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Background: Breast cancer (BC) is a leading cause of mortality among women,

underscoring the urgent need for improved therapeutic predictio. Developing a

precise prognostic model is crucial. The role of Endoplasmic Reticulum Stress

(ERS) in cancer suggests its potential as a critical factor in BC development and

progression, highlighting the importance of precise prognostic models for

tailored treatment strategies.

Methods: Through comprehensive analysis of ERS-related gene expression in

BC, utilizing both single-cell and bulk sequencing data from varied BC subtypes,

we identified eight key ERS-related genes. LASSO regression and machine

learning techniques were employed to construct a prognostic model, validated

across multiple datasets and compared with existing models for its

predictive accuracy.

Results: The developed ERS-model categorizes BC patients into distinct risk

groups with significant differences in clinical prognosis, confirmed by robust

ROC, DCA, and KM analyses. The model forecasts survival rates with high

precision, revealing distinct immune infiltration patterns and treatment

responsiveness between risk groups. Notably, we discovered six druggable

targets and validated Methotrexate and Gemcitabine as effective agents for

high-risk BC treatment, based on their sensitivity profiles and potential for

addressing the lack of active targets in BC.

Conclusion: Our study advances BC research by establishing a significant link

between ERS and BC prognosis at both the molecular and cellular levels. By

stratifying patients into risk-defined groups, we unveil disparities in immune cell

infiltration and drug response, guiding personalized treatment. The identification

of potential drug targets and therapeutic agents opens new avenues for targeted

interventions, promising to enhance outcomes for high-risk BC patients and

paving the way for personalized cancer therapy.
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Introduction

Breast cancer (BC) is the most preventable malignancy in

women, with high morbidity and mortality (1). At present, the

therapeutic approaches have some achievements in BC treatment.

The prognosis and therapy of advanced BC patients still have a lot

of room for improvement (2). The abundant prognostic models

targeted BC have been developed based on distinctive perspectives.

For example, Amiri Souri et al. employed machine learning

techniques on breast cancer transcriptomics to classify tumors

into prognostic categories, showcasing the use of advanced

computational methods in prognosis (3). However, the prognosis

of BC patients is still unsatisfactory. Hence, it is urgent to explore an

effective and accurate prognostic model to enhance the effectiveness

of prognosis and aid therapy for BC patients.

Endoplasmic reticulum stress (ERS) is a double-edged sword in

cancer development, playing a critical role in both promoting and

inhibiting tumor growth. For instance, the study by Nan et al. found

that inhibition of ERS in triple-negative breast cancer (TNBC) cells

suppressed cell viability, migration, and invasion, indicating a key

role of ERS in maintaining the aggressiveness of cancer cells (4).

However, Rivera Ruiz et al. demonstrated that inducing ERS in

breast cancer cells led to cell cycle arrest and apoptosis, particularly

affecting angiogenesis essential for tumor growth and metastasis (5).

ERS is also associated with resistance to anti-cancer treatments. It is

involved in complex mechanisms that contribute to the survival of

cancer cells under therapeutic stress. This aspect is crucial for

understanding the role of ERS in tumor progression and

treatment response. Recent research elucidates that estrogen

modulates the ERS pathway in breast cancer cells, highlighting a

novel mechanism by which estrogen influences BC cell survival and

proliferation (6). In addition, ERS is also capable of regulating

immune cells including macrophages (7), and DCs (8) to affect the

development of BC.

The predictive models based on ERS regulators had been widely

utilized in some tumors. Fox instance, Zhao et al. established an

osteosarcoma prediction model based on six ERS-related genes that

is helpful in directing personalized treatment (9). Moreover, Wu

et al. improved the prognosis of bladder cancer patients using ERS-

related lncRNAs (10). In breast cancer, Fan et al. have reported that

ERS prognostic model is associated with the prognosis of BC

patients (11). While our model employs advanced statistical and

machine learning methods with being further validated in multiple

independent cohorts, which may offer more nuanced insights into

ERS in breast cancer compared to Fan et al.’s approach.

Furthermore, we provide an in-depth analysis of immune cell

infiltration disparities and potential drug targets in breast cancer,

aspects that are less explored in Fan et al.’s study. Our study also

goes further in discussing the practical implications of ERS in breast

cancer, particularly in the context of immunotherapy and

chemotherapeutic response. Therefore, these points emphasize the

unique contributions and potential impact of our research in the

field of breast cancer and ERS. Our study’s integration of complex

data analysis methods, along with a focus on clinical applicability,

marks it as a significant advancement over existing research.
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Materials and methods

Data collection

To mitigate potential instability arising from batch effects

between tumor and normal samples during differential analyses, a

careful strategy was implemented. Specifically, gene expression

profiles were obtained from the TCGA and GTEx projects, which

have undergone recomputation by the UCSC Xena project (12).

Notably, this recomputation adhered to a well-defined pipeline,

ensuring a robust and standardized approach to data preparation.

We further sourced data from various databases to build and

validate our models. The training dataset was compiled from the

TCGA database, incorporating gene profiles, mutational landscapes,

and clinical details of breast cancer cases. In the preparation of our

training dataset, a critical step was the exclusion of samples lacking

complete survival information, which is essential for the development

of a robust prognostic model. Initially, all collected samples

underwent a thorough screening process. We specifically checked

for the availability of key survival information, including both overall

survival time and status (alive or deceased). Then, samples that were

missing either of these critical survival data points were identified and

systematically excluded from the dataset.

To augment our findings, we acquired additional validation

datasets. These encompassed samples from the Metabric dataset

and the GEO databases (GSE202203 and GSE96058).

Furthermore, a distinct immunotherapy cohort specifically

targeting PD-L1 was obtained from a published study utilizing

the IMvigor210CoreBiologies package in R (13).
Single-cell analysis

Single-cell data on breast cancer was procured from the GEO

database under the accession number GSE161529 (14). To establish

a robust foundation for analysis, several preprocessing steps were

executed. Our initial step involved the elimination of genes that

exhibited no expression across all cases (with a count of 0).

Subsequently, we applied normalization to the gene expression

matrix, employing the “SCTransform” function within the Seurat

R package. To gain deeper insights, we conducted Principal

Component Analysis (PCA), tSNE and UMAP analysis. To

categorize cel ls , we harnessed the capabil i ties of the

“FindNeighbors” and “FindClusters” functions. To enhance data

accuracy, the identification and removal of doublets were

undertaken, utilizing the DoubletFinder R package (15).

To further refine the dataset, we excluded cells that exceeded a

mitochondrial gene content of 15% or had a gene count below 500.

Following these quality control measures, approximately 30

thousand cells remained for subsequent analyses. We employed

Celltypist for cell type assignment in our single-cell analysis.

