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* Correspondence: Email: salim.bouzebda@utc.fr.

Abstract: Analyzing the real impact of spatial dependency in financial time series data is crucial
to financial risk management. It has been a challenging issue in the last decade. This is because
most financial transactions are performed via the internet and the spatial dependency between different
international stock markets is not standard. The present paper investigates functional expectile
regression as a spatial financial risk model. Specifically, we construct a nonparametric estimator of
this functional model for the functional single index regression (FSIR) structure. The asymptotic
properties of this estimator are elaborated over general spatial settings. More precisely, we establish
Borel-Cantelli consistency (BCC) of the constructed estimator. The latter is obtained with the precision
of the convergence rate. A simulation investigation is performed to show the easy applicability of the
constructed estimator in practice. Finally, real data analysis about the financial data (Euro Stoxx-50
index data) is used to illustrate the effectiveness of our methodology.

Keywords: functional spatial data; complete convergence (a.co.); kernel estimator; expectile
function; functional index; bandwidth parameter; financial risk management
Mathematics Subject Classification: 62G05, 62G08, 62R20

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024269


5551

1. Introduction

Numerous fields of study, including econometrics, epidemiology, environmental science, image
analysis, oceanography, meteorology, geostatistics, etc., frequently create spatial data. Typically,
these data are gathered in numerous fields and analyzed statistically at measurement sites.
Consult [1–5], as well as the references contained within, to identify credible sources of references to
the research literature in this field and to learn about certain statistical applications. We highlight that
modeling a spatio-temporal interaction of financial data is crucial in financial risk management. The
momentousness of this matter is motivated by the digitalization of financial transactions. Actually,
with technological development, most financial transactions are carried out by the internet allowing
for an increase in the impact of the spatial interaction between financial institutes in financial
movements. On the other hand with these new instruments in financial operations, the spatial
correlation of the financial time series data is not standard. It is related to many additional factors than
the geographical position. Indeed, the spatio-temporal feature in financial time is impacted by the
economic exchange between countries, the relationship between economic sectors, and the mobility
between countries, among others. Thus, analyzing the spatio-temporal features of financial data is
tough work. Motivated by this challenge, we combine the ideas of functional single index modeling
with the recent financial risk techniques to provide a statistical model that allows us to fit the
spatio-temporal feature of financial data in risk management. Noting that it is well-recognized that
spatio-temporal modeling is a particular case of spatio-functional data analysis, the single index
model is more appropriate in econometrics and financial areas. Thus, it will be very interesting to
utilize recent developments in spatio-functional statistics to introduce a new financial risk model
based on a single index structure. Indeed, the FSIR model is one of the key tools in econometrics as
well as in financial time series data. In particular, for financial areas, this model is often used to
reduce the high number of factors of an investment or to determine the principal assets in a given
portfolio. From a theoretical point of view, the single index model belongs to the semiparametric
family of models, which many authors have studied from practical and theoretical point of view, for
instance, see [6, 7]. We return to [8, 9] for the first results in the vectorial explanatory case. In the
functional setting, the authors of [10] propose the Nadaraya-Watson-kernel-estimator (NWKE) for the
nonparametric part in a functional single index regression (FSIR) structure. They proved the
consistency of the NWKE when the covariate pertains to the Hilbertian subspace. In the last few
decades, the popularity of these models has increased. We cite, for instance, [11] who introduced a
new estimation in single index modeling. They proposed a multi-index fitting aproach adaptable to
linear projections for functional data and show that their method makes it possible to predict with
polynomial convergence rates. Recently, [12] generalized the functional parametric regression model
to partially linear functional single index models. More recent advances in functional single index
models were obtained by [13]. They used the k-nearest neighbors algorithm to estimate the
nonparametric link function of the FSIR. They elaborated the Borel-Cantelli consistency (BCC) of the
NWKE using a quasi-associated dependence structure.

In this paper, we investigate conditional exectiles, which is based on least asymmetrically
weighted squares estimation, which was adopted from the econometrics literature and is a
fundamental statistical application tool. This method frequently employs the [14] concept of
expectiles, the least-squares equivalent of the conventional quantiles. They were given this name

AIMS Mathematics Volume 9, Issue 3, 5550–5581.



5552

because they resemble the quantiles of a random variable, but, unlike quantiles, they are based on a
quadratic loss function, as in the case of the expectation; see [15, 16] for more information. Since it is
the only elicitable coherent risk measure, we refer to [17] and its references. Refer to [18] for
applying the expectile regression in heteroscedasticity analysis. We refer you to the recent paper
by [19, 20] for further justification of the expectile model’s application. For an overview of the use of
expectile curves in regression analysis, see [21] and the extensive discussions of that paper, especially
the research [22] for an evaluation of expectiles and [23] for a critical perspective. Despite their
disparities in construction, quantiles and expectiles share similar characteristics. As demonstrated by
the research of [24], the primary reason is that expectiles are identical to quantiles if the original
distribution is transformed. Quantiles and expectiles, which comprise information about a random
variable’s complete distribution, are extensions of the median and mean, respectively. Expectiles are
superior replacements for quantiles in a variety of pertinent applications. Motivating advantages
include the fact that expectiles are more sensitive than quantiles to the magnitude of infrequent
catastrophic losses and that they depend on both the tail realizations of the predictor and their
probability, whereas quantiles depend only on the frequency of tail realizations. This sensitivity of
expectiles to tail behavior enables more prudent and responsive risk management. Observe that the
quantiles are not always adequate and can be criticized for being challenging to compute because the
corresponding loss function is not continuously differentiable. Of course, these features increase the
importance of the expectile in some specific areas, namely, in financial risk analysis. However, the
robustness of the quantile is also a good advantage in some alternative areas, namely for the
prediction issue. From a statistical point of view, there is a bothersome trade-off between sensitivity
and robustness. Thus, it will be interesting to develop a bridge between the two phenomenons. This is
the main motivation of the expectile regression as an alternative model to the quantile when the
sensitivity is required. The functional expectile with regression was recently introduced by [20, 25].
They demonstrated almost complete consistency with the rate and the limit distribution of NWKE of
this functional model. Such results were obtained under the independence structure. The last
contribution was extended to the mixing situation by [19]. The authors of [26] stated the BCC of the
functional NWKE when the functional time is ergodic. The spatial structure was handled by [27]. It
should be noted that this last situation is of great importance in practice. The framework of the
present contribution concerns the nonparametric spatial statistic. The pioneer works of this domains
are the reaearches [15, 16, 28–31], among other. This subject was investigated for the first time in
functional statistics by [32]. They proved the BCC functional NWKE is the regression operator.

The third axe of this contribution concerns the spatio-functional data analysis (SFDA). Such a topic
is relatively recent. It is classified by [33] as second-generation functional data analysis. Of course,
the main difficulty of this topic in the analysis of spatial data comes from the fact that observations
indexed in the multi-dimensional space do not have a linear order, as it happens for classical time
series data. For a brief literature review in SFDA, we cite the first pioneer work [34]. They consider
the problem of the functional linear regression estimation by the spline method when the observations
are spatially correlated. Among the wide range of applications of SFDA we mention the hyperspatial
imagery processing developed by [35]. We return to [36] for more advanced application of SFDA
in the environmental area. The mathematical development of nonparametric spatio-functional data
analysis was started by [37]. They state the asymptotic property of the kernel estimation of the density
of a functional random field. We refer to [38] for spatial local linear estimation in functional data.
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Recently, the authors of [39] treated spatio-functional quantile regression using different techniques,
both parametric and nonparametric. However, despite the great importance of the semi-parametric
modeling of spatio-functional data in practice, this problem has not been explored yet. To the best of
our knowledge, the present contribution is the first work in this direction. It is worth noting that, the
functional data analysis (FDA) is actually in continuous progression. For an overview of the recent
developments and trends in this area, we may refer the reader to some journal special issues devoted to
this topic, such as [40–45] to cite a few.

