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1. Introduction

Despite significant advances in treatment and prevention technologies, contagious diseases
continue to impact countless individuals globally. To limit the spread of these diseases, it is
imperative to maintain strict control over factors such as transmission routes, population size, rates of
human contact, duration of infection, and other critical parameters. Comprehending the behavior and
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management of pandemic diseases is particularly crucial during the initial infection phases or in the
absence of immunization. In this context, mathematical models play an indispensable role. In recent
years, scientists from various disciplines have delved into and researched numerous biological
models, (see [1–3] and references therein).

The recent global health crisis, termed the COVID-19 pandemic, stems from the emergence of a
novel coronavirus strain, SARS-CoV-2. This virus rapidly evolved into a significant worldwide
concern. It has affected millions, placing an unparalleled burden on healthcare infrastructures and
economies across the globe [4]. In the unyielding fight against this highly contagious and
ever-evolving virus, mathematical modeling has proven indispensable. Offering quantitative tools to
understand, simulate, and predict the virus’s spread, these models have been instrumental in guiding
public health measures and shaping policy decisions. Although mathematical modeling has been
valuable in past epidemics, its significance has been magnified during the COVID-19 outbreak, where
swift and informed decision-making has been crucial [5, 6].

Many systems pertinent to real-world scenarios exhibit crossover behavior. Modeling systems
based on this behavior has historically posed significant challenges. The transition from Markovian to
non-Markovian processes has unveiled a plethora of examples that highlight real-world complexities.
A prime illustration of this is in epidemiology, where the propagation of contagious diseases and
occasional chaos may be attributed to this transition. Numerous intricate real-world challenges,
including those involving chaos, have been articulated using the frameworks of piecewise integral and
differential operators [7]. The cited authors delineated three distinct scenarios to frame
deterministic-stochastic chaotic models and undertook numerical explorations of these constructs.
Additionally, piecewise differentiation has emerged as a potent tool in epidemiological modeling,
especially when challenges are presented by crossover dynamics [8, 9].

Piecewise operators represent a novel class of operators established by Atangana et al. [10].
Traditional Mittag-Leffler or exponential mappings in fractional calculus need to provide a precise
way to determine crossover time. A unique approach to piecewise derivation addressing this
challenge was proposed in [10]. Piecewise differential equations offer insights into the present and
serve as tools for future planning. Researchers employ these models to simulate diverse scenarios,
such as potential virus resurgence and implications of new policy decisions. Active exploration of
crossover behaviors with these operators is underway, with studies like [11, 12] utilizing them to
investigate qualitative characteristics of differential equations (DEs) and various infectious disease
models. Further applications of piecewise operators are showcased in [13–16].

Atangana et al. [9] extended the concept of epidemiology modeling to portray waves with varying
patterns, introducing a novel approach to ensure the existence and uniqueness of system solutions.
They present a piecewise numerical approach for deriving solutions, with an illustrative example
compared against data from Turkey, Spain, and Czechia, concluding that this method offers a new
perspective for understanding natural phenomena. Zeb et al. [17] introduces a piecewise mathematical
model for COVID-19 that incorporates a quarantine category and vaccination strategies. This model
is based on the SEIQR framework for epidemic modeling. The authors in [18] developed a
mathematical model using the Atangana–Baleanu fractional derivative to assess the Omicron variant
of COVID-19, exploring strategies for reducing transmission risk. They expanded this model into a
piecewise fractional stochastic Atangana–Baleanu differential equation, applying it to South African
COVID-19 case data, and presented detailed numerical solutions and graphical results. The authors
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in [19] formulated a new mathematical model to investigate COVID-19 infection dynamics using
Caputo fractional differential equations and piecewise stochastic differential equations. They present
numerical solutions and graphical results for critical parameters, demonstrating that isolating healthy
individuals from various stages of infected individuals can significantly reduce infection rates.

In this article, we introduce a COVID-19 model that comprises classes such as susceptible,
exposed, symptomatic infectious, superspreaders (infectious but asymptomatic), hospitalized,
recovery, and fatality. The model incorporates hybrid fractional order and variable order operators,
and extends the stochastic differential equations with fractional Brownian motion. We introduce two
numerical methods: the nonstandard modified Euler Maruyama method (NEMM) for solving the
fractional stochastic model, and the Caputo proportional constant-Grünwald-Letnikov nonstandard
finite difference method (CPC-GLNFDM) for the fractional and variable order deterministic models.
Numerical simulations are conducted to validate the theoretical results and demonstrate the
effectiveness of the proposed method. These experiments further provide insights into various
phenomena, including crossover and stochastic processes.