Celltypist is a state-of-the-art tool designed for accurate and

efficient cell type classification in single-cell RNA sequencing

(scRNA-seq) data (16). This comprehensive approach ensured the

robust processing and analysis of the single-cell data.
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Functional analysis and
pathway exploration

To unravel the intricate landscape of differential expression of

ERS regulators between tumors and normal tissues, we utilized the

power of the GO and KEGG databases (17, 18). This enabled us to

conduct a comprehensive assessment of functional activities and

pathways. Leveraging the capabilities of the Enrichplot package

within the R environment, we embarked on this pivotal analysis.

Enrichplot is an R package designed to provide a rich and intuitive

visual representation of complex biological data, particularly useful

in the context of gene-set enrichment analysis.

In addition, the clusterProfiler algorithm was instrumental in

facilitating the execution of Gene Set Enrichment Analysis (GSEA)

between the distinct risk subgroups (19). This dynamic approach

illuminated the underlying functions differentiating the two

subgroups. To establish statistical significance, we deemed a False

Discovery Rate (FDR) value below 0.05 as indicative of noteworthy

findings. It is noteworthy that our robust methodology involved the

performance of 1,000 permutations to enhance the robustness of

our results.
Establishment of the ERS score

To unravel the implications of ERS in BC, a systematic

approach was adopted. We initiated this exploration by

conducting a differential analysis, specifically comparing gene

expression patterns between tumor and normal tissues within the

GTEx-TCGA dataset.

To visually represent the differential gene expression outcomes,

a heatmap was employed, effectively illustrating the disparities.

Concurrently, an analysis of gene correlations was carried out,

facilitated by the utilization of the igraph package. The pivotal ERS

score was then meticulously computed. This calculation was

anchored in the differentially expressed ERS regulators. In this

endeavor, the ssGSEA algorithm was employed for bulk data (20),

while the Ucell algorithm was harnessed for single-cell data (21).

This dual-pronged approach ensured a comprehensive and robust

assessment of the ERS score, facilitating a deeper understanding of

its role within the realm of BC, considering both the collective

behavior of tumor cells (bulk analysis) and the heterogeneity at the

single-cell level.
Development and validation of ERS-model

The evolution and validation of the ERS-model underwent a

meticulous process to ascertain its predictive efficacy in the context

of BC.

To identify potent ERS regulators with predictive capabilities,

we initiated a univariate Cox regression analysis on differentially

expressed ERS regulators. This analysis took place within a

dedicated training set, culminating in the selection of eight ERS

regulators intimately associated with BC outcomes. A robust
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evaluation of BC prognosis was facilitated through the assessment

and computation of Overall Survival (OS) in BC patients.

For constructing the ERS-model, a lasso regression approach

was meticulously deployed. This framework adeptly extracted

essential ERS regulators. These elements were thoughtfully

combined to forge an ERS-model, a pivotal tool for gauging BC

patient outcomes. The resultant risk scores were determined

through a mathematical formulation:

riskcore  =  o
n

i = 1
(bi �  Expi)

wherein ‘n’ represents the number of ERS regulators, ‘Exp’

signifies the ERS gene profile, and ‘b’ denotes the multi-Cox

coefficient. After this, patients were categorically classified into

distinct risk subgroups based on their corresponding risk scores.

To robustly gauge the generality of the risk profile, external

datasets were harnessed. These datasets effectively served as

validation sets, further strengthening the model’s credibility.

Employing R v4.2 and adopting Kaplan-Meier (KM) survival

analysis, we meticulously examined the discernible variation in

outcomes between the identified risk subgroups. The statistical

significance of this variation was established through a p-value

criterion (P < 0.05), lending depth and validity to the prognostic

capacity of the developed ERS-model.
Genomic alteration landscape analysis

To unravel the genomic alteration disparities between the ERS-

model subgroups, an extensive examination of mutation and Copy

Number Alteration (CNA) data was conducted within the TCGA-

BRCA dataset. We began by extracting the raw mutation file and

proceeded to calculate the Tumor Mutation Burden (TMB) for each

sample. To offer insights into the genetic landscape, the top 28 genes

(mutational rate > 5%) were visually represented utilizing the

maftools package. Following the methodology described by Wang

et al. (22), we employed the deconstructSigs package to derive

mutational signatures unique to each patient. We then highlighted

four with notable occurrence frequencies in BRCA: SBS1, SBS3,

SBS11 and SBS12. By including these specific mutational signatures,

our study aims to comprehensively analyze the mutational

processes that are most relevant to ERS in breast cancer. This

approach not only enhances the depth of our genomic analysis but

also provides insights into potential therapeutic targets and

prognostic markers associated with ERS in breast cancer.

Moreover, the top 5 regions exhibiting a broad-level CNA

frequency were meticulously selected. Particularly, the focus was

placed on genes within chromosomes 9p21.3 (CDKN2A, CDKN2B,

MTAP and IFNA1).
Analyses of TME variations

Six algorithms, including MCPcounter (23), EPIC (24), xCell

(25), CIBERSORT (26), quanTIseq (27) and TIMER (28), were
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employed to quantify the abundance of distinct immune cell types

using the IOBR package (29). Additionally, ESTIMATE and TIDE

were utilized to assess the tumor microenvironment’s composition,

structure, and state, providing crucial insights into the tumor’s

biological traits and prognosis (30, 31). Lastly, the expression levels

of multiple immunoregulatory genes were examined to discern

variations in immune competence.
Estimation of drug targets and
chemotherapeutic response

We obtained comprehensive target data for 6,125 compounds

from the Drug Repurposing Hub (https://clue.io/repurposing),

resulting in 2,249 distinct drug targets after removing duplicates

(32). Spearman correlation analysis pinpointed potential drug

targets linked to unfavorable prognosis by correlating gene

expression of targetable genes with risk scores (correlation

coefficient > 0.25, P < 0.05). A positive correlation indicates that

as the expression of these genes increases, so does the risk score,

suggesting a potential role in driving unfavorable prognosis.

Subsequently, CERES scores were correlated with risk scores for

brain cell lines from CCLE, identifying genes (correlation coefficient

< -0.2, P < 0.05) associated with poor prognosis dependence (33).

This additional analysis further refined our identification of

potential drug targets, focusing on those genes most relevant to

adverse outcomes in breast cancer.

Leveraging CTRP and PRISM datasets, containing extensive

drug screening and molecular data across cancer cell lines, enabled

precise drug response prediction. Differential expression analyses

were conducted between bulk and cell line samples. For drug

response prediction, the reliable ridge regression model within the

pRRophetic package was used. Trained on expression profiles and

drug response data from solid Cancer Cell Lines (CCLs), this model

exhibited robust performance validated by default 10-fold cross-

validation (34).