Precisely, the main aim of the present work is to estimate the spatial expectile regression when the
input and the output variables are linked with the FSIR structure. We construct an estimator of the
nonparametric part of this link function using kernel weighting. The consistency with the rate of the
constructed estimator is the main asymptotic result of this work. Moreover, the main novelty of this
contribution is the treatment of this model under the FSIR structure. From a practical point of view, this
kind of semiparametric model is very common in the econometric area. Such popularity is motivated
by two important features. The first is its characteristic as an excellent reducer of the data dimension,
and the second feature is the easy interpretation of the co-variability between the output variable and
the regressor of the functional index included in these models. The estimability of the functional index
is discussed using two cross-validation rules. The first is based on the weighted least squared error, and
the second is obtained by the maximum likelihood function. A simulation investigation is conducted
to compare these criteria. Finally, we highlight the great impact of the present contribution in financial
time series data via a real-data application, allowing us to show the superiority of our spatial model over
its competitors and to explore the spatial interaction in financial data. Recall that the flexibility of the
additive model and the importance of the spatial interaction of the financial activities are the principal
motivations to investigate the expectile by regression in spatio-functional SIM. Thus, our study allows
us to digitalize the spatial co-movement in financial time series data using new algorithms adapted
to high-frequency data observed over a thinner discretization grid. The new method proposed in this
contribution constitutes an alternative approach to classical models based on quantile by regression and
shortfall regression.

This paper is organized as follows: In the following sections, we introduce the model and the kernel
estimator of the conditional expectile function. The main asymptotic results are stated in Section 3.
Section 4.2 is devoted to the functional index θ’s estimability issue. The applicability of considered
rules will be examined in Section 5. The last section also includes a real world data application.
Some concluding remarks are given in Section 6. Finally, the proofs of the main results are given in
Appendix.

2. Materials and methods

2.1. Spatio-functional framework

Set N ∈ IN∗ and assume (Xi,Yi), i ∈ INN as a F × IR-valued strictly stationary spatial process.
(Xi,Yi), i ∈ INN is defined in (Ω, A, Pr), a given probability space. Specifically, F is a separable
Hilbert space where ⟨·, ·⟩ is the inner product and with an orthonormal basis denoted by {ep : p ≥ 1}.
We suppose that the process (Xi,Yi) is observed under a rectangular area

In =
{
i = (i1, · · · , iN) ∈ INN : 1 ≤ ik=1,··· ,N ≤ nk=1,··· ,N

}
.
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We will write that the N-uplet in INN ,

n = (n1, · · · , nN)→ ∞,

if min{nk} → ∞ and |n j/nk| < C for a constant 0 < C < ∞, and for all j, k is less than N. Typically, we
explore the spatial interaction of

Zi = (Xi,Yi)i∈In∈N

by assuming that there exists a non-increasing function φ(t) towards 0 as t → ∞, such that, all subsets
E′ and E of INN have finite cardinals

α
(
B(E′), B(E)

)
= sup

B∈B(E′),C∈B(E)

∣∣∣∣Pr(B)Pr(C) − Pr(B ∩C)
∣∣∣∣

≤ ψ
(
Card(E′),Card(E)

)
φ
(
dist

(
E′, E

) )
, (2.1)

where Card(E′) and Card(E) are the cardinality of E′ and E, B(E′)
(
resp. B(E)

)
is the Borel σ-algebra

generated from
{
Zi : i ∈ E′

} (
resp.

{
Zi : i ∈ E

})
. The quantity dist

(
E′, E

)
represents the Euclidean

metric between E′ and E. The function

ψ : IN2 → IR+

is a positive symmetric function and nondecreasing such that, for all m′,m ∈ IN,

ψ
(
m′,m

)
≤ C min

(
m′,m

)
, (2.2)

for some C > 0. Additionally, the function φ satisfies

∞∑
i=1

iδφ(i) < ∞ for some δ > 0. (2.3)

All these assumptions that characterize the spatio-functional framework of this study are standards.
They are similar to those used by [16, 46]. It should be pointed out that if N = 1, then (Xi,Yi) is called
strongly mixing (see [47] for discussion on mixing and examples). Furthermore, the spatial linear
process [48] satisfies this mixing assumption (see [49], for more details on the required conditions).
We refer to [1, 50–53] for additional information on mixing coefficients for random fields.

2.2. The FSIR structure of the spatial expectile

Now, we assume that the behavior of Yi is linked to Xi through the FSIR model with functional θ, a
fixed index in F . Therefore, Yi and Xi are linked by

IE[Yi | Xi] = IE[Yi | ⟨θ,Xi⟩], θ in F . (2.4)

The model identifiability has been examined by [10]. A sufficient condition of the FSIR-identifiability
is:

(i) The link function r(x) = IE[Yi | Xi = x] is differentiable.
(ii) The functional index θ is such that ⟨θ, e1⟩ = 1.
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The goal of this paper is to estimate the qth expectile with regression of Y given X = z defined, for
0 < q < 1, by

ξq(θ, z) = arg min
t∈R
Γq(Y, θ, z, t),

where

Γq(Y, θ, z, t) = IE
[
q(Y − t)21(Y−t)>0 | ⟨z, θ⟩

]
+IE

[
(1 − q)(Y − t)21(Y−t)≤0 | ⟨z, θ⟩

]
. (2.5)

It is worth noticing that (2.5) generalizes the conditional expectation of Y given ⟨z, θ⟩, which coincides
with ξq(θ, z), specifically when q = 1/2 and such as the conditional quantile generalizes the conditional
median. On the other hand, (2.5) is similar to the conditional q-quantile of Y given X = x, which
can be obtained by replacing (Y − t)2 by |Y − t| in (2.5). Hence, the name conditional q-expectile. By
straightforward calculus, we demonstrate that ξq(θ, z) is a zero of

q
1 − q =

G1(θ, z, t)
G2(θ, z, t) ,

where
G1(θ, z, t) = −IE

[
(Y − t)1(Y−t)≤0 | ⟨z, θ⟩

]
,

G2(θ, z, t) = IE
[
(Y − t)1(Y−t)>0 | ⟨z, θ⟩

]
.

Since the function
G(θ, z, t) :=

G1(θ, z, t)
G2(θ, z, t)

is a non-decreasing function, see for example [20], the expectile ξq(θ, z) of order q is expressed as

ξq(θ, z) = inf
{

t ∈ R : G(θ, z, t) ≥
q

1 − q

}
. (2.6)

Finally, the spatial estimator of the qth expectile with the regression of Y given X is

ξ̂q(θ, z) = inf
{

t ∈ R/ Ĝ(θ, z, t) ≥
q

1 − q

}
, (2.7)

where

Ĝ(θ, z, t) =
Ĝ1(θ, z, t)

Ĝ2(θ, z, t)
with

Ĝ1(θ, z, t) =

∑
i∈In

K
(
h−1

n INθ(x − Xi)
)
1(Yi−t)≤0(Yi − t)∑

i∈In

K
(
h−1

n INθ(x − Xi)
)

and

Ĝ2(θ, z, t) =

∑
i∈In

K
(
h−1

n Nθ(x − Xi)
)
1(Yi−t)>0(Yi − t)∑

i∈In

K
(
h−1

n Nθ(x − Xi)
) ,
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where
Nθ(z) = ⟨z, θ⟩,

K(·) is a kernel function, and hn is a sequence of positive real numbers tending to zero as n tends to
infinity.

