< CC+ I llg i, + el 16
< CA A+ Il g2l g - (5.45)
We set &, = a"“::f;‘” nd & = 1 bg _ and introduce the followmg two new unknown functions
uf + ou’
¢ = 0Pu — ¥am b= 0P — aﬂ 5.46
O T T e Y g 1+b8T (40

On the other hand, we use the above two given unknown functions (1%, ﬁ) in (5.46) to deal with the
loss regularity of g% = —0;18xb‘9 by using the convection terms —(1 + b%)d,b° and —(1 + b*)0..u®. More
specifically,

—(1 + b°)8,0°b° — 8Pg°0,b°
= —(1 + b°)d,(bj + ?) - g o,b°
= —(1 + b°)0,b5 — (1 + b°)0.&,,000°, (5.47)

and
—(1 + b0, 0°u° — g°0,u° — Fg°o,u’
& & 8yl/t€ + 8yu5 £ & & & s
=—(1+ b )0x(l/tﬁ + W&flﬁ ) - 5§g 8yu — 8§g 8yu
= —(1+ 5905 — (1 + B)0,E0 Py, (5.48)

which combined with (5.35) and (5.36), we can derive the following equations of (13, b;)

(6[ - 05 - 86)26 + (us + Ms)ax + Vsay)uz - (1 + bg)axbg = rws,us, (5 49)
(0, — 0} — 0% + (' + u)O, + VEObE — (1 + b°)0 1ty = Tye e '
where

Tyeye = Vye — fuel",pe 03¢8(5t 02 - 862 + (1/[ + us)a + V%0 )é‘:us

+280,&,0,000° + 280,800, aﬂw + (1 + b9, &%, (5.50)

Tye pe = Fps — fber,pe aflﬂg(at 03 - 80)2( + (1/[ + l/lg)a + Vsay)gbe )

+280,£4:0, O + 280,E: 0,000 + (1 + b2)D &1 Ob®.

We can also get the following initial and boundary conditions
u;|t=0 = (95148(0, xX,y) = 6yu6(01’i,;2(+08§cu;)(07xy) fo b°(0, x, y)dy = M
bili—o = 32b°(0, x, y) ;’f;f(‘;);?) [ 92b°(0, x,5)d5 = b, (5.51)

Ugly=0 = 0, bgly—0 =
Finally, we derive the initial boundary value problem for (ug, by) as follows
(0 = 0} — 807 + (U° + uP)D + V70U = Ty ey
(0, — 62 — 0% + (u* + u®)d, + v°0, DG = rye e, (5.52)
(l/l ) )ly 0 — O (Lt ’ )lt 0 — ( 50> 0),
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where the initial date (b2 207 bgo) and (rye 4, rye pe) are given by (5.50) and (5.51), respectively.

Moreover, since ¢ = 6},1b5, Yly=0 = 0, we deduce

||(9§‘//£(t)||L2(R;Lw(R+)) < C||5§bg(t)||L2‘

(5.53)

According to the expressions of &,- and &,- and the Sobolev embedding inequality, we derive that

forl <A<k,

0uf + oy’
) W”Lwa&i)

1<y) dyu
< ||<}’>Am||m(mi) W“L ®R2)

< C& (Y 0yl + Y llpozzy)
< C6 ' (Il + 1)

1Y €l = 1Ky

Analogously, we also have

which combined with (5.39),(5.40), (5.45), (5.53), and (5.54), we can infer that for |5] = 4

AIMS Mathematics

1) Epllez) < CSH I s
1Y 0séiell ozy < €6~ 1“”8”H4 + C2(1 + Nl DN,

108, llcezy < €71+ Nllgs )+ €21+ [l 1oL,

10, Eellioy < €67 (1 + ullze) + C2(1 + [l 0¥l
1036,y < €6l + €831+ [l ol
+Co(1 + [l IR
1826 llg < €6~ ufllye + C72(1 + ||u€||Ha,l)||b€||H3
+CO(1+ NI
1099l < CS ¥l + CO 2P
K9 By llimgez) < CO 1B ys + CO2LPI
10,6l < Co 1L + Co 1B
16261 lme) < CO™ 7l + CO 2B, + Co b
102€elcey < O™l + CO 2R, + Co b

H )’

HY )’

H’

HY’

I aelliz,
<Mrellz, + erpelle, + 10007, = 62 — 02 + (u* + Uy + V'O )l

¥26ll0,£,00,080°N 2 + 26l0,6,0,80° 2 + (1 + b2)D, 02
< C(llellys 16N + 110, Bl )

-1 -2
+CNIED sz (6 el + 6721 + Nl DIIE s

-3 & £112 —1yy,,&112 —2 & 2111
400+ g JIONs + 67+ 670+ el 10 )

+Cell0,08b 1z (6 N llgs + 672 + el I )

(5.54)

(5.55)
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+C(1 + 11611 )& 163 + 5_2||b€||§,3)||<9§b8||%

(el + DA+ N5,
< Celld: 507Nz, (1 + 11, bl MW, byt
+CO (1 11", Dl I, Dl - (5.56)

Similarly, we can derive that

-3 e 1.8\[12 £ 1.€
lIrgearllz, < CO7 (4118, B I, bl

+Cell0: 02072 (1 + 110, 5Vl NI, %)l (5.57)

Now, we will conclude the following Li ,-horms of (u, b‘;).