Connectivity Map (CMap) analysis gauged the therapeutic

potential of candidate agents in BC (35). Differential gene

expression analysis between tumor and normal tissue samples was

followed by submitting the top 300 genes (150 up-regulated and 150

down-regulated) to the dedicated CMap website (https://clue.io/

query), drawing on gene expression signatures from CMap v1 and

LINCS database. Negative connectivity scores indicated the

potential therapeutic efficacy of the perturbation in the disease

context, and suggest that certain compounds could reverse the

disease-specific gene expression patterns found in BC, highlighting

their therapeutic potential.
Human sample collections and
IHC staining

This study utilized human specimens from a cohort of 30

patients diagnosed with BC. The specimens were collected during

surgical procedures at Guizhou Provincial People’s Hospital. HE

staining was performed on the collected materials following
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established protocols. The diagnostic evaluations were carried out

independently by two pathologists. Detailed information of cohorts

was summarized in Supplementary Table S1.

We performed IHC in paraffin-embedded samples according to

our previous procedures (36, 37). Antibodies used in this study were

listed in Supplementary Table S2. The assessment followed

established protocols and scoring criteria, with two pathologists

independently evaluating protein expression levels, as described in

our previous publication (37).

For Hematoxylin and Eosin staining, tissue sections were first

deparaffinized and rehydrated. Hematoxylin was applied to stain

cell nuclei, followed by a brief wash and application of Eosin, which

stains cytoplasmic components. The slides were then dehydrated

and mounted for microscopic examination. Immunohistochemistry

involved deparaffinizing tissue sections and applying primary

antibodies specific to our proteins of interest. After washing,

secondary antibodies conjugated with a chromogen were added.

The presence of the target protein was visualized as a colored

precipitate under a microscope.
qRT-PCR and patient stratification

Total RNA was extracted from breast cancer tissue samples

employing TRIzol reagent (Invitrogen, Carlsbad, CA, USA).

Subsequent cDNA synthesis and qRT-PCR utilized GoScript

reverse transcriptase and Master Mix (both from Promega), as

per manufacturer’s protocols. The CFX96 Touch real-time PCR

detection system (BioRad, Hercules, CA, USA) facilitated data

acquisition. Quantitative analysis was conducted using the 2-DDCq

method, with GAPDH serving as the normalization reference gene.

Based on the expression levels obtained, patients were

categorized into low-risk and high-risk groups using a predefined

threshold determined by the ERS-model’s formula.
Results

Evaluation of ERS-associated genes in
BC patients

In our current study, we joined TCGA and GTEx databases to

screen out differentially expressed genes between the normal and

tumor samples, and got 243 differential expressed genes (DEGs)

(Supplementary Table S3). Among the 50 most notable DEGs

related to ERS displayed in the heatmap (Figure 1A), we observed

that 26 ERS regulators were dramatically up-regulated in tumor

samples, with PPP1CA, CDK5, and TMED9 showing fold changes

of 1.25, 1.67, and 1.05, respectively. Conversely, the expression

levels of the remaining 24 regulators, including CAT, GABARAPL1,

and BMP2, were significantly increased in normal groups,

exhibiting fold changes of -1.55, -2.03, and -3.05, respectively. To

clarify the connection deeply and comprehensively between these

distinctive ERS regulators, we clarified 50 regulators into four cell

clusters (marked as A, B, C, D), and a well-connected network was

constructed representing the relationship among them. Thus, based
frontiersin.org
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on this network, an intricate connection among these ERS

regulators was explored clearly, of which GFAP and RNF186

obtained from cluster B exhibited a strong and closely positive

correlation (cor = 0.56), which meant that both had a synergistic

role. In contrast, there was a notably negative correlation between

KCNJ11 and RPN1 from cluster A revealing the antagonistic effect

(cor = -0.37). In addition, synergism and antagonism also were

detected from different clusters. For example, IFNG and FASLG

displayed a positive relation (cor = 0.84), while a markedly negative

relevance between POMC and HSPA4 was found (cor =

-0.43) (Figure 1B).

We further calculated the ERS score to illustrate the relationship

between ERS and BC, of which the score of the tumor population

was below the median (-0.89), whereas it was above the median

score in the normal population (Figure 1C). The connection

between ERS score and distinctive populations was exhibited

according to the results from the GTEx-TCGA BRCA dataset and

the other two validation datasets (GSE93601 and GSE70947). The

result showed that the normal group had a high ERS score,

conversely, ERS score was lower in TCGA-BRCA patients relative

to healthy samples (Figure 1D), which was consistent with the

consequences based on GSE93601 and GSE70947 validation

datasets (Figures 1E, F). Subsequently, we continued to elucidate

the functions and pathways of these different regulators associated

with ERS between BC patients and normal groups. The GO result

revealed that these genes exhibited a close connection with these

roles, such as response to oxidative stress, response to endoplasmic

reticulum stress, muscle system process, cellular response to

chemical stress, oxidative stress et al. (Figure 1G). According to

the KEGG result, it was concluded that these distinctive genes were

mainly abundant in protein processing in endoplasmic reticulum,

lipid and atherosclerosis, diabetic cardiomyopathy and other

signaling pathways (Figure 1H). Through the above results, it was

demonstrated these ERS-related genes presented a close connection

with the response stress, and the heterogeneity of their expression

revealed that ERS regulators may serve as underlying targets in the

development and progress of BC.

Since tumor microenvironment (TME) is involved in tumor

development, we investigated the relevance between the ERS score

and infiltrated immune cells as presented in Figure 1I, of which M1

macrophages, Treg and CD8 T cells were positively correlated with

ERS score. Oppositely, M2 macrophages, activated mast cells and

NK cells appeared a remarkably negative association with ERS

score. In addition, the correlation analyses of ESR score with Th1

cells and M2 macrophages were respectively shown (Figures 1J, K).

Above all, these results announced that BC patients with lower ERS

scores, possessed less proportion of immune-infiltrating cells,

indicating that this group may be in the immunosuppressive state.
Decipherment of ERS activity using
single-cell

Next, we revealed the expression feature of ERS in diverse

immune-infiltrating cells at the level of single-cell. 22195 cells

obtained from the normal and BC samples were used, and then
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seventeen cell clusters were gained as plotted in Figure 2A. We then

grouped them into nine cell types using the celltypist algorithm

(Figure 2B). Additionally, we compared the fraction of nine cells

selected from normal and BC samples. Interestingly, pDC,

macrophages and endothelial cells were abundant in tumor

samples rather than in normal groups (Figure 2C). This

observation highlights the heterogeneity of the tumor

microenvironment and underscores the roles of specific immune

and stromal cells in BC pathology. These cells were annotated by

their maker, for instance, CD3D was utilized to recognize T cells,

CD1C was the marker molecule of pDC cells, CD97A was

specifically expressed by B cells, CD68 was used to distinguish

macrophages, IL3RA was defined by DC, besides, endothelial cell,

mast cells, monocytes and ILC were marked by CLDN5, TPSAB1,

C1QA, and TLE1, respectively (Figure 2E). Moreover, the top

differential expressed genes in nine cells were displayed

in Figure 2F.

