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1. Introduction
  

	 More evidences which suggest that there is 
a relation between human health and the gut 
microbiota are becoming available (Valdes et al. 2018; 
Ding et al. 2019). Microbiota, a part of microbiome, 
refers to living microorganisms on the human body, 
which consists of bacteria, archaea, eukaryotes, and 
viruses (Marchesi and Ravel 2015; Berg et al. 2020). 
There is an extraordinary number of the microbiota, 
the same as the number of the cells in the human 
body, with the majority of them living in the gut 
(Sender et al. 2016).
	 The formation of the gut microbiota ecosystem 
is a complex but continuous process, affected by 
internal and external determinants (Chong et al. 
2018). The gut microbiota is essential for developing 
the immune system, modulation of cell proliferation, 
and protection against pathogenic microorganisms 
(Jandhyala 2015). In recent years, the gut microbiota’s 
effect on human diseases has been a popular topic 
in biomedical research society (Guinane and Cotter 
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2013). Several studies have reported that alteration 
of particular microbiota composition leads to several 
diseases such as gastrointestinal disorder, diabetes, 
obesity, and even cardiovascular disease (Wang et 
al. 2011; Tilg and Moschen 2014; Davis 2016). To 
prevent those diseases in later life, factors that affect 
the development of the gut microbiota since the 
beginning, such as diet during pregnancy, delivery 
mode, infant diet, environment, antibiotic use, and 
host genetic, need to be noted (Stewart et al. 2018). 
This early gut microbiota development is crucial in 
shaping immune and metabolic functions that can 
have lifelong effects on health (Forno et al. 2008; 
Zeissig and Blumberg 2014; Tamburini et al. 2016). 
	 Indonesia prone to the risk of both communicable 
and non-communicable diseases. Based on the 2019 
Health SGD Profile, the number of communicable 
diseases such as TB, HIV, Malaria, and Hepatitis 
remain high. The same applied to non-communicable 
diseases such as stunting, obesity, diabetes, and high 
blood pressure (WHO 2019). For that reason, studies 
on gut microbiota profile in Indonesian population 
are crucial as the results can provide important 
information for diseases prevention and treatment. 
Some of those studies use a conventional method 



such as bacterial culture, while the others used next-
generation sequencing (NGS) to get complete picture 
of the microbiota profile (Khine et al. 2020; Kamil 
et al. 2021; Surono et al. 2021). The gut microbiome  
formation in early life is a complex process that has 
long-term implications for a human’s health (Davis 
et al. 2022). Feeding patterns significant influence, 
the health of children in later life. Recently, it has 
been reported that exclusively breastfeeding in 
the first six months after birth is associated with 
optimal cognitive and language development and 
well-balanced microbiota (Guo et al. 2023). In other 
studies, there were differences in the abundance of 
several OTUs in adolescence based on the type of 
feeding during the first six months of life (No infant 
formula versus infant formula [breastmilk + formula 
or only formula]) (Eshriqui et al. 2020). Our study 
aims to identify the gut microbiota profiles of infants 
living in Jakarta, Indonesia and determine whether 
there is a correlation with feeding patterns.

2. Materials and Methods

2.1. Specimen Collection
	 A total of 103 archived stool samples, collected at 4 
and 6 months of ages from children who participated 
in the Breastfeeding Attitude and Volume (BRAVO) 
study started in July 2012 were used in this study. 
(Savitri et al. 2016) Mothers who participated in 
the BRAVO study were involved in children’s stools 
collection obtained in the morning on the day of an 
immunization visit. In this study, 55 and 48 samples 
were collected from infants with breastfeeding and 
mixed feeding patterns. We define a mixed feeding 
pattern as an infant who receives mixed breast and 
formula feeding.
	 This study was approved by the Institutional 
Review Board of the Faculty of Medicine University 
of Indonesia/Cipto Mangunkusumo General Hospital 
(reference number: 260/UN2.F1/ETIK/III/2017). 
Written informed consent was obtained from the 
parent or guardian.The samples were transported 
in a cool bag to the study sites for aliquoting in 1.8 
ml cryotubes. The processed samples were directly 
stored in a -20°C degree freezer for a maximum of 7 
days before it is transferred to the central laboratory 
and stored at a -80°C degree temperature for further 
analysis.