3. Results

Recall that our aim is the establishment of the BCC of the estimator ξ̂q(θ, z) to ξq(θ, z) under the
strong mixing structure (2.1). To accomplish this goal, we define

B(θ, z, r) := {x′ ∈ F /|Nθ(x′ − z)| ≤ r} for r > 0.

Next, we introduce the following conditions:

(H1) ∀r > 0, Pr(X ∈ B(θ, z, r)) =: ϕ(θ, z, r) > 0. Additionally, ϕ(θ, z, r) −→ 0 as r −→ 0.
(H2) The random field (Xi,Yi)i∈N satisfies

IE
[∣∣∣Yi

∣∣∣p∣∣∣∣Nθ(Xi)
]
< C < ∞, for some p > 4,

For all i , j, IE
[∣∣∣YjYi

∣∣∣∣∣∣∣Nθ(Xi),Nθ(Xj)
]
≤ C < ∞,

and
0 < sup

i,j
Pr

[
(Xi,Xj) ∈ B(θ, z, h) × B(θ, z, h)

]
≤ C

(
ϕ(θ, z, hn)

)(a+1)/a
,

for some 0 < a < δN−1.

(H3) The kernel function K(·) is supported in [0, 1] and there exist C and C′ > 0, such that

C 1(0,1)(·) ≤ K(·) ≤ C′ 1(0,1)(·).

(H4) The functions Gl(z, ·, ·), for l = 1, 2, continuously-differentiable in IR, for all (t1, t2) ∈ IR and
X1,X2 ∈ F , we have∣∣∣∣Gl(θ,X1, t1) −Gl(θ,X2, t2)

∣∣∣∣ ≤ C(∥X1 − X2∥
kl + |t1 − t2|

ςl),

for some ςl, kl > 0.
(H5) There exists (γn), a sequence of nonnegative real numbers, such that

γ−1
n ϕ

(1−β)/β(θ, z, hn)→ 0 with β =
p − 2

p
,∑

n

n̂((1+2ς1)/2ς1)γ
−p
n < ∞,∑

n

n̂((1+2ς1)/2ς1)−δ/2Nγδ/Nn ϕ−δ/2N(θ, z, hn) logδ/2N n̂ < ∞,

where

n̂ =
N∏
k

nk.
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3.1. Comments on the assumptions

The assumptions are standard. Specifically, hypothesis (H1) is stated for several functional
processes. For the same special case, see [54] or [55]. These works evaluated (H1) over some
Gaussian processes. Condition (H2) is added to get the same convergence rate as in the i.i.d. setting.
The assumption (H3) it also standard in this context of functional statistics. In particular, its technical
assumption is verified by numerous standard kernels, such as Epanechnikov kernel, beta kernel,
triangular kernel, and others (see for the same example [56]). (H4) is a moderate regularity postulate
imposed to state the bias term. The requirements in (H5) are reasonable technical conditions to
simplify the proofs.

The BCC of ξ̂q(z), when (Xi,Yi) satisfies (2.2) and (2.3), is given in the following theorem.

Theorem 1. Under hypotheses (H1)–(H5) and in addition, if we have

∂G(θ, z, ξq(z))
∂t

> 0,

then,

ξ̂q(z) − ξq(z) = O
(
hk1

n

)
+ O

(
hk2

n

)
+ O

(
log n̂

n̂ ϕ(θ, z, hn)

)1/2

in BCC-consistency-mode, as n→ ∞.

We point out that the structure of the obtained convergence rate keeps its usual form of the functional
kernel smoothing approach in the sense that it is decomposed into its principal terms. The first one is
the bias term expressed with respect to the degree of the smoothing assumption in (H4). The second
term is the stochastic term, which is expressed with respect to the functional structure through the
function ϕ(·) of the assumption (H1).

Proposition 3.1. Under conditions (H1)–(H5), we have

sup
t∈[ξq(z)−ϵ0, ξq(z)+ϵ0]

∣∣∣∣Ĝ(θ, z, t) −G(θ, z, t)
∣∣∣∣ = O

(
hk1

n

)
+ O

(
hk2

n

)
+ O

(
log n̂

n̂ ϕ(θ, z, hn)

)1/2

in BCC-consistency-mode, as n→ ∞.

4. Discussion

4.1. The impact of the spatial dependency in practice

It is clear that the convergence rate of the spatial estimator ξ̂q is comparable to the i.i.d case. This
statement follows from the observation that, in our theoretical study, we seek to determine the
appropriate conditions to get a good asymptotic property of the estimator, namely those reduce the
convergence rate of the estimator. However, in practice, such an optimal situation is not usually
available. Thus, it is very interesting to examine the effect of the spatial correlation of the data on the
computationablity of the constructed estimator. Indeed, in the nonfunctional case, the spatial
correlation is evaluated through the covariogram or the variogram function; see [57]. Alternatively, in
functional statistics, we use the trace-variogram function (see [58]) to examine the spatial correlation.
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Specifically, we adopt the ideas of [32] by adding the spatial controller to the definition of the
estimator. Indeed, we compute ξ̂q(θ, Xk), for a new observation Xk in new site k < In by replacing Ĝ1

and Ĝ2 in (2.7) with

Ĝ1(θ, z, t) =

∑
i∈In

K
(
h−1

n INθ(x − Xi)
)
1Wk(i)1(Yi−t)≤0(Yi − t)∑

i∈In

K
(
h−1

n INθ(x − Xi)
)
1Wk(i)

and

Ĝ2(θ, z, t) =

∑
i∈In

K
(
h−1

n Nθ(x − Xi)
)
1Wk(i)1(Yi−t)>0(Yi − t)∑

i∈In

K
(
h−1

n Nθ(x − Xi)
)
1Wk(i)

,

where Wk is a vicinity set of the fixed site k defined by

Wk = {i, such that γ(i,k) ≤ ιn}, (4.1)

where γ is the trace-variogram function and ιn is a appropriate sequence of positive real numbers. We
point out that the trace-variogram function γ is estimated empirically by

γ̂(l,k) =
1

2#Nl,k

∑
i,j∈Nl,k

d(Xi, Xj)

with
Nl,k = {i, j ∈ In such that ∥i − j∥ = ∥l − k∥},

and #Nl,k is the cardinal of Nl,k. Observe that the use of the trace-variogram function also allows
for the integration of the functional nature of the data. Furthermore, in the isotropic case where the
dependence is related only to the distance between the locations, we can proceed with the vicinity set

Vk = {i, such that distance(i,k) ≤ νn}, (4.2)

where νn is an appropriate sequence of positive real numbers. Of course, the distance here is the
locating function between the different sites defined by the user.

4.2. Spatio-functional index estimation

This section is devoted to showing how we implement ξ̂q(z) in practice. Naturally, the applicability
of ξ̂q(z) depends on the precision of the parameters utilized in the estimator. In this paragraph, we
focus on the principal one, which is the single index θ. It is worth noting that the FSIR estimation has
been developed by multiple authors, for instance, see [59,60]. However, in this study we will introduce
and control the spatial structure of the data. Precisely, we will control this aspect over the three usual
selector procedures mentioned below.
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4.2.1. Spatial cross-validation by least squares error: SCVLSE-rule

The single index model is widely employed in econometrics. It is usually used to reduce the number
of factors in econometric data analysis. In mathematical statistics, this kind of model belongs to the
family of additive models. Theoretically, these techniques are used to improve the convergence rate
of the nonparametric approach. We integrate this vicinity subset of the previous paragraph in the least
squares rule to select the best index as

θ̂ = arg min
θ∈Θ⊂F

∑
k∈In

(Yk − R̂−k
θ (Xk))2, (4.3)

where R̂−k
θ is the leave-one-out estimator of the conditional expectation, which is defined by

R̂−k
θ (Xk) =

∑
j∈In−{k}

K
(
h−1

n Nθ((Xk) − Xj)
)

Yj1Wk(j)∑
j∈In−{k}

K
(
h−1

n Nθ((Xk) − Xj)
)
1Wk(j)

.