The ERS score was then calculated among the nine cell types

using the Ucell algorithm (Figure 2D). We showed that the normal

groups had a higher ERS score compared with BC patients, which

was following the bulk results (Figure 2G). Later, the

interconnection between ERS score and nine cell types was

estimated and exhibited in Figure 2H based on the Kruskal-

Wallis method, suggesting the ERS score presented a significant

association with these cells. Because of the specificity of T cell count,

we determined to deeply analyze ERS score of T cell subtypes.

Accordingly, 11 cell clusters were recognized (Figure 2I) and 6 cell

subtypes were identified (Figure 2J). We recomputed the ERS score

based on T cell subsets, manifesting that ERS score significantly

distinguished all these subsets (Figure 2K). Similarly, The Kruskal-

Wallis results of the ERS score in T cell subpopulations proclaimed

that the ERS scores were highly enriched in the effector T cell

subsets (Figure 2L). Conjoint analysis with Figure 2G findings, it

was found that T cell subtypes were significantly abundant in the

normal population, which may be an explanation for the immune

suppression status of BC patients. Notably, a detailed analysis of T

cell subtypes revealed that effector T cell subsets were enriched in

higher ERS scores, suggesting their potential role in counteracting

immune suppression observed in BC patients.
Communications among distinctive cells in
the development of BC

The CellChat analysis was performed to reveal the cell-cell

relationships within the progression of BC. According to this result,

it was found that the interaction numbers and strength were more

prominent in BC patients (Figure 3A). More interestingly, except

for B and T cells, other cells showed stronger interaction of numbers

and strengths in tumor patients relative to normal populations. In

contrast, B cells and T cells existed frequent communication with

DC cells and ILC cells in healthy groups (Figure 3B). Subsequently,

the difference in the interaction of different pathways was compared

within these two groups. The extraordinary thing was that

COMPLEMENT was the only pathway activated in normal

populations, whereas other pathways were remarkably activated
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in BC patients, including CD45, CD99, CCL, IL16 and APP

(Figure 3C). Furthermore, to constantly detect the changes in

submitting or gaining signals between distinctive groups, a

comparison based on outgoing and incoming interaction strength

in 2D space was conducted. The scatter plot showed that

monocytes, DC cells, ILC cells, T cells and B cells served as main

sources in normal groups, while macrophages, endothelial cells,
Frontiers in Immunology 06
mast cells and pDC cells were significant sources in BC

patients (Figure 3D). Ultimately, the dot plot exhibited stronger

interaction possibilities among T cells, B cells and macrophages in

BC groups. As the result revealed that almost all molecules were

distributed in samples of tumor macrophages, suggesting the

interaction of macrophages was the most prominent in tumor

samples (Figure 3E).
B

C D

E F

G H

I J

K

A

FIGURE 1

ERS regulators in tumor and non-tumor samples. (A) Heatmap showing expression patterns of the top 50 ERS regulators in tumor and normal
samples. (B) Network depicting interactions among 50 differentially expressed genes related to ERS, categorized into four cell clusters (A–D). Each
cluster is color-coded. Circle size reflects the significance of a single regulator’s impact on BC. Red lines indicate positive correlations, while blue
lines indicate negative correlations. (C, D) Comparison of ERS scores between normal and tumor samples in GTEx-TCGA BRCA dataset. (E, F)
Comparison of ERS scores in GSE93601 and GSE70947 validation datasets. (G, H) GO and KEGG enrichment analysis of distinct ERS-related genes.
(I) Correlation between infiltrated immune cells and ERS score. (J) Correlation of ERS score with Th1 cells. (K) Correlation of ERS score with M2
macrophages. ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1332942
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1332942
Construction of ERS-model based on ERS
regulators in BC

According to the above results, differently expressed regulators

associated with ERS had been obtained. At the same time, the tight

connection between the ERS score and infiltrated immune cells and

T cells subpopulations in tumor and non-tumor groups were

systematically analyzed. It demonstrated that ERS-related genes

did exist significant and undeniable relationships with BC, which

needed to be further studied and explored. Consequently, we

constructed a predictive model that utilized eight ERS-associated

genes to assess the prognosis of BC patients.

We utilized the LASSO regression analysis to screen out 54 ERS

regulators with significant prognosis (P < 0.05), and the optimal
Frontiers in Immunology 07
lambda was 0.047 (Figure 4A). The integration analysis of the

TCGA training cohort and three testing cohorts (Metabric,

GSE202203 and GSE96058) were used to construct the ERS-

model as the formula exhibited below:

risk core  = SRPRB * 0:323 + DAB2IP * 0:196 − KCNJ11 * 0:289

+HSPA8 * 0:339 − ERP27 * 0:134 − SERPINA2 * 0:665 

+ GFAP * 0:222 − AVP * 1:044

The selection was based on a comprehensive analysis

combining differential gene expression, survival analysis, and

literature review to identify genes significantly associated with

ERS and BC prognosis. These genes were chosen due to their
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FIGURE 2

Analysis of ERS in the level of single–cell. (A) Distribution of 17 cell clusters derived from normal groups and BC patients. (B) Identification of nine
distinct cell types using the Celltypist algorithm. (C) Bar chart displaying the proportion of the 9 cell types in each group. (D) Bar chart displaying the
proportion of the 9 cell types in each group. (E) Expression features of marker genes for the 9 identified cell types. (F) Top 3 differentially expressed
markers in each cell type. (G) Violin plots highlight the difference in ERS scores between normal and tumor samples. (H) Distribution of ERS scores
among the nine cell types. (I, J) UMAP plots visualizing cell clusters and subtypes within T cell subsets. (K) Diversity of ERS scores across different T
cell subpopulations. (L) Violin plots depicting ERS scores for 6 T cell subsets.
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proven involvement in ERS pathways and their statistically

significant correlation with survival outcomes in BC patients.

Therefore, two groups were successfully divided via this risk

score. Then, to prove the reliability of this ERS-model, the KM

survival curve was performed. In the TCGA cohort, the low-risk

groups had a better outcome relative to the high-risk groups, which

was in accord with the results from the three testing cohorts

(Figure 4B). Accordingly, the ROC curve was plotted to evaluate

the prognostic efficiency of this model for BC patients (Figure 4C).