The paper is structured as follows: Section 2 provides some basic concepts and preliminaries,
formulation of the proposed model using the piecewise calculus, the existence and uniqueness of the
model, and a numerical method for approximating the model’s solutions. Numerical simulations,
which validate the results from earlier sections, can be found in Section 3. In the end, Section 4 offers
concluding observations.

2. Proposed model

2.1. Preliminaries and notations

Here, we define key terms from fractional calculus that will be consistently used in this study.

Definition 1. [20] Assuming f(τ) is a continuous function, given Ω = [µ, ν], −∞ < µ < ν < +∞, β ∈
C, ℜ(β) > 0. Below, the definitions are provided for the Riemann-Liouville derivatives, encompassing
both the left and right variants, of order β:

µD
β

τf(τ) =
1

Γ(n − β)
(

d
dτ

)n
∫ τ

µ

f(s)
(τ − s)1−n+βds, τ > µ, (2.1)

τD
β

νf(τ) =
1

Γ(n − β)
(
−d
dτ

)n
∫ ν

τ

f(s)
(s − τ)1−n+βds, τ < ν (2.2)

where n = [ℜ(β)] + 1.

Definition 2. [20,21] Let Ω = [µ, ν], where −∞ < µ < ν < +∞, and let β ∈ C withℜ(β) > 0. The left
and right Riemann-Liouville integrals of order β for a continuous function f(τ) are defined as:

RL
µ I

β

τf(τ) = µD
−β

τ f(τ) =
1
Γ(β)

[ ∫ τ

µ

f(s)(τ − s)β−1ds
]
, τ > µ, (2.3)

RL
τ I

β

νf(τ) = τD
−β

ν f(τ) =
1
Γ(β)

[ ∫ ν

τ

f(s)(τ − s)β−1ds
]
τ < ν (2.4)

where 0 < β < 1.
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Definition 3. [20] Within the field of complex numbers C, the descriptions of Caputo derivatives on
the left and right sides of order β for a function f(τ) are given by

(CDβµ+f)(τ) = (C
µDβτf)(τ) =

1
Γ(n − β)

∫ τ

µ

fn(s)
(τ − ξ)1−n+βds, τ > µ, (2.5)

(CDβν−f)(τ) = (C
τDβνf)(τ) =

(−1)n

Γ(n − β)

∫ ν

τ

fn(s)
(s − τ)1−n+βds, τ < ν (2.6)

where n = [ℜ(β)] + 1,ℜ(β) < N0.

Definition 4. [22] In general, the operator known as the Caputo Proportional Fractional Hybrid (CP)
operator is characterized as

CP
0 Dβτy(τ) =

( ∫ τ

0
(y(s)K1(s, β) + y′(s)K0(s, β))(τ − s)−βds

)
1

Γ(1 − β)
,

= (K1(τ, β)y(τ) + K0(τ, β)y′(τ))
(
τ−β

Γ(1 − β)

)
(2.7)

where K0(β, τ) = βτ(1−β), K1(β, τ) = (1 − β)τβ, and 0 < β < 1.

Definition 5. [22] Fractional hybrid operators with a Caputo proportional constant (CPC) are
described as

CPC
0 Dβτy(τ) =

( ∫ τ

0
(τ − s)−β(y(s)K1(β) + y′(s)K0(β))ds

)
1

Γ(1 − β)

= K1(β)RL
0 I1−β
τ y(τ) + K0(β)C

0 Dβτy(τ) (2.8)

where K0(β) = βQ(1−β), K1(β) = (1 − β)Qβ are kernels Q is a constant, and 0 < β < 1.

Definition 6. [22] The variable-order fractional Caputo proportional operator (CP) is given as
follows:

CP
0 Dβ(τ)τ y(τ) =

∫ t

0
(Γ(1 − β(τ)))−1(τ − s)−β(τ)

(
y′(s)K0(s, β(τ)) + y(s)K1(s, β(τ))

)
ds,

=

(
Γ(1 − β(τ))−1

τβ(τ)

) (
y′(τ)K0(t, β(τ)) + y(τ)K1(t, β(τ))

)
.