As discussed in the second section, this rule is justified by the fact that conditional expectation can be
viewed as a particular case of the q-expectile with q = 0.5. However, the rule (4.3) can be generalized
for various orders q by taking

θ̂ = arg min
θ∈Θ⊂F

∑
k∈In

ρq(Yk − ξ̂
−k
q (Xk)), (4.4)

where
ρq(s) = |q − 1{

s<0
}|s2,

and ξ̂−k
q is the leave one-out estimator of ξq constructed in the same manner as R̂−k

θ .

4.2.2. Spatial cross-validation maximum likelihood: SCVML-rule

An alternative approach based on the maximum likelihood method is used to select the best optimal
index. Indeed, with this rule, the best index model is realized by maximizing the conditional likelihood
function

θ = arg max
θ∈Θ⊂F

f (y | Nθ(X)),

where f (· | ·) is the density of Y conditioning on Nθ(X). So, the practical determination of the single
index is found on the nonparametric estimation of f (· | ·). Once again, to explore the spatial correlation,
we integrate the same vicinity subset in the conditional density function

f̂ (y|Xk) =

h−1
n

∑
i∈In

K
(
h−1

n Nθ(x − Xi)
)

K
(
h−1

n (y − Yi)
)
1Wk(i)∑

i∈In

K
(
h−1

n Nθ(x − Xi)
)
1Wk(i)

.

Therefore, we have

θ̂ = arg max
θ∈Θ⊂F

1
n

n∑
i=1

log f̂ (Yi | r̂−i
θ,n(Xi)). (4.5)
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This criterion was used by [61] in the nonfunctional case. The use of conditional density outperforms
the first criterion (4.3) based on the conditional expectation. Since the conditional density is more
informative than the conditional expectation, (4.5) seems to be more adequate than (4.3).

5. Computational study

5.1. A simulation study

The aim of this subsection is the evaluation of the effectiveness of the proposed estimator using a
finite sample size. The goal is to show how the spatial interaction impacts the choice the
functional-index θ as well as the smoothing parameter hn. Particularly, we will check the effect of
spatial dependency over the two cross-validation rules of the previous sections. For this purpose, we
simulate spatio-functional data using the SFIM as follows:

Yi = rθ(Xi) + ϵi

with

rθ(·) = r(Nθ(·)).

The function r(·) denotes a nonparametric regression link and ϵi is a white noise spatial process that is
supposed to be a Gaussian isotropic random field. The covariance function of this spatial process is

C(u) = e
(
−u2

2

)
.

For this experimental analysis, we generate the response variable by taking

r(z) =
∫ 1

0

1
x2(t) + 1

and θ = e1 is the first element of the basis function of Karhunen-Loève decomposition. Thereby, θ is
the eigenfunction that corresponds to the greatest eigenvalue of the covariance of the process (Xi)i. The
latter is drawn from the formula

Xi = sin (πWit) +Wit cos(Wit), t ∈ [0, 1],

where Wi is a random Weibull field with covariance that has an exponential function

C(u) = e(−ψu) for u ≥ 0.

The simulation result is displayed in Figure 1.
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Figure 1. Functional covariates.

Recall that θ is unknown in practice. To estimate θ, we compare the two rules of the previous
sections. Based on the two rules, we select the best functional index from Θ the finite subset defined
by

Θ = Θn =

θ ∈ F , θ = k0∑
i=1

ciei, ∥θ∥ = 1, and ∃ j ∈ 1, . . . , k such that Nθ(e j) > 0

 ,
where (ci)i are some calibrated real constants that ensure model identifiability. Usually, we choose the
(ci)i from {−1, 0, 1} with calibration. Next, for this computational study, we assume that the functional
subset Θ belongs to the Hilbert subspace spanned by the finite basis functions of (ei)i=1,··· ,k0 . This
basis function constitutes the k0-eigenfunction associated with the k0 largest eigenvalue. For the sake
of brevity, we have fixed k0 = 5. Thereafter, we use the same cross-validation rules to select the
smoothing parameter hn. Specifically, we have

hn = arg min arg min
h∈Hn

∑
k∈In

ρq(Yk − ξ̂
−k
q (Xk)),

where

Hn =

a ≥ 0 :
∑
i∈In

1B(z,a)(Xi) = k

 ,
k ∈ {5, 15, 25, · · · , 0.5n̂}, and the ball is defined with respect to the L2-distance between the functional
regressors. We simulate with quadratic kernel-defined as

K(t) =
3
2

(1 − t2)1[0,1).

The effectiveness of the estimator ξ̂q is evaluated by computing the mean square errors (MSE)

MSE(p) =
1
n̂

∑
j

(
ξq(Xj) − ξ̂q(Xj)

)2
, (5.1)

where the theoretical expectile regression ξq is obtained by using the routine code qenorm in the R-
package VGAM.
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The results are recorded in Table 1. It compares the SCVLSE-rule and SCVML-rule with an
arbitrary selector method. The latter of these rules is obtained by dividing the optimal parameters of
the SCVLSE-rule by 2. We emphasize our choice of utilizing the neighborhood set Wk, which
enables the integration of the spatial component into the functional component through the
trace-variogram function. The sequence ιn in the vicinity set Wk is selected among the quantile of
order q of the estimator vector trace-variogram γ(k, i) given by the code trace.variog in the geofd
package. The following table contains the MSE(q) for q = 0.01, q = 0.05, q = 0.1, n̂ = 200 and
ψ = 0.5, 2, which describes the covariance function of the random Weibull field in the regressor.

Table 1. MSE-results.

rule value of ψ q=0.01 q=0.05 q=0.1

SCVLSE-rule 0.5 0.34 0.37 0.31
2 0.19 0.15 0.22

SCVML-rule 0.5 0.28 0.32 0.34
2 0.11 0.09 0.08

Arbitrary -rule 0.5 0.77 0.73 0.84
2 0.61 0.68 0.62

Unsurprisingly, the efficiency of ξ̂q is heavily affected by the spatial correlation as well as the
selection rule to choose the parameter involved in the computation of ξ̂q, such as the functional index
θ and the smoothing parameters hn. It is clear that the arbitrary way significantly destroys the
estimation quality. On the other hand, the effect of the spatial correlation of the data also impacts the
estimation quality. Indeed, it is clear that the estimation quality decreases with large values of ψ. To
better illustrate this observation, we plot in Figure 2 theMSE value with respect to the values of ψ.
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Figure 2. Left plot: MSE with respect to the SCVLSE-rule. Right plot: MSE with respect to
the SCVML-rule.

In the second illustration, we compare our approach to its competitive such as the parametric and
the nonparametric methods. To conduct a fair comparison between the three algorithms, we regenerate
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the response variable using three different situations. Indeed, in addition to the initial data of the first
illustration, we define

Yi =

∫
θ(t)(Xi)(t)dt + ϵi, linear case,

Yi = r(Xi) + ϵi, purely nonparametric case,

where θ, r, ϵi, and Xi are defined in the first setting. We were inspired by [39] to define the spatial
functional linear expectile regression as

ξ̄q(Xk) = ⟨ξ̈q,Xk⟩ with ξ̈q =

M∑
j=1

ŝ j,qυ̂ j,

where the vector 
ŝ1,q

ŝ2,q
...