2.2. DNA Extraction and Library Preparation
	 DNA extraction was conducted as manufacturer 
instruction (DNeasy Powersoil Kit, QIAGEN, USA). 
Bacterial DNA concentration obtained by extraction 
was measured by qPCR targeting 16S gene specific 
for bacterial detection. The use of 16S qPCR will 
specifically provide bacterial DNA concentration not 
total DNA obtained from extraction that is important 
further dilution before library preparation. The 
library was prepared by producing amplicon of V4 
region of 16S gene tagged with specific indexed 
forward and reverse primer for each sample using 
conventional PCR (Caporaso et al. 2011). Bacterial 
DNA concentration of each sample used for library 
preparation was 5 ng/ul. All tagged amplicons were 
linearized to 75 ng for each sample followed by sample 
pooling in the same falcon tube. Pooled DNA was 
purified by using AMPure Beads (Beckman Coulter, 
USA). The purified pooled DNA was diluted to 4 nM 
before being processed for denaturation and dilution 
prior to injection to Cartridge. The concentration 
of diluted purified amplicon was measured using 
Qubit Fluorometric quantitation (Thermo Scienctific-
USA). A 4 nM pooled library was then used for pre-
processing of dilution to 20 pM and denaturation 
prior to injection into MiSeq Illumina cartridge v2 for 
500 cycles. (Illumina, n.d.) FastQ files were extracted 
from instrument for further data analysis.

2.3. Data Analysis
	 The gut microbiota profile, including alpha 
and beta diversity indexes, was analyzed using 
Quantitative Insights Into Microbial Ecology (QIIME) 
version 2 (Bolyen et al. 2019). We looked at the 
sequences’ quality based on some randomly selected 
samples and then denoised the data. We used the 
DADA2 pipeline for detecting and correcting Illumina 
amplicon sequences. This process involved filtering 
phiX reads, chimeric sequences, and assigning 
taxonomic classification. The trimming parameters 
consist of --p-trim-left-f m / --p-trim-left-r m, which 
trims off the first m bases of each sequences, and 
--p-trunc-len-f n / --p-trunc-len-r n, which truncates 
each sequence at position n, to remove low quality 
regions of the sequences. Based on the quality plots 
above, we determined the trimming parameters 
for denoising the data. In this step we have to be 
careful while choosing the trimming parameters 
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as we need the reads to overlap when joining both 
forward and reverse reads. From the demux-paired-
end.qzv quality plots, the quality of initial bases from 
both forward reverse and reads are high, so we did 
not trim bases from the beginning of the reads. The 
quality dropped off at around position 198 bases, 
the position which we truncated the sequences in 
both reads. The taxonomic classification was based 
on the Greengenes database, and the output of this 
workflow was a classification of reads at several 
taxonomic levels (DeSantis et al. 2006). Downstream 
data analysis was conducted with phyloseq R package 
(McMurdie and Holmes 2013).

3. Results

	 DNA extracted from stool specimens sequenced 
by Illumina MiSeq resulting demultiplexed paired-
end sequences with the number of reads of each 
sample ranging from 54 to 237,499 reads. Following 
the filtering process, we obtained a feature table and 
corresponding features sequences associated with 
each sample. The total feature sequences generated 
were 812 features and distributed in 103 samples 
with the minimum and maximum length 203 and 
254 nucleotides, respectively. We excluded samples 
with a total sequence read lower than 2,000. Twelve 
phyla were observed and showed that Actinobacteria 
(45,03%), Firmicutes (35,76%), and Proteobacteria 
(14,74%) were dominant (Figure 1).

	 There is no difference in the microbiota pattern 
in the phylum level between the two feeding pattern 
groups. Actinobacteria, Firmicutes, and Proteobacteria 
were reported dominant from both groups (Figure 
2). Alpha diversity measures, Observed, Shannon 
diversity, and Phylogenetic diversity showed no 
significant difference in the diversity of the bacteria 
abundance between breastfeeding and mixed feeding 
groups (p-value = 0.34; 0.28; and 0.27 respectively) 
(Figure 3). 
	 In addition, for beta diversity, Jaccard distance, 
Bray-Curtis distance, Unweighted and Weighted 
Unifrac distances showed no difference among 
feeding pattern groups as samples from different 
feeding patterns spread evenly without forming 
groups based on the feeding pattern.
	 Beta diversity analysis by using PERMANOVA 
showed that there was no association between 
feeding patterns and there was no significantly 
different (p-value > 0.05) in the microbial community. 
Continuing the diversity measurement, we explored 
the taxonomic composition of the samples. The 
results showed that there was a domination of 
Bifidobacteriales (43.04%), Lactobacillales (28.39%), 
and Enterobacteriales (13.75%) which consist 
in more than three-quarters of the taxonomic 
abundance in the samples, followed by Clostridiales 
(4.30%), Bacillales (2.60%), Bacteriodales (2.24%), and 
Verrucomicrobialles (2.18%) (Figure 4).
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A. Actinobacteria phyla
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C. Proteobacteria phyla
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4. Discussion

