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Introduction: Sleep apnoea syndrome (SAS) is a serious sleep disorder and early 
detection of sleep apnoea not only reduces treatment costs but also saves lives. 
Conventional polysomnography (PSG) is widely regarded as the gold standard 
diagnostic tool for sleep apnoea. However, this method is expensive, time-
consuming and inherently disruptive to sleep. Recent studies have pointed out that 
ECG analysis is a simple and effective diagnostic method for sleep apnea, which can 
effectively provide physicians with an aid to diagnosis and reduce patients’ suffering.

Methods: To this end, in this paper proposes a LightGBM hybrid model based on 
ECG signals for efficient detection of sleep apnea. Firstly, the improved Isolated 
Forest algorithm is introduced to remove abnormal data and solve the data 
sample imbalance problem. Secondly, the parameters of LightGBM algorithm 
are optimised by the improved TPE (Tree-structured Parzen Estimator) algorithm 
to determine the best parameter configuration of the model. Finally, the fusion 
model TPE_OptGBM is used to detect sleep apnoea. In the experimental phase, 
we validated the model based on the sleep apnoea ECG database provided by 
Phillips-University of Marburg, Germany.

Results: The experimental results show that the model proposed in this paper 
achieves an accuracy of 95.08%, a precision of 94.80%, a recall of 97.51%, and 
an F1 value of 96.14%.

Discussion: All of these evaluation indicators are better than the current 
mainstream models, which is expected to assist the doctor’s diagnostic process 
and provide a better medical experience for patients.
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1 Introduction

Sleep apnea syndrome (SAS) is a common breathing-related sleep disorder (Young et al., 
2002) characterized by recurrent respiratory arrests during sleep, accompanied by decreased 
oxygen saturation. This disease is relatively prevalent among the adult population, with a 
higher incidence rate in males than in females (Young et  al., 1993). Globally, it affects 
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approximately 200 million individuals. However, based on statistics 
related to sleep apnea, about 93% of middle-aged females and 82% of 
middle-aged males with moderate to severe sleep apnea symptoms 
have not yet been diagnosed (Young et  al., 1997). Sleep apnea is 
primarily categorized into three distinct types: Obstructive Sleep 
Apnea (OSAS), which results from dysfunction in the upper airway; 
Central Sleep Apnea (CSAS), which arises due to neurological 
abnormalities where the brain fails to generate or convey signals to 
the respiratory muscles; and Sleep Apnea Hypoventilation Syndrome 
(SAHS), attributed to diminished air circulation (Gubbi et al., 2012). 
SAS can occur multiple times during the night and its physiological 
symptoms include snoring, sleep gasping, waking up with a dry 
mouth, and poor sleep quality, which can lead to poor concentration, 
insomnia, cognitive decline, memory loss, and depression (Vanek 
et al., 2020). Repeated episodes can lead to serious cardiovascular and 
neurological disorders such as severe coronary syndromes, ischaemic 
heart failure, cardiovascular dysfunction and stroke (Ancoli-Israel 
et al., 2003), and they are also associated with daytime fatigue and 
sleepiness (Vgontzas et al., 2000; Mendonca et al., 2018). As a chronic 
sleep disorder, SAS is increasingly acknowledged as a significant 
etiological factor in hypertension and cardiovascular diseases (Caples 
et al., 2007; Punjabi, 2008). Consequently, precise diagnosis of this 
condition is imperative.

Polysomnography (PSG) is considered the most accurate way to 
diagnose sleep apnea (Sateia, 2014), which involves a variety of 
physiological signals collected from at least 11 channels of different 
sensors, including respiratory airflow, respiratory movements, blood 
oxygen saturation (SpO2) electroencephalogram (EEG), 
electrooculogram (EOG), electromyogram (EMG), electrocardiogram 
(ECG), etc., in order to determine sleep apnea events (Bsoul et al., 
2011). However, due to the large number of wires and sensors 
connected to the subject, it is cumbersome to wear and requires 
professional guidance. Although it is a non-invasive technology, it 
itself will have a negative impact on the subject’s sleep (Byun et al., 
2019). In addition, the use of polysomnography is expensive, 
preventing its use among average families. This limitation is one of the 
reasons why sleep apnea often goes undiagnosed and undetected in a 
timely manner (Masa et al., 2013). Therefore, the analysis process 
requires a significant amount of expert time to evaluate, with an 
agreement rate of only 80–90% between different experts (Lugo et al., 
2020), and there’s a limited number of professionals in medical 
institutions capable of diagnosing sleep apnea (Hillman et al., 2006; 
Alghanim et al., 2008; Khandoker et al., 2009). As a result, there is an 
urgent need to study more convenient sleep apnea detection methods 
that cater to the patients’ needs.