Here, K1(β(τ), τ) = (−β(τ) + 1)τβ(τ),K0(β(τ), τ) = τ(1−β(τ))β(τ), and 1 > β(τ) > 0. Alternatively, the
constant proportional Caputo (CPC) variable-order fractional hybrid operator can be formulated as
follows:

CPC
0 Dβ(τ)τ y(τ) =

(∫ t

0
(τ − s)−β(τ)

1
Γ(1 − β(τ))

(
K1(β(τ))y(s) + y′(s)K0(β(τ))

)
ds

)
= K1(β(τ))RL

0 I1−β(τ)
τ y(τ) + K0(β(τ))C

0 Dβ(τ)τ y(τ),

where K0(β(τ)) = Q(−β(τ)+1)β(τ), K1(β(τ)) = Qβ(τ)(−β(τ) + 1), Q is a constant, and 1 > β(τ) > 0.
Moreover, its inverse operator is:

CPC
0 Iβ(τ)t y(t) =

∫ τ

0
exp

[
K1(β(τ))
K0(β(τ))

(τ − s)
]RL

0
D1−β(τ)
τ y(s)ds

 1
K0(β(τ))

.
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2.2. The Hybrid piecewise mathematical model

The concept of a piecewise differential equation is utilized to expand upon the COVID-19
pandemic model initially introduced in [23]. We address potential dimensional incompatibilities by
introducing an auxiliary parameter, ϑ, to the fractional model. Consequently, the proposed model
segments the population into eight classes: susceptible (S), exposed (E), symptomatic and infectious
(I), superspreaders (P), infectious but asymptomatic (A), hospitalized (H), recovery (R), and fatality
(F ). The corresponding piecewise (fractional-variable order-stochastic) differential equations for the
COVID-19 epidemic are presented as follows:



1
ϑ1−β

CPC
0 DβτS(τ) = −aIS − bHS − cPS,

1
ϑ1−β

CPC
0 DβτE(τ) = aIS + bHS + cPS − dE,

1
ϑ1−β

CPC
0 DβτI(τ) = −dE − fI,

1
ϑ1−β

CPC
0 DβτP(τ) = −gE − λP,

1
ϑ1−β

CPC
0 DβτA(τ) = µE,

1
ϑ1−β

CPC
0 DβτH(τ) = v(P + I) −H + uH , 0 < τ ≤ T1, 0 < β < 1,

1
ϑ1−β

CPC
0 DβτR(τ) = f (P + I) +H ,

1
ϑ1−β

CPC
0 DβτF (τ) = fI + P + uH

(2.9)

with initial conditions

I(0) = I0 ≥ 0, S(0) = S0 ≥ 0,E(0) = E0 ≥ 0,A(0) = A0 ≥ 0,
P(0) = P0 ≥ 0,R(0) = R0 ≥ 0,F (0) = F0 ≥ 0,H(0) = H0 ≥ 0. (2.10)



1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ S(τ) = −aIS − bHS − cPS,

1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ E(τ) = aIS + bHS + cPS − dE,

1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ I(τ) = −dE − fI,

1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ P(τ) = −gE − λP,

1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ A(τ) = µE,

1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ H(τ) = v(P + I) −H + uH , T1 < τ ≤ T2, , 0 < β(τ) < 1

1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ R(τ) = f (P + I) +H ,

1
ϑ1−β(τ)

CPC
0 Dβ(τ)τ F (τ) = fI + P + uH ,

(2.11)

I(T1) = I1 ≥ 0, S(T1) = S1 ≥ 0,E(T1) = E1 ≥ 0,A(T1) = A1 ≥ 0,
P(T1) = P1 ≥ 0,R(T1) = R1 ≥ 0,F (T1) = F1 ≥ 0,H(T1) = H1 ≥ 0. (2.12)
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dS = (−aIS − bHS − cPS)dt + σ1S(τ)dBH∗
1 ,

dE = (aIS + bHS + cPS − dE)dt + σ2E(τ)dBH∗
2 ,

dI = (−dE − fI)dt + σ3I(τ)dBH∗
3 ,

dP = (−gE − λP)dt + σ4P(τ)dBH∗
4 ,

dA = (µE)dt + σ5A(τ)dBH∗
5 ,

dH = (v(P + I) −H + uH)dt + σ6H(τ)dBH∗
6 , T2 < τ ≤ T f ,

dR = ( f (P + I) +H)dt + σ7R(τ)dBH∗
7 ,

dF (τ) = ( fI + P + uH)dt + σ8F (τ)dBH∗
8 ,

(2.13)

I(T2) = I2 ≥ 0, S(T2) = S2 ≥ 0,E(T2) = E2 ≥ 0,A(T2) = A2 ≥ 0,
P(T2) = P2 ≥ 0,R(T2) = R2 ≥ 0,F (T2) = F2 ≥ 0,H(T2) = H2 ≥ 0 (2.14)

whereσi and Bi(t), i = 1, 2, 3, ..., 8 are the density of randomness and environmental noise, respectively,
and H∗ is the Hurst index.