Lemma 5.4. We have the following estimate of (uz, b;) given in (5.46),

d
2 (GG I, + elldtu. B, +110, G 5O, )

1Bl=4
—6 £ 1.&\||12 2 —1 £ 1.& 4 e 1.&8\(2
< G+ 1, D )7+ €O (1 + 11w, D7)l ) éll(uﬁ,bﬁ)lle+[
&0 I
o M; 10:56°11 . (5.58)

Proof:  Similar to the proof of Lemma 5.3, multiplying (5.49);, by (»)***Vug and (y)***Vb7
respectively, and integrating it by parts over Qr, we deduce that

1 d Fol < 2 & c 2 c . 2
% (EE”(M,B, bp) DIl + &ll0x(ut, bR)ONI 1 + 110y (ut, L) O Liﬂ)

= > 2tk +1D fR O gl + 15 xdy fR O b xdy

=4

+2(k + 1) f O @y + 0,bbg)dxdy
R+
4
+ f 2 OY D (rye ety + rws’bsbfg)dxdy) = > I, (5.59)
R+ =1

1

where we have used the boundary conditions (5.52); and (v*, b%)|,— = 0.
Next, we deal with the estimates of the righthand side terms of (5.59) as follows. By the Sobolev
inequality, we first establish the estimate of term J;,

1< VG BEIR, < Cllu gl BRI, - (5.60)
Similar to (5.60), exploiting the Sobolev inequality and Young inequality, we can obtain

ol < I g B (5.61)
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and
- 1
il < 516, BRI+ Cll B, (5.62)
For J,, using (5.56), (5.57), and Young inequality, we infer

7 2 2
al < Mrgeelliz Nl + reselzz IBGIE,
-3 2
< (67 + 1 DO w6,
+

+FCellg b sz, (1 + 11", 5Vl DI, 5l NG BRIz,
< CO0(1 + 1", B )%+ 671 (L 1™, 6l ) 1aa, DI

&0 o2
+ 7 10.9°1, (5.63)

Substituting (5.60)—(5.63) into (5.59) and taking the summation over all |[5| = 4 in (5.59), we can
derive the desired result (5.58). The proof is therefore completed.

Up to now, we have completed the main estimates of the solutions (u°, b®) for (4.1). However,
Lemma 5.4 gives the estimates of (i, bg); Thus, we need to show the equivalence in the Li ,,-horm

between ((?fzf, 6fb8) and (1%, bg) given by (5.46).

Lemma 5.5. If the smooth function (u®, b®) satisfies the problem (4.1) in [0,T] and the tangential
magnetic field has a lower positive bound , then for ¥t € [0,T), k > 1, | > 0, and the equality (u3, b;)
with |B| = 4 defined by (5.46), we conclude

YOI, Dz < 1w, bz | < v, db)Ip2 (5.64)
and
10.026%11 52, < 10:b51.z, + 10,671y, 10Dz
S L | P 1 P s 0 1 PO 1 P (5.65)
where
y(@) = 67" A+ 110,00, D) z2)): (5.66)

Proof: According to the definitions of ug and b; in (5.46) and using the equalities (2.2) and (2.3), we
can derive from (5.53),

IA

-1
||5§u‘9||Lz+[+||§us||Lw (Ri)”@) éfwslly

k+1+1

1Eule, + 67 (L + 10,0l o2 IOPB) 22 (5.67)

&
ez

IA

and
-1
b5, < 1Bl + Emlle | @ ) Ul
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< 10N, + 6 N0, e 02D (5.68)
Therefore, we derive
g B9z, < YO, 67,2 (5.69)

On the other hand, since the equality d,y* = b® and expression of b7 in (5.46),

£ ._ & 8)’b8 & afl!’g
b = 0" = " = (1 + 0907 57),

which gives that by 5‘5&//8|y:0 =0

& 1+b " bptny) d 5.70
& t’ b = + © t, b : y .7
WOt x,y) = ( (1, x, ) fo T+ o) (5.70)
and combined with (5.46), we attain
bi(txy)
Fus = Uy + (Oyu® + Oyu’) - Oy H’Zé([j})d
D o (5.71)
b° = bﬁ +0,b% - | 1erg(my)d
Thus, we have for k > 1,
b (1, %, 5)