For this reason, researchers have proposed various SAS detection 
methods based on different types of single-lead signals, such as 
respiratory signals (Avcı and Akbaş, 2015), oximetry (Burgos et al., 
2010), snoring (Lin et  al., 2006), electroencephalography (EEG) 
(Wang et al., 2020), and electrocardiography (ECG) (Rachim et al., 
2014). Among these signals, respiratory and EEG signals are more 
difficult to collect and have an impact on the sleep itself, while blood 
oxygen and snoring signals are easy to collect but highly susceptible 
to interference and have less available information, compared to 
single-lead ECG signals that are simple to collect and the collection 
equipment is cheap and suitable for the majority of people to use. In 
addition, the most important is that the ECG signals can obtain stable 
information related to the sleep breathing events, which makes it 
suitable to be  used for sleep apnea detection. Therefore, how to 

effectively detect sleep apnea through ECG signals has become the 
focus of research.

Currently, machine learning and deep learning algorithms are 
widely used for sleep apnea detection. As Zarei and Asl (2018) have 
mentioned: utilized wavelet transform and entropy features in single-
lead ECG signals to automatically detect obstructive sleep apnea, 
which achieves improved classification results. However, the efficiency 
of this approach decreases with the observation of numerous samples, 
and it is more sensitive to missing data. Song et al. (2015) proposed an 
obstructive sleep apnea detection method based on the discriminative 
Hidden Markov model of ECG signals. However, this approach is 
highly dependent on each state and tends to perform poorly with long 
sequence tasks. Hassan (2015) also recorded that utilized the Dual 
Tree Complex Wavelet Transform for the computerized diagnosis of 
obstructive sleep apnea using single-lead ECG signals. They compared 
various models, including Simple Bayes, k-Nearest Neighbors (kNN), 
Random Forest, Support Vector Machine (SVM), Extreme Learning 
Machine (ELM), and Regression Analysis (RA). ELM achieved the 
highest accuracy at 83.77%. Deep learning models exhibit a greater 
learning capability compared to traditional machine learning models. 
The main representatives are ElMoaqet et al. (2020) proposed deep 
recurrent neural network for automatic sleep apnea detection from 
single-channel respiratory signals; Wang et al. (2019) conducted sleep 
apnea detection from single-lead ECG signals and utilized an 
improved LeNet-5 convolutional neural network for automatic feature 
extraction; Yang et al. (2022) introduced a one-dimensional squeezed 
and stimulated residual group network, leveraging single-lead ECG 
signals for obstructive sleep apnea detection; Wang et  al. (2022) 
proposed BI-LSTM, a directed long- and short-term memory 
network, utilizing single-channel EEG signals for the automatic 
detection of sleep apnea events. Although the above deep learning-
based methods improve the accuracy of OSA detection relative to 
traditional machine learning techniques, they also have limitations: 
(1) The majority of research predominantly emphasizes heart rate 
variability (HRV) while often overlooking vital respiratory parameters 
associated with SAS, resulting in the suboptimal utilization of the 
ECG (Feng et al., 2020; Faust et al., 2021). (2) Over-reliance on data 
results in learning exclusively from existing datasets without assessing 
the accuracy of the data. High accuracy rates can only be achieved if 
the data is of good quality. (3) The network architectures utilized in 
deep learning are relatively complex. With the increase in training 
iterations, these networks might learn numerous unnecessary features, 
adversely affecting classification accuracy, elongating training times, 
and consuming more computational resources.

To address the aforementioned problems, this paper proposes a 
new method, TPE_OptGBM, which is a LightGBM hybrid model 
optimized based on the TPE algorithm for sleep apnea detection. 
LightGBM-based models have been widely used in disease diagnosis 
(Wang and Wang, 2020; Zhang et al., 2021, 2022). Our proposed 
hybrid model effectively copes with data anomalies and sample 
imbalance. First, the abnormal data points were successfully 
eliminated by introducing the Isolation Forest algorithm to score the 
ECG data, setting a scoring threshold to isolate the abnormal data. 
We utilized the algorithm to calculate the sample proportion and 
balance the samples through undersampling, effectively addressing 
the data imbalance problem. Due to the numerous parameters 
inherent in the LightGBM algorithm, traditional methods like 
random search and grid search are inefficient as they cannot learn 
from previous optimizations, leading to significant time wastage. In 
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this paper, we adopt a state-of-the-art hyper-parameter optimization 
framework (Optuna) (Akiba et al., 2019), which continuously learns 
from previous optimization experiences to automatically adjust the 
hyper-parameters as needed. This process facilitates obtaining the 
best hyper-parameter configuration for the LightGBM model. This 
approach significantly improves the model performance while 
reducing the time required for parameter tuning. Experimental 
findings suggest that the integrated fusion model demonstrates 
superior accuracy in detecting sleep apnea compared to other models 
and possesses enhanced generalization capabilities.