2.3. Solution’s existence and uniqueness

In the following, we demonstrate the existence and uniqueness of the system given by (2.9)
and (2.10). However, before proceeding, it is essential to verify the conditions of Perov’s
theorem [24]. To do this, we first present preliminary results related to the Perov fixed point theorem
and generalized Banach spaces. We refer the reader to [24] for a more detailed discussion.

Definition 7. Consider E as a vector space with K as its field, which could be R or C. In such a
scenario, one can define a generalized norm as a function acting on E

∥ · ∥G : E −→ [0,+∞)n

ϕ 7→ ∥ϕ∥G =


∥ϕ∥1

...

∥ϕ∥n


characterized by the subsequent properties

(i) For all ϕ ∈ E; if ∥ϕ∥G = 0Rn
+
, then ϕ = 0E,

(ii) ∥a∥G = |a|∥ϕ∥G for all ϕ ∈ E and a ∈ K, and
(iii) ∥ϕ + ω∥G ≼ ∥ϕ∥G + ∥ω∥G for all ϕ, ω ∈ E.

The pair (E, ∥ · ∥G) defines a generalized normed space. If the vector-valued metric space is complete,
the space (E, ∥ · ∥G) is termed a generalized Banach space (GBS), characterized by δG(ϕ1, ϕ2) = ∥ϕ1 −

ϕ2∥G.

Definition 8. Given a matrix ∆ ∈ Mn×n(R+), it is considered to converge to zero when
∆m −→ On, as m −→ ∞

where On is denoted as the zero n × n matrix.
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Definition 9. Consider a generalized metric space (E, δG) and an operator N mapping E to itself. The
operator N is termed a ∆-contraction with matrix ∆ fromMn×n(R+) that tends towards On, provided
that, for any ϱ, v ∈ E, the following holds:

δG(N(ϱ),N(v)) ≼ ∆δG(ϱ, v).

The following result is Perov’s extension of the Banach contraction principle.

Theorem 2.1. [24] Let E be a full generalized metric space and N : E −→ E be an operator that is
an M-contraction. Then, N has a single fixed point in E.

Now, given that the systems (2.9) and (2.10) can be rewritten in the following classical formCPCDβτX(τ) = ϑ1−βF(X(τ)),
X(0) = X0,

0 < τ < T1 < ∞, (2.15)

where, the vector X(τ) = (S0,E0,I0,P0,A0,H0,R0,F0)τ and the operator F is defined as follows

F(X) =



F1(X)

F2(X)

F3(X)

F4(X)

F5(X)

F6(X)

F7(X)

F8(X)



=



−aIS − bHS − cPS

aIS + bHS + cPS − dE

−dE − fI

−gE − λP

µE

v(P + I) −H + uH

f (P + I) +H

fI + P + uH



. (2.16)

Consider E =
∏8

i=1 C([0, τ],R) to be a generalized Banach space when we endow it with the following
generalized norm:

∥.∥G :E −→ R8
+

X 7→ ∥X∥G =



∥S∥∞

∥E∥∞

∥I∥∞

∥P∥∞

∥A∥∞

∥H∥∞

∥R∥∞

∥F ∥∞



.
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To show that systems (2.9) and (2.10) have a unique solution, we transform them into a fixed point
problem for the operator N, defined by N :

∏8
i=1 C([0, τ],R)→:

∏8
i=1 C([0, τ],R),

N(X(τ)) = X(0) +
ϑ1−β

K0(β)

∫ τ

0
exp

(
−

K1(β)
K0(β(τ))

(τ − s)
)

RL
0 D1−β

τ F(X(s))ds. (2.17)

The next lemma is needed.

Lemma 2.1. Assume a vector ∆ ∈ R8 satisfies the given conditions

∆ =



∆1

∆2

∆3

∆4

∆5

∆6

∆7

∆8



≽
ϑ1−βΞmax

(β) Ψ
max
(β)

Γ(β − 1)|K0(β)|



a∆3∆1 + b∆6∆1 + c∆4∆1

|a∆3∆1 + b∆6∆1 + c∆4∆1 − d∆2|

d∆2 f∆3

g∆2λ∆4

µ∆2

|v(∆4 + ∆3) − ∆6 + u∆6|

f (∆4 + ∆3) + ∆6

f∆3 + ∆4 + u∆6



. (2.18)

Then, the operator N maps the generalized ball B̄(X0, ∆) ⊂ E into itself.