	 Studies of gut microbiota composition affected by 
dietary habit have been conducted in various region 
worldwide. Children from Europe that consumed 
a western diet rich in sugar, starch, animal protein, 
and poor in fibres resulting higher abundance of 
Bacteroides compare to children living in rural Africa, 
with agrarian diet, that had a higher abundance of 
Prevotella (De Filippo et al. 2010). Furthermore, study in 
India also resulted similar outcome, the gut microbiota 
of Indian tribes with carbohydrate diet enriched in 
carbohydrate-metabolizing bacteria from the family 
of Prevotellaceae (Dehingia et al. 2015). Consistent 
with those studies, gut microbiota characterization of 
BaAka hunter-gatherers and Bantu, two African groups 
living in Central Africa, have specific compositional 
structure of microbial that reflects their lifestyles 
(Gomez et al. 2016).
	 Exposure to breast milk has been reported to have a 
more significant influence in shaping the configuration 
and function of the gut microbiota. Breastfeeding 
provides a specific metabolic substrate for the 
microbiota (Neu and Rushing 2011; Guaraldi and 
Salvatori 2012). Some studies reported a difference in 
the bacteria pattern and abundance between different 
feeding modes (Harmsen et al. 2000; Fan et al. 2013). 
On the contrary, our study showed that feeding 
patterns are not associated with the difference in 
microbial community richness and evenness based on 
the alpha diversity index. Alpha diversity measures the 
number of different species in a sample and measures 
the abundance of the species. In addition, results 
from the measurement of the beta diversity index 
also showed that the association between feeding 
patterns and differences in the microbial community 
is not statistically significant. Beta diversity uses to 
compare the differences in microbial composition in 
one sample group compared to another (Wagner et al. 
2018). In this study, more than 80% of the bacteria were 
Bifidobacterium, Lactobacillales, and Enterobacteriales, 
followed by Clostridiales, Verrumicrobialles, Bacillales, 
and Coriobacteriales. Bifidobacterium has been widely 
known to benefit human health such as prevention 
of colorectal cancer, treatment of diarrhea, and 
reduction in the symptom of inflammatory bowel 
disease (Venturi et al. 1999; Le Leu et al. 2010). 
Bifidobacterial has been reported to correlate with 
human milk oligosaccharides composition, and many 
studies reported that this bacterial was commonly 

found in the feces of infants who received breastmilk 
(Davis et al. 2016; Ho et al. 2018). Lactobacillales, as a 
part of lactic acid bacteria (LAB), are associated with 
intestinal infection control and lactose digestion 
improvement (Gilliland 1990). A study reported no 
significant difference in the abundance of Lactobacillus 
between breastfeed and formula feed groups (Yang 
et al. 2019). Enterobacteriales has been reported 
to be associated with increased in vivo intestinal 
permeability in humans (Pedersen et al. 2018). 
Enterobacteriaceae, a family of Enterobacteriales 
has been reported to have lower abundance in less 
duration of breastfeeding group (Ho et al. 2018). In 
this study, we found cyanobacteria and chloroflexi in 
fecal samples. Other studies also found also rare Phyla 
(which had an average abundance of 0.01%) including 
Cyanobacteria, Deinococcus-Thermus, Chloroflexi, 
and Fusobacter among fecal samples from low birth 
weight (LBW) infants (Costello et al. 2013). Naturally, 
chloroflexi bacteria are found in the human oral 
microbiome, although in low levels (Morrison et al. 
2023). Chlorophylaxis represents a low level (<1%) 
but consistent component of the human oral and skin 
microbiota and has also been detected in the gut of 
other mammals (Campbell et al. 2014). Our study did 
not show a difference in the gut microbiota pattern 
between the two feeding pattern groups. Recently, it 
was reported that at 3 months of age, Enterococcus 
was significantly lower in the cesarean section delivery 
with breast-fed group than in the formula-fed infants, 
although for infants delivered by vaginal delivery, the 
difference between feeding types (breast-fed versus 
formula-fed pattens) was not significant (Ma et al. 
2022). Low diversity of gut microbiota early in life 
appears to be a hallmark of a healthy gut, if caused 
by breast-feeding, which is different from the theory 
in adults (Ma et al. 2022). Future research will be very 
important to investigate the feeding patterns and the 
mother diets during the breastfeeding period in the 
first six months on the diversity of microbiota and 
their relationship with non-communicable diseases 
in later life.
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