The results revealed that in TCGA and GSE202203 cohorts, the

range of AUC values was between 0.64 and 0.72, as well as in the

other two cohorts, the lowest AUC values were also greater than 0.5,

suggesting the predictive ability of ERS prognostic model was

efficient and reliable. According to the results from the relevance

between risk score and survival status in four datasets, it concluded
Frontiers in Immunology 08
that the low-risk population possessed a higher likelihood of

survival, in contrast, the high-risk group presented increasing

populations with dead status (Figure 4D). Finally, the heatmap

displayed the expression profiles of eight ERS-related genes within

two groups, of which SRPR8, DAB2IP, HSPA8 and GFAP exhibited

a positive correlation with a risk score, while the remaining genes

were dramatically enriched in a low-risk group.
Assessment of the independence of
ERS-model

The univariate and multivariate Cox regression analysis was

performed, suggesting that ERS-model, age and stage were able to

be separately considered as an independent prognostic index in BC
B
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A

FIGURE 3

Cell-cell interactions between the normal and BC. (A, B) Interaction numbers (left) and interaction strengths (right) of different cell types are
displayed through bar charts and circle charts in normal and BC populations. Thicker lines represent stronger relationships, with red and blue colors
indicating positive and negative interactions, respectively, in BC patients compared to normal populations. (C) Stacked plots showcasing the
distribution of signaling pathways in different cells within the two groups. (D) Scatter plot illustrating the difference in incoming and outgoing
interaction strengths in normal groups (left) and tumor patients (right). Larger circles indicate stronger strengths. (E) Dot plot presenting the
distribution of distinctive signaling molecules in T cells, B cells, and macrophages between the two groups.
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(Figures 5A, B). Based on the greater performance and prognostic

potential of the ERS-model, a nomogram consisting of risk score and

clinical factors, including age and stage, was utilized to predict the

survival possibility of BC patients (Figure 5C). The results from the

correction curve demonstrated that our nomogram was equipped

with high accuracy (Figure 5D). Furthermore, consistent with the role

of Figure 5D, the Hosmer-Lemeshow test again testified to the

superior accuracy of this nomogram, since there was no statistically
Frontiers in Immunology 09
remarkable difference between the predicted values of the ERS-

nomogram and the ideal observed values (P > 0.05), with a very

high degree of fit (Figure 5E). The ranges of the AUC value based on

the ERS-nomogram were between 0.65 and 0.72 (Figure 5F),

representing that ERS-nomogram possessed a favorable predictive

capability. Additionally, the DCA result manifested that the ERS-

nomogram curve was above the other two extreme curves

(Figure 5G). At last, the ROC curves of risk score, age, stage, PR
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FIGURE 4

Construction and validation of ERS-model. (A) LASSO regression analysis was utilized to screen ERS-associated genes. (B) KM survival curves
presented the difference in the survival probability between two groups in TCGA, Metabric, GSE202203 and GSE96058 datasets, respectively. (C) The
ROC curves separately displayed the AUC values at one-, three-, and five-year in four cohorts. (D) The correlation between risk score and survival
status was clarified in four cohorts. Moreover, the heatmap displayed the expression feature of eight ERS-related genes in each cohort.
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and other clinical factors were described, finding that the AUC value

of risk score was relatively higher than other factors, except for stage

(Figure 5H). Based on the above-mentioned results, demonstrated

that ERS-nomogram was equipped with a satisfying predictive

performance in BC.
Comparison of ERS-model with five
existing models

To further stick out the advantages of ERS-model, we selected

five well-established models to make a comparison with our ERS-

model based on AUC values, KM survival curves and C-index (38–

42). Firstly, according to AUC values, the range of AUC values was

between 0.62 and 0.66 in the Zhang model. In the Qiu model, it was
Frontiers in Immunology 10
found that the largest AUC value was still below the AUC value of

the ERS-model. The largest AUC values in model Yang, Wang and

Yan were 0.61, 0.44 and 0.59, respectively (Figure 6A). Based on

these results, it preliminary illustrated that ERS-model was superior

in prognostic potential. Besides, ERS-model possessed the highest

C-index value as compared with the other five models (Figure 6B).

The KM survival curves displayed that in five models, the survival

probability of the low-risk group was highest, at the same time, the

high-risk group had the poorest survival advantage (Figure 6C).

Restricted mean survival time (RMST) is a reasonable and effective

appraising method for long-term benefits. The results depicted that

ERS model had a longer curve duration and a significant tail

elevation, suggesting that it was effective for observing cancer

prognosis (Figure 6D). In general, the prognostic ability of the

ERS-model outperformed other existing models for BC patients.
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FIGURE 5

Prognostic characters of ERS-model. The univariate (A) and multivariate Cox (B) were performed, which consisted of ERS-model, age menopause, LN, PR,
ER, HER2, stage, T, N and M. (C) An ERS-nomogram was built consisting of risk score, age and stage index. (D) The correction curves were plotted based on
the observed OS (%) and nomogram-predicted OS (%). (E) The Hosmer-Lemeshow was used to estimate the accuracy of the ERS-nomogram in comparison
with the ideal curve. (F) The AUC values of this nomogram at 1-, 3- and 5-year were 0.72, 0.69 and 0.65, respectively. (G) Decision Curve Analysis (DCA) was
described, of which the curves were considered as two extreme lines drawn from treat all and treat none, respectively. (H) The AUC values from risk scores
and other clinical indicators were exhibited by ROC curves.
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Multi-omics analysis of genetic variations
based on ERS-model

To systematically assess the genomic heterogeneity based

on ERS-model, we calculated the gene mutations and copy

number alterations (CNAs) between the ERS subgroup

(Figure 7A). We observed a dramatically higher tumor

mutational burden (TMB) in the high-risk group compared to

the lower ones (Figure 7B), indicating a greater genomic

instability which is often correlated with aggressive tumor

behavior and potentially a poorer prognosis. Moreover, the

mutation frequency of TP53, PIK3CA, CDH1, MUC16, SPTA1,

MAP3K1 and MUC5B were significantly variated between the

ERS subgroups (P < 0.05) (Figures 7A, C). Further analyses
Frontiers in Immunology 11
showed that more amplifications or deletions were also detected

in the high-risk BC patients, for example, the amplification of

3p25.1, 3q26.32, 5p15.33, 8q24.21, and 10p15.1 and the deletion

of 5q11.2, 5q21.3, 8p23.2, 12p13.1 and 9p21.3. Moreover, this

finding was also confirmed, according to the deletion of the two

tumor suppressor genes CDKN2A and CDKN2B within 9p21.3.

These genetic alterations provide a clearer picture of the

molecular landscape distinguishing ERS subgroups and suggest

targets for potential therapeutic intervention.