ŝM,q

 = arg min
ζ∈RM

∑
i∈In

ρq

Yi −

m∑
j=1

ζ j⟨υ̂ j, Xi⟩

 ,
and where the (ζ j) j are the components of ζ in the basis function, and (υ̂ j) j=1,··· ,M, for the M
eigenfunctions associated with the M greatest eigenvalues of the spatial empirical version of the
covariance operator

Γn(u) =
1
n̂

∑
i∈In

⟨Xi, u⟩Xi.

For the spatial nonparametric functional expectile regression we adopt the estimator of [27], which is
defined by estimating G1 and G2 as

G̃1(θ,Xk, t) =

∑
i∈In

K
(
h−1

n ∥Xk − Xi∥
)
1Wk(i)1(Yi−t)≤0(Yi − t)∑

i∈In

K
(
h−1

n ∥Xk − Xi∥
)
1Wk(i)

and

G̃2(θ,Xk, t) =

∑
i∈In

K
(
h−1

n ∥Xk − Xi∥
)
1Wk(i)1(Yi−t)>0(Yi − t)∑

i∈In

K
(
h−1

n ∥Xk − Xi∥
)
1Wk(i)

.

Using the same procedure as in the first setting, we select the sequence of the vicinity set (ιn),
the smoothing parameter, the same metric, and the same kernel. We examine the performance of the
three approaches ξ̄q, ξ̃q and ξ̂q using the MSE of (5.1) presented in Figures 3–5. Unsurprisingly, the
semi-parametric estimator ξ̂q(Xk) is more stable for the three situations. In the sense that its MSE has
slow variability with respect the different situations. It is of order 0.33 in the linear case, 0.36 in the
semi-parametric case and 0.38 of the purely nonparametric case. The MSEs of ξ̄q are (0.27, 0.45, 0.88)
versus (0.97, 0.67, 0.31) for ξ̃q. We observe also that the estimators ξ̄q and ξ̃q outperform only for the
parametric and nonparametric situations, respectively.
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Figure 3. Case 1: The data are generated according to the semiparametric model.

1 2 3 4 5

0
2

4
6

Parametric  Estimator

Estimated values

T
ru

e
 v

a
lu

e
s

1 2 3 4 5

1
2

3
4

5

Semi−parametric  Estimator

Estimated values

T
ru

e
 v

a
lu

e
s

1 2 3 4 5

0
2

4
6

Nonparametric  Estimator

Estimated values

T
ru

e

v
a

lu
e

s

Figure 4. Case 2: The data are generated according to the semiparametric model.
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Figure 5. Case 3: The data are generated according to the nonparametric model.

5.2. Real data application

Commonly, the financial area is the natural field of expectile regression. In this area, expectile
regression is used as an alternative model of risk to the expected-shortfall and the value-at-risk (VaR).
It is more informative than the mentioned risk tools, such as the VaR function. This statement results
from the fact that the expectile model is the tail expectation, whereas the VaR function is the quantile
model of the tail probabilities. The tail expectation function covers the frequencies as well as the
values, whereas the tail probability is based only on the frequency. The novelty of the spatial expectile
is the possibility to fit the financial risk of the co-movements of various investments in different sectors
or stock markets. In a sense, the spatio-functional correlation of the financial data regroups the time
conventional correlation as well as the pairwise relationships between the stock markets through known
financial metrics. It is worth noting the fact that the spatial linkage in financial data is unrelated to the
geographic localization of the stock markets. Such spatial financial distances are usually deafened by
some spatial matrix weighting. Thus, we seek in this computational part to inspect the behavior of
the spatio-functional conditional expectile concerning some common spatial matrix weighting. For
this aim, we consider the Euro Stoxx-50 index data. Such spatio-functional observations are available
at https://fred.stlouisfed.org/series (accessed on 14 March 2023). We proceed with the
difference logarithmic of this data for the closed prices r(·) of the period between 22 February 2022 to
23 February 2023. Specifically, we build a functional variable from

Z(t) = −100 log
(

r(t)
r(t − 1)

)
AIMS Mathematics Volume 9, Issue 3, 5550–5581.
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as a continuous process. The real interest variable Y is Z (of the-last-day of month), and the functional
insert variable X(·) illustrates the values of Z (for one month). In Figure 6, we plot the observed
functional regressors.

Time
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Figure 6. The spatio-functional regressor.

Of course, the first step of spatial modeling is spatial detrending, which is necessary to use the
stationarity assumption. To do that, we generate a stationary process (Ỹl, X̃l)l from the initial spatial
observation (Yl, Xi)l as {

X̃l = Xl − m1(l),
Ỹl = Yl − m2(l).

Next, we compute the conditional expectile estimator ξ̂q from the statistics (X̂i, Ŷi)i instead of from
the initial observations (Xi,Yi)i. Thus, the used observations are obtained by estimating the real
functions m1(·) and m2(·) by

m̂1(i0) =
∑
i∈In

Wi0iXi

and
m̂2(j0) =

∑
j∈In

W ′
j0jYj,

where Wij and W ′
ij are given spatial weighting matrices. As mentioned above, we evaluate the impact

of this step in the spatio-financial risk by comparing three common weighting matrices:

• The first one is

W1
ij =

{
1, if i and j are in the same sector,
0, if not.

• The second one

W2
ij =


1, if i and j are in the same sector and the same country,
0.5, if i and j are in the same sector,
0, if not.
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• The third one

W3
ij =

{
1, if i = j,
0, if not.

The last matrix allows us to examine also the behavior of the spatio-functional expetile regression
without the detrending part. Now, to run our spatio-functional model, we retrain the same schemes
as those exercised in the artificial example to designate the parameters of ξ̂q. Specifically, we use the
quadratic function supported on (0, 1) as the kernel and we select the single index and the smoothing
parameter by the rule SCVLSE as

(θo pt, hn) = arg min arg min
h∈Hn,θinΘn

∑
k∈In

ρq(Yk − ξ̂
−k
q (Xk)),

whereΘn and Hn are defined in the same manner as in the previous section. However, we use the metric
of principal component analysis to specify the ball in Hn. For both subsets Θn and Hn, the principal
component analysis is performed over 5-eigenfunctions associated to the 5 largest eigenvalues. The
feasibility of the proposed spatial risk analysis is checked for q = 0.95 and q = 0.05 by dividing
the data several times (exactly 55 times). The observations are divided at random into two parts: the
training sample (220 observations) and the testing sample (150 observations). Finally, we assess the
feasibility of the detrending steps by measuring

Eror =
1

150

150∑
i=1

ρ0.01(Yi − ξ̂0.01(Xi)),

where
ρq(s) = |q − 1{

s<0
}|s2.

The values Eror for the 55 random splitting operations of the sample are plotted in Figure 7.
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Figure 7. Comparison of the Eror values between the three matrices.
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It is obvious that there is a remarkable difference between the stationary case and the nonstationary
situation. In a sense, when we execute with the initial data without detrending (matrix 3), the estimation
quality is poor compared to the detrending step (using matrices 1 and 2). In particular, the detrending
step permits us to increase the effectiveness of the estimator ξ̂q by reducing the risk measure Eror(·).
The scatter plot in Figure 7 demonstrates that the median of Eror-values remarkably varies between
the three matrices. It is around 0.3 for the matrix W1

ij, around 0.2 for W2
ij and 0.6 in the nonstationary

case associated with the matrix W3
ij.