Next, we make sure that the operator F is G-Lipschitz.

Lemma 2.2. The operator F defined in (2.16) is a G-Lipschitz operator; i.e., there exists a square
matrix ℧ ∈ M6(R+) such that

∥F(X) − F(X̄)∥G ≼ ℧∥X − X̄∥G.

The proofs of the above two lemmas are stated in the Appendix. The next theorem ensures the existence
and the uniqueness of the proposed model.

Theorem 2.2. Assuming that the matrix
ϑ1−βΞmax

(β) Ψ
max
(β)

Γ(β − 1)|K0(β)|
℧, (2.19)

converges to O8, then there is a unique solution for the initial value problem given by (2.9) and (2.10),
and the solution holds for all τ > 0 in B̄(X0, ∆).

Proof. Further, we have for any X, X̄ ∈ B̄(X0, ∆), and by using Lemma 2.2,

∥∥∥N(X) − N(X̄)
∥∥∥

G
=

∥∥∥∥∥∥ ϑ1−β

K0(β)

∫ τ

0
exp

(
−

K1(β)
K0(β)

(τ − s)
) (

RL
0 D1−β

τ F(X(s)) − RL
0 D1−β

τ F(X̄(s))
)
ds

∥∥∥∥∥∥
G
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≼
ϑ1−β

|K0(β)|

∫ τ

0

∣∣∣∣ exp
(
−

K1(β)
K0(β)

(τ − s)
) ∣∣∣∣ ∥∥∥RL

0 D1−β
τ F(X(s)) − RL

0 D1−β
τ F(X̄(s))

∥∥∥
G

ds

≼
ϑ1−βΞmax

(β)

Γ(β − 1)|K0(β)|

∥∥∥∥∥∫ τ

0
(τ − s)β−2

(
F(X(s)) − F(X̄(s))

)
ds

∥∥∥∥∥
G

≼
ϑ1−βΞmax

(β) Ψ
max
(β)

Γ(β − 1)|K0(β)|

∥∥∥F(X) − F(X̄)
∥∥∥

G

≼
ϑ1−βΞmax

(β) Ψ
max
(β)

Γ(β − 1)|K0(β)|
℧

∥∥∥X − X̄
∥∥∥

G
.

Since the matrix
ϑ1−βΞmax

(β) Ψ
max
(β)

Γ(β−1)|K0(β)| ℧ converges to zero, the operator N is a G-contraction, and hence by
applying Perov’s fixed point theorem (2.1), systems (2.9) and (2.10) have only one solution in B̄(X0, ∆).

□

2.4. Numerical method for crossover model

We propose an effective discretization for the examined cross-over system using the Caputo
proportional constant-Grünwald-Letnikov nonstandard finite difference method (CPC-GLNFDM).
The approach we take to addressing the subsequent linear cross-over model (including fractional and
variable order, both deterministic and stochastic) is outlined as follows:

(CPC
0 Dβτy)(τ) =ρy(τ), 0 < τ ≤ T1, 0 < β ≤ 1, ρ < 0

y(0) = y0
(2.20)

(CPC
0 Dβ(τ)τ y)(τ) =ρy(τ), T1 < τ ≤ T2, 0 < β(τ) ≤ 1, ρ < 0

y(T1) = y1
(2.21)

y(τ) =(ρy(τ) + σy(τ)dBH∗(τ), T2 < τ ≤ T f ,

y(T2) = y2,
(2.22)

where B(τ) represents the standard Brownian motion, σ, denotes the real constants or the intensity of
the stochastic environment, and H∗ is the Hurst index.

The relation given by (2.8) can be expressed as follows:

CPC
0 Dβτy(τ) =

1
Γ(1 − β)

∫ τ

0
(τ − s)−β(K1(β)y(s) + K0(β)y′(s))ds,

= K1(β)RL
0 I1−β
τ y(τ) + K0(β)C

0 Dβτy(τ),
= K1(β)RL

0 Dβ−1
τ y(τ) + K0(β)C

0 Dβτy(τ), (2.23)

where K1(β) and K0(β) are kernels depending solely on β and K0(β) = βQ(1−β), K1(β) = (1 − β)Qβ, Q
is a constant, and ω0 = 1. Using the GLNFDM approximation, (2.23) can be discretized as follows:

CPC
0 Dβτy(τ)|τ=τn =

K1(β)
(Θ(∆τ))β−1

(
yn+1 +

n+1∑
i=1

ωiyn+1−i

)
+

K0(β)
(Θ(∆τ))β

(
yn+1 −

n+1∑
i=1

µiyn+1−i − qn+1y0

)
(2.24)
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where
Θ(∆τ) = ∆τ + O(∆τ2), ..., 0 < Θ(∆τ) < 1,∆τ −→ 0.