After that, the heatmap visualized the expression profiles of

eight ERS regulators across two groups, of which DAB2IP, GFAP,

HSPA8 and SRPR8 exhibited a higher expression level in high-risk

patients, distinctively, ERP27, SERPIN3, KCNJ11 and AVP mainly

focused on expression in another group (Figure 7D), which points
B

C

D

A

FIGURE 6

Comparison between ERS-model and five existing models. (A) The AUC values from six models in the first-, third- and fifth years were individually
described based on the ROC curves. (B) The C-index values of six models were singly shown by six colored bar chats. (C) To separately compare the
KM survival curve of ERS-model with the other five models. (D) The RMS curves solely exhibited the RMST values based on six models.
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to their possible roles in mediating BC’s adverse outcomes through

ERS pathways. Subsequently, the function annotation and pathway

enrichment were conducted to explore the underlying mechanism

of BC development. In high-risk groups, positive regulation of DNA

metabolic process, negative regulation of natural killer cell-

mediated immunity, negative regulation of cell killing, antigen

processing and presentation, cell adhesion molecules and protein

processing in endoplasmic reticulum were activated, however,
Frontiers in Immunology 12
epithelial structure maintenance, negative regulation of

lipopolysaccharide-mediated signaling pathway, positive

regulation of interleukin-5 production, T cell apoptotic process,

Hedgehog signaling pathway and VEGF signaling pathway were

inhibited (Figures 7E, F). These findings highlight the complex

interplay of genetic and immunological factors in BC progression

and offer insights into the molecular mechanisms driving disease

advancement in high-risk patient.
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FIGURE 7

Genetic variations based on ERS-model. (A) Differences between the two groups are illustrated, including tumor mutational burden, mutational
signature, 28 mutated genes, and the distribution of screened genes within Chr9p21.3. The right bar charts display their proportions. (B) TMB values
are presented in logarithmic form between the two groups. (C) Proportions of TP53 MUT and WT are shown in the two populations, where in the
high-risk group, MUT and WT account for 59% and 41% respectively, while in the other population, MUT and WT account for 33% and 67%. (D) A
heatmap displays the distribution of eight ERS regulators and ten clinicopathological factors in the two populations. (E, F) GSEA enrichment results.
The GO (E) and KEGG (F) enrichment outcomes from the high-risk group are displayed on the left, while the corresponding results from the low-risk
group are shown on the right.
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Distinctive immune features between the
ERS subgroups

We next explored the distinct immune cell infiltration among

distinctive groups. In the low-risk patients, extensive immune cells

were abundant, for example, native B cells, CD8 T cells, resting

CD4 T cells, resting NK cells, and B cells. Conversely, a small

number of cells mainly composed of macrophages M0, and M2
Frontiers in Immunology 13
were infi ltrated in high-risk populations (Figure 8A).

Interestingly, the expression levels of immune checkpoint

inhibitors (ICIs) genes showed that several genes were highly

expressed in low-risk groups including ADORA2A, CD27,

BTNL9, TNFRSF14, TNFRSF4 and TNFRSF18, while other ICIs

notably increased in high-risk group, such as PD-L1, LAG3,

CTLA4 and TIM-3 (Figure 8B). Representative IHC staining

images of the key markers were shown in Figures 8C, D.
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FIGURE 8

TME evaluation between the ERS-model subgroups. (A) The distribution of distinctive infiltrated immune cells between two risk subgroups. (B) The
differential expression profiles of ICIs between two risk subgroups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant. (C) IHC
image of infiltrated immune cells targeting the reproductive makers. (D) Statistical result of (C).
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Prediction of ICIs therapy based on
ERS-model

To further elucidate which group was more suitable for

immunotherapy, the ESTIMATE algorithm was applied.

According to results from the ESTIMATE score (Figure 9A),

immune score (Figure 9B) and stromal score (Figure 9C), it was

found that the low-risk group acquired a higher score relative to the

higher group, revealing that immunogenicity was superior in this
Frontiers in Immunology 14
group. Differently, the tumor purity was higher in high-risk

patients, which was related to its inferior survival ability

(Figure 9D). Moreover, the high-risk group acquired a higher

value of TIDE, Dysfunction and Exclusion, of which Dysfunction

and Exclusion individually represented tumor immune dysfunction

and rejection, thus also confirming that the high-risk group was in

the state of immunosuppression (Figure 9E). It was detected that

patients with low-risk scores and high TIDE possessed longer

survival time and better clinical benefits than other combinations,
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FIGURE 9

Predicting immunotherapy response using the ERS-Model. (A–D) Distinctive scores of Estimate algorithm. (A) Estimate scores. (B) Immune scores.
(C) Stromal scores (D) Tumor purity. (E) Comparison of TIDE, Dysfunction, and Exclusion values between the low- and high-risk groups. (F) KM
curve displaying survival probability based on the combination of risk score and TIDE. (G) Analysis of the relevance between risk score and CR/PR
and CD/PD. (H) KM survival curve demonstrating the prognostic efficiency of high and low-risk groups after anti-PD-L1 therapy. (I) Predictive
precision of ERS-model based on AUC values. (J) Visualization of the ratios of CR/PR and SD/PD in risk groups using bar charts. (K–N) Subtypes of
IPS (Immunophenoscore) values among the two risk groups. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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and risk score played a dominantly decisive role (Figure 9F). The

clinical response diagnosis to immunotherapy targeting PD-L1

(IMvigor210 cohort) was conducted among two groups according

to the relevance between risk score and CR (complete response)/PR

(partial response) and SD (stable disease)/PD (progressive disease),

of which CR/PR possessed a lower risk score as compared to SD/

PD, namely equally supporting above results (Figure 9G). The result

obtained from the KM survival cure confirmed that the low-risk BC

patients were superior in prognostic outcomes to other groups after

ICIs treatment (Figure 9H). Furthermore, the AUC value of the risk

score was 0.59, which signified the accuracy of the prediction

(Figure 9I). Then, the consequence that the low-risk group had a

higher proportion of CR/PR relative to the high-risk population,

accounting for 27%, was displayed again based on this bar chart

(Figure 9J). Additionally, IPS was performed to further verify its

precision. The low-risk group had greater superiority to anti-PD-1/

PD-L1 and anti-CTLA4 therapy in comparison to high-risk patients

(Figures 9K–N). To integrate the above findings, it was concluded

based on ERS-model that these patients of low-risk BC were more

suitable for immunotherapy, as well as eight genes related to ERS

were able to be recognized as underlying prognostic markers in BC.
Selection of drug targets and therapeutic
candidates for high ERS patients

The recognition of therapeutic targets was able to improve the

undruggable situation of those proteins due to the lack of active

targets. Thus, six druggable therapeutic targets were identified. The

result showed that high-risk populations possessed higher gene

abundance. CERES score represented the tumor’s reliance on these

genes and the degree of reliance was inversely proportional to the

CERES score (Figure 10A). Consequently, these six genes were

capable of being recognized as potential targets for BC treatment,

implying that dysfunction of these six genes may be beneficial for

BC patients. Meanwhile, these potential drug targets were assessed

further according to the proportion of drug-sensitive. Results

displayed that six genes were ultimately chosen as the most

potentia l therapeutic targets due to their high drug

sensitivity (Figure 10B).