6. Conclusions

In this paper, we have demonstrated the BCC consistency of spatio-functional expectile regression
under the FSIR structure. Such a result is established over some general postulates, allowing us to
explore the nonparametric nature of the expectile operator, the functional path of the financial time
series data, and the spatial correlation of the observed data. On the other hand, since the degree of
correlation greatly impacts the convergence speed of the estimator, we have modeled this feature using
various rules. First, we have evaluated the effect of spatial dependency on the choice of the single
index model. For this purpose, we have employed vicinity-set techniques and the spatial weighting
matrix. We observed that the two approaches fit the spatial dependency correctly and are a good
tool for controlling the spatial covariation of the financial data. Indeed, since financial transactions are
performed via the internet, the spatial dependency between them is not based only on the location of the
financial institutions. Thus, the vicinity-set techniques (defined by the trace-variogram function) and
the spatial weighting matrix algorithm allows for the integration of all the different elements affecting
the spatial correlation. Moreover, we show that the insertion of the expectile operator in financial
risk management is carried out via two principal steps: detrending and determination of the estimator.
Such a strategy increases the efficiency of our algorithm in practice. Additionally, to this theoretical
and practical development, the present contribution opens very interesting tracks for future research.
For example, it will be a priority in the future to study the asymptotic property of the parametric
estimation of the spatio-functional expectile operator. Such a prospect is motivated by the expectile
operator’s ability to behave as linear, nonparametric, or semiparametric forms [62–64]. Thus, the ideas
of [30] can be extended here. Second, the asymptotic normality of the estimators is also crucial in
mathematical statistics. It allows us to determine the confidence interval with a given confidence level.
Extending our results to other functional time series cases (ergodic, long memory, associated process)
would be interesting. However, it would require nontrivial mathematics that is well beyond the scope
of this paper.
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This section is devoted to the proof of our main result. The previously presented notation continues
to be used in the following.
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Proof of Theorem 1. The function Ĝ is non-decreasing, and therefore its derivative is non-negative at
ξq(θ, z). So, for any ϵ > 0, we have

∑
n

Pr
(∣∣∣∣ξ̂q(θ, z) − ξq(θ, z)

∣∣∣∣ > ϵ)
≤

∑
n

Pr
( ∣∣∣∣Ĝ(θ, z, ξq(θ, z) − ϵ) −G(θ, z, ξq(θ, z) − ϵ)

∣∣∣∣ ≥ Cϵ
)

+
∑

n

Pr
( ∣∣∣∣Ĝ(θ, z, ξq(θ, z) + ϵ) −G(θ, z, ξq(θ, z) + ϵ)

∣∣∣∣ ≥ Cϵ
)
.

Next, it suffices to use the Proposition 3.1, and for

t = ξq(θ, z) ± ϵ,

we obtain ∑
n

Pr
 sup

t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ(θ, z, t) −G(θ, z, t)
∣∣∣∣ > Cϵ

 < ∞. (A.1)

So, in order to show the consistency of ξ̂q(θ, z), we have to prove the uniform BCC of Ĝ1,2(θ, z, t),
as n → ∞. This requirement is a consequence of Proposition 3.1. Hence, it suffices to prove this
proposition first. □

Proof of Proposition 3.1. For this proposition, we decompose Ĝ(θ, z, t) −G(θ, z, t) as follows:

Ĝ(θ, z, t) −G(θ, z, t) =
Ĝ1(θ, z, t)

Ĝ2(θ, z, t)
−

G1(θ, z, t)
G2(θ, z, t)

=
1

Ĝ2(θ, z, t)

[
Ĝ1(θ, z, t) −G1(θ, z, t)

]
+

G(θ, z, t)

Ĝ2(θ, z, t)

[
G2(θ, z, t) − Ĝ2(θ, z, t)

]
. (A.2)

Thus, the proposition, as well as the theorem, are consequences of the following intermediate results.

Lemma 1. Under the conditions of Proposition 3.1, we have

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ1(θ, z, t) − IE
[
Ĝ1(θ, z, t)

]∣∣∣∣ = Oa.co.

(√
log n̂

n̂ϕ(θ, z, hn)

)
as n→ ∞ (A.3)

and

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t) − IE
[
Ĝ2(θ, z, t)

]∣∣∣∣ = Oa.co.

(√
log n̂

n̂ϕ(θ, z, hn)

)
as n→ ∞.

□
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Proof of Lemma 1. Since the proof of the two terms is the same, we focus on the first term only. To
evaluate the maximum of this dispersion term on a compact interval, we recover [ξq(θ, z)−δ, ξq(θ, z)+δ],
by finite compact intervals

[
t j − ℓn, t j + ℓn

]
, with

ℓn = n̂−1/2ςl

and
dn = O

(̂
n1/2ς1

)
.

Let
Gn =

{
t j − ℓn, t j + ℓn, 1 ≤ j ≤ dn

}
, (A.4)

the subset of the covering interval’s extremities. Now, from the monotonicity of Ĝ1(θ, z, ·) and
IE[Ĝ1(θ, z, ·)], we write, for 1 ≤ j ≤ dn,

Ĝ1(θ, z, t j − ℓn) ≤ sup
t∈(t j−ℓn,t j+ℓn)

Ĝ1(θ, z, t) ≤ Ĝ1(θ, z, t j + ℓn),

IE
[
Ĝ1(θ, z, t j − ℓn)

]
≤ sup

t∈(t j−ℓn,t j+ℓn)
IE

[
Ĝ1(θ, z, t)

]
≤ IE

[
Ĝ1(θ, z, t j + ℓn)

]
.

It follows that

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣IE [
Ĝ1(θ, z, t)

]
− Ĝ1(θ, z, t)

∣∣∣∣
≤ max

1≤ j≤dn
max

z∈{t j−ℓn,t j+ℓn}

∣∣∣∣IE [
Ĝ1(θ, z, t)

]
− Ĝ1(θ, z, z)

∣∣∣∣ + 2ς1C2ℓ
ς1
n .

Since

ℓς1
n = o



√

log n̂
n̂ϕ(θ, z, hn)


1/2 ,

we prove only the fact that

max
1≤ j≤dn

max
z∈{t j−ℓn,t j+ℓn}

∣∣∣∣IE [
Ĝ1(θ, z, t)

]
− Ĝ1(θ, z, z)

∣∣∣∣ = O


√

log n̂
n̂ϕ(θ, z, hn)

 , a.co. (A.5)

To do that we write

Pr

 max
1≤ j≤dn

max
z∈{t j−ℓn,t j+ℓn}

∣∣∣∣IE [
Ĝ1(θ, z, t)

]
− Ĝ1(θ, z, z)

∣∣∣∣ > η
√

log n̂
n̂ϕ(θ, z, hn)


≤ 2dn max

1≤ j≤dn
max

z∈{t j−ℓn,t j+ℓn}
Pr

∣∣∣∣IE [
Ĝ1(θ, z, t)

]
− Ĝ1(θ, z, z)

∣∣∣∣ > η
√

log n̂
n̂ϕ(θ, z, hn)

 .
So, all that remains is to evaluate for all z = t j ∓ ℓn, 1 ≤ j ≤ dn,

Pr

∣∣∣∣IE [
Ĝ1(θ, z, t)

]
− Ĝ1(θ, z, z)

∣∣∣∣ > η
√

log n̂
n̂ϕ(θ, z, hn)

 . (A.6)
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To simplify the notation, we let
Y−i = 1(Yi−t)≤0(Yi − t),

which is not necessarily bounded. Thus, to evaluate (A.6), we use the truncation method. Indeed, we
consider

Ĝ∗1(θ, z, t) =
1

n̂IE [K1(θ, z)]

∑
i∈In

Ki(θ, z)Y∗i ,

where
Y∗i = Y−i 1(|Yi |<γn)

with
Ki(θ, z) = K(h−1

n Nθ(z − Xi)).