Subsequently, (2.20) can be discretized as follows:

K1(β)
(Θ(∆τ))β−1

(
yn+1 +

n+1∑
i=1

ωiyn+1−i

)
+

K0(β)
(Θ(∆τ))β

(
yn+1 −

n+1∑
i=1

µiyn+1−i − qn+1y0

)
= ρy(tn) (2.25)

where ω0 = 1, ωi = (1− βi )ωi−1, τ
n = n(Θ(∆τ)), ∆τ = T f

Nn
, Nn is a natural number. µi = (−1)i−1

(
β
i

)
,

µ1 = β, qi =
iβ

Γ(1−β) , and i = 1, 2, ..., n + 1.
In addition, we will proceed with the assumption that [25]

0 < µi+1 < µi < ... < µ1 = β < 1,

0 < qi+1 < qi < ... < q1 =
1

Γ(−β + 1)
.

Hence, if K1(β) = 0 and K0(β) = 1 in (2.25), then one has the discretization of the Caputo operator
(C- GLNFDM) using the finite difference method.

Additionally, (2.21) can be discretized as follows:

K1(β(ti))
(Θ(∆τ))β(ti)−1

(
yn2+1 +

n2+1∑
i=n+1

ωiyn2+1−i

)
+

K0β(ti)
(Θ(∆τ))β(ti)

(
yn2+1 −

n2+1∑
i=n+1

µiyn2+1−i − qn2+1y0

)
= ρy(tn2) (2.26)

where ωi = (1 − β(ti)i )ωi−1, µi = (−1)i−1
(
β(ti)
i

)
, µ1 = β(ti), qi =

iβ(ti)
Γ(1−β(ti))

, and we can discretize (2.22)
using the nonstandard modified Euler-Maruyama method (NMEMM) [26] as follows:

y(tn3+1) =y(tn3) + ρy(tn3)Θ(∆τ) + σy(tn3)∆Bn3 + 0.5y(tn3)Θ(∆τ)2H∗ ,

H∗ > 0.5, n3 = n2, ..., κ, T2 < τ ≤ T f .

3. Numerical simulations

To obtain the numerical solutions for the proposed piecewise models (2.9)–(2.14), we employ the
following parameters: a = 6.8262110−5, b = 1.064810−4, c = 2.047810−4, d = 0.25, f = 3.5,
g = 2.510−4, λ = 2.21, µ = 0.10475, v = 0.94, u = 0.3. The initial conditions are set as follows:
S(0) = 59659, I(0) = 1, E(0) = 0, P(0) = 5,A(0) = 0, R(0) = 0,H(0) = 0, R(0) = 0, F (0) = 0, and
T1 = 25,T2 = 50, and T f = 100, Θ(∆τ) = 1 − e−∆τ. The numerical results for (2.9)-(2.13) are
graphically represented at various values of β, β(τ), σi (where i ranges from 1 to 8), and H∗(τ). The
simulations are conducted using the nonstandard Euler-Maruyama method (NEMM) (2.27) and the
Caputo proportional constant-Grünwald-Letnikov nonstandard finite difference method
CPC-GLNFDM (2.26). The dynamical behavior of the systems given by (2.9)–(2.13) is illustrated in
Figures 1 through 5. It is observed that the crossover behavior is prominent around the values
T1 = 25, T2 = 50, and T f = 100. After these points, the dynamics exhibit multiplicity in their
behavior. Figure 1 illustrates the simulation for (2.9)–(2.13) with β(τ) = 0.80 − 0.003t and H∗ = 0.7,
considering various values of β and σi. Figure 2 demonstrates how the solutions behave under various
scenarios, with different values of β(τ) and for β = 0.8, and H∗ = 0.7. Figure 3 illustrates the change
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in the behavior of the solutions (2.9)–(2.13) when employing different values of H∗,
β(τ) = 0.75 − 0.001(cos2(τ/10)), and β = 0.80, σi = 0.05. Figure 4 illustrates the behavior of the
solution of (2.9)–(2.13) for different values of H∗ and σi β(τ) = 0.75 − 0.001(cos2(τ/10)) and
β = 0.80. To illustrate how parameter values σi and H influence the results, we refer to Figure 5.
From the simulation, we discerned several nuanced insights of the model, which proved invaluable
insights from both biological and mathematical perspectives.