We next estimated the drug treatment candidates for high ERS

patients from CTRP and PRISM, respectively. CR-1-31B,

triazolothiadiazine and other nine compounds derived from

CTRP, as well as four compounds, such as ispinesib, LY2606368,

gemcitabine and vincristine, obtained from PRISM, were screened

out as the candidate drugs (Figure 10C). It can be concluded that

fifteen compounds possessed lower estimated AUC values in high-

risk patients, which implied that this subset may be more suitable

for medication treatment. To further select the most potential

therapeutic agents from fifteen candidates, a multiple-perspective

analysis was conducted. The clinical status and experimental

evidence of these compounds were inquired from PubMed. It was

found that these candidates had higher fold expression levels,

indicating better therapeutic efficiency for BC patients. CMap

analysis was carried out to filter those compounds whose

expression profiles were opposite to the BC-specific expression
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feature. The result exhibited that CMap values of methotrexate

and gemcitabine were below -75 (Figure 10D), suggesting they were

equipped with greater potential for treating high ERS BC patients

(Supplementary Table S4).
Discussion

In the current study, we discussed the relationship between ERS

and BC heterogeneity, of which regulators associated with ERS were

acquired from published articles. It was found that a variety of ERS

genes were abnormally expressed in normal and BC samples,

indicating the dislocation of ERS was closely related to the

progression of BC. At the same time, the analysis based on the

levels of transcriptome and single-cell was conducted, discovering

that ERS score was high in normal populations relative to BC

patients, and its levels were proportional to T cells, and B cells

et al., implying the inferior prognosis of BC patients. Since the single-

cell analysis was beneficial to better understand tumors, we then

explored the connection between ERS and BC at the single-cell level

and found that ERS levels exhibited a positive relation with immune

cell infiltration. Moreover, the normal population had a higher ERS

score, inferring that the connection between high ERS score and

immune activation was an underlying mechanism to improve BC

patients’ outcomes. Previous research mentioned that tumor

unfolded protein response exerted a tumor-promoting effect via

attenuating the activity of CD8+ T cells (43). While the activation

of immune cells, especially T cells, combined with targeted ERS

urgently demanded to be considered as a novel strategy for BC

patients, based on the efficiency of the drugs targeting ERS (44).

Additionally, the relationships of immune cells in BC patients were

explored, indicating a complex interaction in the progression of BC.

Moreover, we explored the interaction numbers and strength of

immune cells in BC groups, revealing that stronger interaction

existed between macrophages, pDC cells and monocytes. At the

same time, the result from outgoing and incoming interaction

strength also demonstrated macrophages and pDC cells showed

stronger interaction in BC samples relative to normal groups.

Furthermore, we found that the interaction of massive ligand-

receptors mainly occurred in BC patients with macrophage

interaction, while T cells and B cells were more prominent in

normal individuals. In conclusion, it indicated that the complicated

interaction among these immune cells, especially macrophages,

exerted significant roles in BC development but the mechanism

demanded to be researched further.

Highlighting the significant roles of ERS in BC prognosis, we

developed a prognostic model using eight ERS-related genes. This

model was evaluated in one training set and three validation sets,

and it was compared with five existing models to demonstrate its

efficacy. Our results demonstrated that ERS prognostic model

possessed a robust, independent and reliable performance. In the

ERS-model, BC patients were successfully divided into two

subgroups, of which low-risk BC patients were characterized by

better survival status, longer overall survival, and fewer deaths.

Since then, ERS-nomogram was established to forecast the survival

probability of BC patients at 1, 3 and 5 years, which had an
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optimum predictive ability as compared to other clinicopathological

characteristics based on the AUC values. Among them, it was worth

noting that eight ERS genes displayed distinctive expression levels

among two risk groups. SRPRB, DAB2IP, HSPA8 and GFAP were

up-regulated in high-risk groups, while KCNJ1, ERP27, SERPINA3

and AVP were mainly concentrated in low-risk patients.

SRPRB, also known as APMCF1, exerted a critical role in the

proliferation and progression of cells. Another study offered

evidence that SRPRB is highly expressed in apoptotic MCF-7 cells

(45). Additional research found that it was recognized as a clinical

prognostic molecule in multiple myeloma (46). Furthermore, in

pancreatic ductal adenocarcinoma, SRPRB was regulated by SERP1,
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a prognostic marker, acting on its development (47). In our study, it

presented a higher level in high-risk BC patients, which also hinted

at the inferior outcome in this group and was listed as a potential

target for BC treatment. DAB2IP belonged to the Ras GTPase-

activating protein family and played an anti-tumor role in multiple

cancers, such as esophageal squamous cell carcinoma (48), and

triple-negative breast cancer (49). Additionally, in TBNC, it was

shown that the expression of DABI2P was able to alleviate

chemoresistance (49), which means that it was a promising

market to improve the prognosis of BC patients. HSPA8, a

member of the heat shock protein family, participated in protein

folding. In the development of cancer, increasing studies indicated
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FIGURE 10

Identification of drug targets and therapeutic agents for high-risk BC. (A) Volcano plot showed that the result from Spearman’s correlation analysis,
of which r>0.25, P<0.05 represented a remarkably positive relation visualized by red dots. Scatter plots revealed correlations between risk score and
protein abundance of drug targets. Similarly, the result of Spearman’s correlation displayed by blue dots represented negative associations (P<0.05,
and r<-0.2). The correlations between the risk score and CERES score of drug targets were exhibited by scatter plots. (B). Spearman correlation
between mRNA expression of potential targets and drug sensitivity across cancer cell line. (C) Spearman’s correlation analysis (left) of 11 compounds
obtained from CTRP (top left) and 4 compounds gained from PRISM (bottom left). The boxplot (right) accordingly showed the difference in the
estimated AUC value of different compounds within the two groups. (D) The diagram displayed the clinical status, experimental evidence, mRNA
expression levels and CMap score of eleven agents from CTRP and four agents from PRISM, respectively. ***P < 0.001.
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that it served as a promoter in the progression of tumors. For

example, HSPA8 was triggered to advance liver cancer development

by boosting HBV replication and inhibiting ferroptosis (50).

Likewise, in acute myeloid leukemia, it also was reported that

HSPA8 had a negative relation with tumor suppressors (51).