So, (A.3) is a consequence of the following results:

∣∣∣∣IE[Ĝ∗1(θ, z, t)] − IE[Ĝ1(θ, z, t)]
∣∣∣∣ = O


√

log n̂
n̂ ϕ(θ, z, hn)

 , (A.7)

∣∣∣∣Ĝ∗1(θ, z, t) − Ĝ1(θ, z, t)
∣∣∣∣ = Oa.co.


√

log n̂
n̂ ϕ(θ, z, hn)

 (A.8)

and ∣∣∣∣Ĝ∗1(θ, z, t) − IE[Ĝ∗1(θ, z, t)]
∣∣∣∣ = Oa.co.


√

log n̂
n̂ ϕ(θ, z, hn)

 . (A.9)

For statement (A.7): For this equation, we use Holder’s inequality (for α = p
2 and β such that 1

α
+ 1

β
=

1), which allows us to write that∣∣∣∣IE[|Ĝ∗1(θ, z, t)] − IE[|Ĝ1(θ, z, t)]
∣∣∣∣ ≤ C

1
IE [K1(θ, z)]

IE
[∣∣∣Y−∣∣∣1{Y≥γn}K1(θ, z)

]
≤

γ−αn

IE [K1(θ, z)]
IE1/α

[∣∣∣Y2α
∣∣∣] IE1/β

[
Kβ

1 (θ, z)
]

≤
γ−αn

IE [K1(θ, z)]
IE1/α [|Y p|] IE1/β

[
Kβ

1 (θ, z)
]
.

It follows that ∣∣∣∣IE[|Ĝ∗1(θ, z, t)] − IE[|Ĝ1(θ, z, t)]
∣∣∣∣ ≤ Cγ−αn ϕ(1−β)/β

x (θ, z, hn).

Finally, (H5) allows us to conclude the statement (A.7).

For statement (A.8): The demonstration of this statement is based on the Markov inequality. For all
ϵ > 0, we have

Pr
(∣∣∣∣Ĝ1(θ, z, t) − Ĝ∗1(θ, z, t)

∣∣∣∣ > ϵ)
≤

∑
i∈In

Pr (Yi > γn) ≤ n̂Pr (Y > γn) ≤ n̂γ−p
n IE [Y p] .
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Choose

ϵ = ϵ0


√

log n̂
n̂ ϕ(θ, z, hn)


to deduce that

∑
n

Pr

∣∣∣∣Ĝ1(θ, z, t) − Ĝ∗1(θ, z, t)
∣∣∣∣ > ϵ0


√

log n̂
n̂ ϕ(θ, z, hn)


 ≤∑

n

n̂γ−p
n < ∞.

For statement (A.9): This is based on the blocks of spatial decomposition insights [30]. Specifically,
we write

Λi = Ki(θ, z)Y∗i − IE
[
K1(θ, z)Y∗i

]
,

which allows us to write

Ĝ∗1(θ, z, t) − IE[Ĝ∗1(θ, z, t)] =
1

n̂IE [K1(θ, z)]

∑
i∈In

Λi(θ, z).

The latter can be decomposed as

Ĝ∗1(θ, z, t) − IE[Ĝ∗1(θ, z, t)] =
1

n̂IE [K1(θ, z)]

2N∑
i=1

T(n, i), (A.10)

with, for all i ∈ (1,N) and ri = 2ni p−1
n ,

T(n, i) =
∑
l∈J

M(i,n, j),

where
J = {0, · · · , r1 − 1} × · · · × {0, · · · , rN − 1},

with

M(1,n, l) =

2lk pn+pn∑
ik=2lk pn+1
k=1,··· ,N

Λi(θ, z),

M(2,n, l) =

2lk pn+pn∑
ik=2lk pn+1
k=1,··· ,N−1

(lN+1)pn∑
iN=2lN pn+pn+1

Λi(θ, z),

M(3,n, l) =

2lk pn+pn∑
ik=2lk pn+1
k=1,··· ,N−2

2(lN−1+1)pn∑
iN−1=2lN−1 pn+pn+1

2lN pn+pn∑
iN=2lN pn+1

Λi(θ, z),

M(4,n, l) =

2lk pn∑
ik=2lk pn+1
k=1,··· ,N−2

2(lN−1+1)pn∑
iN−1=2lN−1 pn+pn+1

2(lN+1)pn∑
iN=2lN pn+pn+1

Λi(θ, z),

· · ·
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where the last one is

M(2N ,n, l) =
2(lk+1)pn∑

ik=2lk pn+pn+1
k=1,··· ,N

Λi(θ, z).

We note that, if the ni is not exactly equal 2ri pn, we regroup the remaining terms in T(n, 2N + 1).
Clearly, the first term T(n, 1) is the leading one and the quantity Ĝ∗1(θ, z, t) is a finite sum. Thus, from
(A.10), for η > 0, we get

Pr
(
|IE[Ĝ∗1(θ, z, t)] − Ĝ∗1(θ, z, t)| ≥ η

)
≤ 2N max

i=1,···2N
Pr

(
T(n, i) ≥ ηn̂IE [K1(θ, z)]

)
.

Therefore, (A.8) is a consequence of

Pr
(
T(n, i) ≥ ηn̂IE [K1(θ, z)]

)
for all i = 1, · · · , 2N .

We now treat the leading term T(n, 1). Of course, the other cases are proved by the same treatment.
The proof of this last case is based on the application of Lemma 2 in [46]. Indeed, we recount the

M =
N∏

k=1

rk = 2−Nn̂p−N
n ≤ n̂p−N

n

variables in another arbitrary way, that is Z1(θ, z), · · · ,ZM(θ, z). In a sense, for each Zj(θ, z) there exists
j in J such that

Zj(θ, z) =
∑

i∈I(1,n,j)

Λi(θ, z),

where
I(1,n, l) = {i : 2lk pn + 1 ≤ ik ≤ 2lk pn + pn, k = 1, · · · ,N} .

Clearly, the sets I(1,n, l) are distanced by pn and they contain pN
n sites. In addition, we have

K(h−1
n Nθ(z − Xi))Y∗i ≤ Cγn.

Then, from Lemma 2 in [46], we extract independent random variables Z∗1(θ, z), · · · ,Z∗M(θ, z) having
the same distribution as

Zl=1,··· ,M(θ, z),

such that
r∑

j=1

IE|Zj(θ, z) − Z∗j (θ, z)| ≤ 2CγnMpN
nψ(pN

n (M − 1), pN
n )φ(pn). (A.11)

So, we write
Pr

(
T(n, i) ≥ ηn̂IE [K1(θ, z)]

)
≤ N1(n) + N2(n),

where

N1(n) = Pr


∣∣∣∣∣∣∣

M∑
j=1

Z∗j

∣∣∣∣∣∣∣ ≥ Mηn̂IE [K1(θ, z)]
2M

 ,
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N2(n) = Pr

 M∑
j=1

|Zj − Z∗j | ≥
ηn̂IE [K1(θ, z)]

2

 .
We start by evaluating the term N1. As an independent array, we use the Bernstein’s inequality. The
latter is based on the variance quantity

Var
[
Z∗1(θ, z)

]
= Var

 ∑
i∈I(1,n,1)

Λi(θ, z)

 .
For this purpose, we use the fact that

IE
[
Y p

i |Xi
]
< ∞,

for p > 2, to prove that

Var [Λi(θ, z)] ≤ CIE
[
K2

i Y∗2i

]
≤ CIE

[
K2

i Y2
i

]
≤ CIE

[
K2

i IE
[
Y2

i |Xi
]]

≤ CIE
[
K2

i

]
≤ Cϕ(θ, z, h).