"y
-1 ~
1Bl < e+ 10,0l 1) f dill;z

byt x3) i
+||<y>f T3 b ’y)

1 +b2(t, x,5)

< lgllz, + Co™ 1+ 10,0, sz IIBG 2. (5.72)
Also,
1Bl < WBglie + Co7IOb e e 1B (5.73)
which gives
1Eu?, %) < () MG Bz (5.74)

provided that y(7) given (5.66). Hence, combining (5.69) with (5.74) implies (5.64).
Similar to (5.72), we also get the desired result (5.65). The proof is thus completed. O
In this part, we will complete the proof of Theorem 2.1. Similar to the proof of Proposition 3.6
in [14], by (2.1) we have

Y 0w, b2l < 671, fori=1,2, 1€ [0,T], (5.75)
which, combined with (5.46) and (5.66), it follows that for ¢ € (0, 1) small enough,

Y1) = 67+ 10,0, Mg, s2)) < 2672 (5.76)
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Since the operator D¥ = 6‘?8’;, from (5.64), we discover
DDt BYOIE + Y 1w, b,
|(Y|S4, |,B|S3 k+1 |ﬁ|:4 k+1

1D, b)Y, +4672 Y e, BYIE, - (5.77)
ll<4, |BI<3 ! = “

us bs 2
I, b9

IA

In this position, we show the energy estimate of the approximate solutions (#°, b®). Collecting some
established estimates (5.1), (5.58), (5.65), and (5.76) and adding together, then inserting (5.77) into the
resultant and using the Young inequality implies

d
(D IO +457 ) I B )

la|<4, |BI<3 BI=4

H( )L WD O, +467 ) 10,5 B )

lal<4, |8<3 |BI=4
-6 &g 1.8\(2 2 -2 g 1.8\]12 2 g 1.8\[2
< OO+ @, D)l ¥ + €872+ 1, bF) ) V;‘n(uﬁ,bﬁ)n%
3
-6 Q€ JE 2 -2 £ 1€ 2
<cof( Y I IR + 457 6 IR )
lal<4, |81<3 1BI=4
+C(62+67°). (5.78)
Define
Fo:= ) ID"GE BN +467 ) I, bHO: . (5.79)
lal<4, |81<3 |BI=4

Consequently, applying the nonlinear Gronwall inequality (Theorem 2, P362, [18]) in (5.78), we
have

Q€ LE 2 -2 £ 1€ 2
D, IDGE YOI +457 ) NG bH@

|r|<4, |BI<3 Bl=4

< (Fo+ (62 + 5901 = 2C55(Fo + (67 + 691} 2. (5.80)
Up to now, we have the following lemma.

Lemma 5.6. Under the assumptions of Theorem 2.1, there exists a positive constant C, which may be
dependent on k, 1, for some k > 1, | > 0, but independent of € and t such that

I(ue®, bg)(t)u;% < 1667%|(u, b)(0)||§{f+l, Vt e [0,T). (5.81)
Proof: First, invoking (5.77) and (5.80), we can derive that

lI(u?, bg)(t)lli,?” < (Fo+ (672 + 85001 = 2C5(Fy + (67 + 691} 2, (5.82)
then combining (5.79), (5.64), (5.66) with (4.22), we can lead to

Fo < €( )0 ID"@HOI; +467 ) s, b)), )

la|<4, |8<3 |BI=4
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< C57(u, b)(O)Ilfqg ; (5.83)
Hence, we can conclude the uniform estimates with respect to € € (0, 1) and V¢ € [0, T]

1(u®, bs)(z)||§{:+l < 1657l(u, b)(O)II;

H£+l,
provided that T be determined by (5.82) and (5.83) such that

3C1u, b)(O)Ili,;:H 510
(1+6% 7 64ClIw, )OI, }

k+1

T = min (5.84)

The proof is thus completed. O
Convergence and consistency

Using evolution Eq (4.1) and uniform H,‘: ., bound in (5.81), we conclude that (9,u®,d,b%) is
uniformly (in ) bounded in L*([0, T']; H,% .)- By the Lions-Aubin Lemma and the compact embedding

4 s opgas X . +
of H,,, in Hi o for 0 < ¢ < 1, taking a subsequence as g, — 07,

W™, b*) = (u,b) in L ([0,T1;H},) and u™,b™*) — (u,b) in C([0, T H{Py).

+1

Applying the local uniform convergence of (3*u®, 8*b*), we have the following pointwise convergence
of (v¥, g%): as g — 0%,

Y Y "y Y
g = (= [ owrar- [Coprar) - (- [ owdn- [ opd)= e 589
0 0 0 0

Now, we pass the limit in the problem (4.1) and conclude that (u,v,b, g) solves the original
problem (3.4). Hence, we finish the proof of Theorem 2.1.
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