Figure 1. Simulation for (2.11–2.13) at different values of β and β(τ) = 0.80 − 0.0003τ,
H∗ = 0.7, σ1 = 0.05, σ2 = 0.05, σ3 = 0.05, σ4 = 0.05, σ5 = 0.05, σ6 = 0.05, σ7 =

0.05, σ8 = 0.05.

Figure 2. Simulation for (2.11–2.13) at different values of β(τ) and β = 0.80 H∗ = 0.7,
σi = 0.05, i = 1, 2, 3, 4, 5, 6, 7, 8.
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Figure 3. Simulation for (2.11–2.13) at different values of H∗, β(τ) = 0.75 −
0.001(cos2(τ/10)), and β = 0.80 σi = 0.05, i = 1, 2, 3, 4, 5, 6, 7, 8.

Figure 4. Simulation for (2.11–2.13) at different values of H∗, β(τ) = 0.75 −
0.001(cos2(τ/10)), and β = 0.80, σ1 = 0.5, σ2 = 0.04, σ3 = 0.01, σ4 = 0.5, σ5 = 0.04, σ6 =

0.01, σ7 = 0.5, σ8 = 0.04.
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Figure 5. Simulation for (2.11–2.13) at different values of H∗, β(τ) = 0.7 − 0.001τ, and β =
0.80 σ1 = 0.5, σ2 = 0.04, σ3 = 0.01, σ4 = 0.5, σ5 = 0.04, σ6 = 0.01, σ7 = 0.5, σ8 = 0.04.

4. Conclusions

In conclusion, a new mathematical model of piecewise fractional and variable-order differential
equations and the fractional stochastic derivative of the COVID-19 epidemic has been developed.
Moreover, two numerical techniques are constructed to solve the proposed model. These methods are
the nonstandard modified Euler Maruyama method for the fractional stochastic model and the Caputo
proportional constant-Grünwald-Letnikov nonstandard finite difference method for the fractional and
variable-order deterministic models. Utilizing this approach has enriched our understanding of the
dynamics underlying this intricate health crisis. Furthermore, by integrating fractional Brownian
motion into stochastic differential equations, we have gleaned valuable insights into the unpredictable
nature of infectious disease propagation. The development of two specialized numerical methods,
namely, Caputo’s proportional constant-Grünwald-Letnikov nonstandard finite difference method and
the nonstandard modified Euler Maruyama technique, enabled us to delve deeply into the behavior of
our extended models. Through a series of numerical tests, we have showcased the efficiency of these
methods and garnered robust empirical support for our theoretical findings. Perhaps most crucially,
our research has paved new pathways for studying the COVID-19 pandemic. The extended models
afford the flexibility to examine a broad spectrum of behaviors, from deterministic patterns to
stochastic processes. This allows for more adaptive strategies and interventions as circumstances
change. This study stands as a substantial contribution to epidemiology, offering indispensable tools
and insights that can guide public health decisions and aid in addressing the ongoing global
health crisis.
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Appendix: Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. Let X ∈ B̄(X0, ∆), then

∥N(X) − X0∥G =

∥∥∥∥∥∥ ϑ1−β

K0(β)

∫ τ

0
exp

(
−

K1(β)
K0(β)

(τ − s)
)

RL
0 D1−β

τ F(X(s))ds

∥∥∥∥∥∥
G

≼
ϑ1−β

|K0(β)|

∫ τ

0

∣∣∣∣ exp
(
−

K1(β)
K0(β)

(τ − s)
) ∣∣∣∣ ∥∥∥RL

0 D1−β
τ F(X(s))

∥∥∥
G

ds

≼
ϑ1−βΞmax

(β)

Γ(β − 1)|K0(β)|

∥∥∥∥∥∫ τ

0
(τ − s)β−2

F(X(s))ds
∥∥∥∥∥

G

≼
ϑ1−βΞmax

(β) Ψ
max
(β)

Γ(β − 1)|K0(β)|
CF

where

CF = sup
X∈B̄(X0,∆)

∥F(X)∥G ≼
ϑ1−βΞmax

(β) Ψ
max
(β)

Γ(β − 1)|K0(β)|



a∆3∆1 + b∆6∆1 + c∆4∆1

|a∆3∆1 + b∆6∆1 + c∆4∆1 − d∆2|

d∆2 f∆3

g∆2λ∆4

µ∆2

|v(∆4 + ∆3) − ∆6 + u∆6|

f (∆4 + ∆3) + ∆6

f∆3 + ∆4 + u∆6


and this complete the proof. □

Proof of Lemma 2.2. Let X = (S,E,I,P,A,H ,R,F ), X̄ = (S̄, Ē, Ī, P̄, Ā, H̄ , R̄, F̄ ) ∈ B̄(X0, ∆) and
we have

|F1(X) − F1(X̄)| = | − aIS − bHS − cPS + aĪS̄ + bH̄S̄ + cP̄S̄|

≤ a|(ĪS̄ − IS)| + b|(H̄S̄ − HS)| + c|(P̄S̄ − PS)|.