Therefore, ∑
i∈I(1,n,1)

Var [Λi(θ, z)] = O
(
pN

n ϕ(θ, z, h)
)
.

Next, we use the second part of (H2) to prove that, for all i , j,

Cov(Λi(θ, z),Λj(θ, z)) ≤ CIE
[
KiKj|YiYj|

]
≤ CIE

[
KiKjIE

[
|YiYj||XiXj

]]
≤ CIE

[
KiKj

]
≤ Cϕ(a+1)/a

x (θ, z, h).

On the other hand, since
IE

[
Y p

i |Xi
]
< ∞,

then, for all i , j, Hölder’s inequality allows us to write

Cov(Λi(θ, z),Λj(θ, z)) ≤ ∥Λi(θ, z)∥2pφ
1−2/p(∥ j − i∥)

≤ Cϕ2/p
x (θ, z, h)φ1−2/p(∥i − j∥)).

Hence, ∑
i,j∈I(1,n,1)

∣∣∣Cov(Λi(θ, z),Λj(θ, z))
∣∣∣

≤
∑

{i,j∈I(1,n,1) ∥i−j∥≤un}

∣∣∣Cov(Λi(θ, z),Λj(θ, z))
∣∣∣

+
∑

{i,j∈I(1,n,1) ∥i−j∥>un}

∣∣∣Cov(Λi(θ, z),Λj(θ, z))
∣∣∣

≤ CpN
n ϕ(θ, z, h)

uN
n ϕ(θ, z, h)1/a + u−Na

n ϕ2/p−1
x (θ, z, h)

∑
i:∥i∥≥un

∥i∥Na φ1−2/p (∥i∥)

 .
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It suffices to choose
un = ϕ(θ, z, h)2/N p(a+1)−1/Na,

and we obtain ∑
i,j∈I(1,n,1)

∣∣∣Cov(Λi(θ, z),Λj(θ, z))
∣∣∣ ≤ CpN

n ϕ(θ, z, h).

So, we infer that

Var

 ∑
i∈I(1,n,1)

Λi(θ, z)

 = O
(
pN

n ϕ(θ, z, h)
)
.

Now, we replace in the inequality of N1, that is,

N1(n) ≤ 2 exp

− (ηn̂IE [K1(θ, z)])2

MVar
[
Z∗1

]
+Cηγn pN

n n̂IE [K1(θ, z)]

 . (A.12)

This gives

N1(n) ≤ exp
(
−Cη0 log n̂

)
.

Finally, a good choice of η0 allows us to write that∑
n

N1(n) < ∞.

For the term N2(n), we use the Markov inequality and (A.11) to get that

N2(n) ≤ 2Mγn pN
n (ηn̂IE [K1(θ, z)])−1ψ(pN

n (M − 1), pN
n )φ(pn).

Now, since
IE [K1(θ, z)] ≤ Cϕ(θ, z, hn), n̂ = 2N MpN

n

and
ψ(pN

n (M − 1), pN
n ) ≤ pN

n ,

by choosing

η = η0

√
log n̂

n̂ ϕ(θ, z, h)
,

we readily obtain
N2(n) ≤ n̂γn pN

n
(
log n̂

)−1/2 (̂
nϕ(θ, z, h)

)−1/2
φ(pn).

It suffices to choose

pn = C
(
n̂ϕ(θ, z, h)
log n̂γ2

n

)1/2N

to get
N2(n) ≤ n̂φ(pn).

From (H5), we conclude that ∑
n

N2(n) < ∞.
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In a similar way, as n→ ∞, we get

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t) − IE
[
Ĝ2(θ, z, t)

]∣∣∣∣ = Oa.co.

(√
log n̂

n̂ϕ(θ, z, hn)

)
,

which completes the demonstration of this lemma. □

Lemma 2. Assume that the conditions (H1), (H3), and (H4) are fulfilled. We have, as n→ ∞,

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣G1(θ, z, t) − IE
[
Ĝ1(θ, z, t)

]∣∣∣∣ = O
(
hk1

n

)
(A.13)

and

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣G2(θ, z, t) − IE
[
Ĝ2(θ, z, t)

]∣∣∣∣ = O
(
hk2

n

)
.

Proof of Lemma 2. Similar to the previous lemma, as the proof of two terms is the same, we focus on
the term Ĝ1. For this goal, we use the stationarity of the observations and write

IE
[
Ĝ1(θ, z, t)

]
−G1(θ, z, t)

=
1

IE [K1(θ, z)]
{IE [K1(θ, z) (G1(θ,X1, t) −G1(θ, z, t))]} .

Then, from (H4), we get

IE
[
K1(θ, z)

(
G1(θ, ;X1, t) −G1(θ, z, t)

)]
= IE

[
K1(θ, z) (G1(θ,X1, t) −G1(θ, z, t))1B(z,hn)(X1)

]
.

Therefore, we infer∣∣∣∣IE [
Ĝ1(θ, z, t)

]
−G1(θ, z, t)

∣∣∣∣
=

1
IE [K1(θ, z)]

∣∣∣∣IE [
K1(θ, z)

(
G1(θ,X1, t) −G1(θ, z, t)

)
1B(z,hn)(X1)

] ∣∣∣∣.
It follows that ∣∣∣∣G1(θ, z, t) − IE

[
Ĝ1(θ, z, t)

] ∣∣∣∣ ≤ Chk1
n .

The last inequality is uniform in t, then write

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣G1(θ, z, t) − IE
[
Ĝ1(θ, z, t)

]∣∣∣∣ = O
(
hk1

n

)
.

By the same analytical arguments, we obtain

sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣G2(θ, z, t) − IE
[
Ĝ2(θ, z, t)

]∣∣∣∣ = O
(
hk2

n

)
.

Hence, the proof is complete. □
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Lemma 3. Under the conditions of Proposition 3.1, as n→ ∞, we have∑
n

Pr
(

inf
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t)
∣∣∣∣ ≤ ϵ) < ∞. (A.14)

Proof of Lemma 3. Note that

inf
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t)
∣∣∣∣ ≤ 1

2
inf

t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]
G2(θ, z, t)

=⇒ sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t) −G2(θ, z, t)
∣∣∣∣ > 1

2
inf

t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]
G2(θ, z, t).

This statement means

Pr
(

inf
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t)
∣∣∣∣ ≤ 1

2
G2(θ, z, t)

)
≤ Pr

 sup
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t) −G2(θ, z, t)
∣∣∣∣ > 1

2
inf

t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]
G2(θ, z, t)

 .
Finally, we combine the Lemmas 1 and 2 and choose

ϵ =
1
2

inf
t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]

G2(t; x) > 0

to conclude that∑
n

Pr
(

inf
t∈[ξq(θ,z)−δ, ξq(θ,z)+δ]

∣∣∣∣Ĝ2(θ, z, t)
∣∣∣∣ ≤ 1

2
inf

t∈[ξq(θ,z)−δ,ξq(θ,z)+δ]
G2(θ, z, t

)
< ∞. (A.15)

Hence, the proof is complete. □
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