Another study showed that HSPA8 had a higher expression level

in high-risk TNBC patients (52), which was in line with our study,

manifesting that its abnormal expression was linked to the inferior

prognosis of BC patients. Similarly, GFAP had been recommended

as a prognostic marker in distinctive cancers, such as malignant

astrocytoma (53). Similarly, a previous study declared that GFAP

was associated with poor outcomes in BC patients (54). KCNJ1

participated in potassium balance, and its mutation was able to

trigger Bartter syndrome (55). In clear cell renal cell carcinoma, the

results indicated that this gene was highly expressed in normal

tissue samples and produced an inhibitory role in ccRCC

progression (56), while there was a lack of reports about its role

in BC. ERp27 takes part in ER stress response by cooperating with

ERp57 (57), which had been considered a novel prognostic marker

among various cancers including pancreatic ductal adenocarcinoma

(58) and breast cancer (11). SERPINA3 belongs to the SERPIN

family and acts as a protease inhibitor to maintain cellular

homeostasis (59). Differently, numerous research revealed that

SERPINA3 functioned as a promoter in cancer progression. In

GMB and colon cancer, the silencing of this gene was able to

suppress these cells’ growth and migration (60), unless it increased

the incidence of GMB in older patients (61). Equally, related

research claimed that the high expression of SERPINA3 was

negatively relevant to the GMB prognosis (62). In TNBC, the

high expression levels of SERPINA3 resulted in TNBC cell

proliferation (63). Finally, AVP, also known as an antidiuretic

hormone, secreted by the hypothalamus, plays a significant role

in enhancing the permeability of the collecting tube to water to

promote water absorption to maintain homeostasis. Hyponatremia

induced by AVP increased treatment risk and brought adverse

reactions including pain et al. in cancer patients (64). However, the

function of AVP remains unclear in BC. Altogether, except for the

AVP gene, other genes had been reported as candidates for various

cancers treatment, including breast cancer. Accordingly, the

upregulation or downregulation of eight genes among different

groups was tightly relevant to the prognosis of BC patients and their

roles were worth in-depth investigation in BC.

Since then, the distinction of gene alteration between the two

risk groups was described. It was concluded that low-risk BC

patients were featured by lower TMB and low-mutated genes,

while high-risk BC patients possessed more TMB and more

mutated genes, such as TP53. Massive research had reported that

its mutation promoted the progression of BC, resulting in an

inferior prognosis (65). On the other hand, CNV analysis showed

that the amplification of 3q26.32, 5p15.33 and 8q24.21, and the

deletion of 5q21.3, 8p23.2 and 9p21.3 were primarily founded in

high-risk patients. Kusakabe et al. found that the fusion of HPV18

and chromosome 8q24.21 was capable of enhancing the expression

level of the MYC gene (66), suggesting that it further promoted the
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development of tumors because of the role of MYC in accelerating

tumor progression. But there was no study about its function in BC.

The deletion of 8p23.2 had been reported that could induce

advanced liver cancer (67). Lu et al. described that its deletion

may enhance the metastasis of HCC (68). Although these

characteristics highlighted the poor prognosis of BC patients,

however, it also laid the foundation for the response to ICI

therapy in low-risk patients. Meanwhile, GSEA analysis revealed

that immune-related signaling pathways, such as antigen processing

and presentation, protein processing in the endoplasmic reticulum

and negative regulation of natural killer cell-mediated immunity,

were inhibited in high-risk patients, which intimated its potential

for receiving immunotherapy. Then, we evaluated the immune

feature between the two risk groups, the results showed that low-

risk patients possessed a high proportion of immune cell

infiltration, especially T and B cells. In contrast, M2 macrophage

cells were mainly infiltrated in high-risk groups. More intriguingly,

in low-risk patients, these up-regulated genes were more related to

targeted therapy, such as TNFRSF14, TNFRSF4, TNFRSF18 and

CD27. Related studies claimed that TNFRSF14, TNFRSF4 and

TNFRSF18 mainly participated in the proliferation and survival

of CD8+ and CD4+ T cells, so exerted significant roles in

immunoregulation (69). Similarly, CD27 also has been recognized

as a therapeutic target, because of offering a co-stimulatory signal to

T cells (70). These clues highlighted the advantages of this subset in

immunotherapy and good prognosis. By comparison, those up-

regulated immunity genes stood out in the connection with

macrophages. For example, CD68 and CD80 are markers of

macrophages, BTN2A2 express on the peritoneum of

macrophages and inhibits T cells activity (71), as well as CD47

joins in macrophage phagocytosis (72). Terminally, responsiveness

to ICIs therapy among distinctive subgroups was estimated, proven

by facts, low-risk groups were superior in immunotherapy, based on

their high immunogenicity.

Different from the low-risk subgroup, high-risk patients were

more inclined to drug therapy. The truth was that those proteins

that were related to ERS and in possession of the underlying ability

of BC treatment remained undruggable due to the lack of the

binding site of small molecules. Therefore, this study identified

therapeutic targets, and ultimately six drug targets were chosen.

Moreover, two therapeutic agents, methotrexate and gemcitabine,

were also identified. Methotrexate is an anti-cancer medicine and

has been widely used, including in ovarian cancer (73). Kapke et al.

reported that high-dose methotrexate could prolong the survival

time for BC patients (73). Shakeran et al. performed a study on drug

combination, finding that combining methotrexate and STAT3

siRNA was efficient in improving the therapeutic efficiency of BC

(74). Another agent gemcitabine was also a therapeutic drug

reported widely in multiple cancers, such as advanced biliary tract

cancer (75), and pancreatic ductal adenocarcinoma (76). In breast

cancer, Yardley DA claimed that whether used in combination with

taxanes or alone, gemcitabine was efficient for BC therapy (77).

Above all, these results enhanced the persuasiveness of these two

agents used for the treatment of high-risk BC patients.
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Conclusion

Our investigation has elucidated a crucial association between

ERS and the progression of breast cancer, analyzed through both

bulk and single-cell methodologies. Central to our study was the

development of an ERS-model predicated on eight genes

significantly correlated with ERS, which has demonstrated high

accuracy in forecasting the clinical outcomes for BC patients.

Further, by categorizing BC patients into two distinct risk

subgroups, our analysis shed light on their differential functional

enrichment, immune cell composition, and varying responses to

ICIs and chemotherapeutic agents. Notably, our work led to the

identification of key therapeutic targets and drugs, markedly

enhancing the translational value of our findings. Specifically, we

uncovered that ICIs treatment may be preferentially beneficial for

patients classified within the low-risk category, whereas

chemotherapeutic approaches showed augmented efficacy in

managing high-risk BC patients. This strategic patient

stratification culminated in pinpointing six promising drug

targets and two particularly potent therapeutic agents, offering

new hope and potential treatment pathways for individuals facing

higher risk factors.

Ultimately, our study contributes significantly to the nuanced

understanding of breast cancer dynamics and lays the groundwork

for more personalized, risk-adjusted therapeutic interventions. By

bridging critical gaps in our knowledge of ERS’s role in BC and

leveraging this understanding to inform treatment selection, we are

poised to enhance patient care and optimize treatment outcomes in

breast cancer.
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