Also, we have for all ℘1, ℘2, υ1, υ2 ∈ R

|℘1υ1 − ℘2υ2| =
1
2

[
(℘1 − ℘2)(υ1 + υ2) + (℘1 + ℘2)(υ1 − υ2)

]
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and combining that with Lemma 2.1 we find
∥F1(X) − F1(X̄)∥∞ ≤

a
2

∥∥∥∥(S̄ − S)(Ī + I) + (Ī − I)(S̄ + S)
∥∥∥∥
∞

+
b
2

∥∥∥∥(S̄ − S)(H̄ +H) + (H̄ − H)(S̄ + S)
∥∥∥∥
∞

+
c
2

∥∥∥∥(S̄ − S)(P̄ + P) + (P̄ − P)(S̄ + S)
∥∥∥∥
∞

≤ a
(
∆1∥Ī − I∥∞ + ∆3∥S̄ − S∥∞

)
+ b

(
∆1∥H̄ − H∥∞ + ∆6∥S̄ − S∥∞

)
+ c

(
∆1∥P̄ − P∥∞ + ∆4∥S̄ − S∥∞

)
≤ ∆1

(
a∥Ī − I∥∞ + b∥H̄ − H∥∞ + c∥P̄ − P∥∞

)
+

(
a∆3 + b∆6 + c∆4

)
∥S̄ − S∥∞.

(4.1)

Also, we have
∥F2(X) − F2(X̄)∥∞ = ∥aIS + bHS + cPS − dE − aĪS̄ − bH̄S̄ − cP̄S̄ + dĒ∥∞

≤ ∆1

(
a∥Ī − I∥∞ + b∥H̄ − H∥∞ + c∥P̄ − P∥∞

)
+ d∥E − Ē∥∞

+
(
a∆3 + b∆6 + c∆4

)
∥S̄ − S∥∞.

The linearity of the operators F3, F4, F5, F6, F7, F8

∥F3(X) − F3(X̄)∥∞ ≤ d∥E − Ē∥∞ + f ∥I − Ī∥∞

∥F4(X) − F4(X̄)| ≤ g∥E − Ē∥∞ + λ∥P − P̄∥∞

∥F5(X) − F5(X̄)| ≤ µ∥E − Ē∥∞,

∥F6(X) − F6(X̄)∥∞ ≤ v∥P − P̄∥∞ + v∥I − Ī∥∞ + |1 − u|∥H − H̄∥∞,

∥F7(X) − F7(X̄)∥∞ ≤ f ∥P − P̄∥∞ + f ∥I − Ī∥∞ + ∥H − H̄∥∞,

∥F8(X) − F8(X̄)∥∞ ≤ ∥P − P̄∥∞ + f ∥I − Ī∥∞ + u∥H − H̄∥∞.

By rewriting the above equations in matrix form we find

∥F1(X) − F1(X̄)∥∞

∥F2(X) − F2(X̄)∥∞

∥F3(X) − F3(X̄)∥∞

∥F4(X) − F4(X̄)∥∞

∥F5(X) − F5(X̄)∥∞

∥F6(X) − F6(X̄)∥∞

∥F7(X) − F7(X̄)∥∞

∥F8(X) − F8(X̄)∥∞



≼ ℧



∥S − S̄∥∞

∥E − Ē∥∞

∥I − Ī∥∞

∥P − P̄∥∞

∥A − Ā∥∞

∥H − H̄∥∞

∥R − R̄∥∞

∥F − F̄ ∥∞
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where

℧ =



(
a∆3 + b∆6 + c∆4

)
0 a∆1 c∆1 0 b∆1 0 0(

a∆3 + b∆6 + c∆4

)
d a∆1 c∆1 0 b∆1 0 0

0 d f 0 0 0 0 0
0 g 0 λ 0 0 0 0
0 µ 0 0 0 0 0 0
0 0 v v 0 |u − 1| 0 0
0 0 f f 0 1 0 0
0 0 f 1 0 u 0 0


.

□
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