2 Relevant theories and methods

2.1 LightGBM model

LightGBM is an ensemble learning model based on the 
improvement of weak classifiers. The main idea of LightGBM model 
is to use a decision tree to iteratively train to get the optimal model, 
which has the advantages of good training effect, not prone to 
overfitting, supports efficient parallel training, and has faster training 
speed etc. LightGBM mainly adopts Histogram-based decision tree 
algorithm, which discretizes continuous floating-point features into 
‘N’ integer features, which is easy to calculate and store and increases 
model robustness (Figure 1). The learning algorithms for decision 
trees mostly generate strategies through a level-wise growth method, 
which treats leaves on the same level indiscriminately. In reality, many 
leaves have low split gains, thus leading to a lot of unnecessary 
computational overhead (Figure 2). LightGBM utilizes a leaf-wise 
strategy with depth limitation, which can ensure high efficiency while 
preventing overfitting (Figure 3). Gradient-based One-Side Sampling 
(GOSS), which retains large gradient samples and randomly samples 
small gradient samples according to the ratio; Exclusive Feature 
Bundling (EFB), which reduces the number of features by fusing some 
features to improving the computational efficiency (Ke et al., 2017).

2.2 Objective function for LightGBM model

2.2.1 Objective function
The objective function of LightGBM in the training process 

contains two parts: one is the loss function, reflecting how well the 
model fits the training data, and the other is a regularization term that 
represents the complexity of the model, which is used to prevent the 
model from overfitting (Equation 1).
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This expression means that in each iteration, the model aims to 
find a new decision tree that minimizes the total loss across all training 
samples when added to the model, while also considering the model’s 
complexity to prevent overfitting. Within this context, t denotes the 
total number of iterations; n represents the count of all training 
samples; yk  is the actual value for the k-th training sample; yk

t( ) is the 
predicted value by the model for the k-th training sample at the t-th 
iteration; f xt k( ) is the predictive contribution from the decision tree 
added during the t-th iteration for the k-th training sample x fk k;  
corresponds to the k-th decision tree model.

2.2.2 Cross-entropy loss function
One of the loss functions that can be chosen in LightGBM, i.e., the 

cross-entropy loss function, is represented by the whole loss function: 
For each sample, as long as the model predicts probabilities that are 
closer to the true labels, the better the model performs. Herein, yk  
signifies the true label of the k-th sample; e yk−



 denotes the log-odds 
of the k-th sample being classified as the positive class, representing 
the raw predictive output of the classifier (Equation 2).

FIGURE 1

Schematic diagram of the histogram algorithm eigenvalue discretisation. (Discretize continuous floating-point feature values into N integers and 
construct a histogram with a width of N).
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2.2.3 Objective function after second order 
Taylor expansion

To simplify the optimisation of the loss function, a second-order 
Taylor expansion is used to approximate the loss function, and the 
objective function obtained is (Equation 3):
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Within this context, t represents the total number of iterations; n 
signifies the total number of training samples; gk  is the first-order 

derivative of the loss function with respect to the model’s prediction 
for the k-th sample, known as the gradient, at yk



; hkdenotes the 
second-order derivative of the loss function with respect to the 
model’s prediction for the k-th sample, at yk



; f xt k( ) is the predictive 
contribution of the new decision tree added in the t-th iteration for 
the k-th sample xk . In each iteration, a new decision tree is added to 
the current model, which is obtained by optimizing the objective 
function above to minimize the value of this approximated objective 
function. The newly added decision tree aims not only to minimize 
the prediction error on the training data (minimizing part gk t kf x( ) 

and 
1

2

2
h f xk t k( ) ), but also controls the complexity of the model, 

(minimizing part © fk( )). The purpose of this is to prevent the model 
from overfitting.

2.3 Isolated forest algorithm

Isolation Forest (IF) is a fast anomaly detection method based on 
Ensemble. Its core theoretical foundation lies in measuring the degree 

FIGURE 2

Layer-by-layer growth strategy schematic. (Traversing the data once allows for the simultaneous splitting of all leaves on the same level).

FIGURE 3

Schematic diagram of leaf-wise strategy growth tree. (Find the leaf with the maximum split gain among all current leaves, and perform the split in the 
leaf with the maximum gain).
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of isolation between data points by constructing random split trees, 
called isolation trees, to separate anomalies from normal points, which 
can be more easily isolated relative to normal points. In a normal 
dataset, normal points typically require more segmentation steps to 
be isolated, whereas anomalies can be easily isolated by fewer segments. 
Isolation trees use a top-down recursive segmentation strategy to split 
anomalies to separate leaf nodes earlier by randomly splitting the 
dataset. The main steps can be divided into inputting the dataset and 
tree-related parameters, outputting the constructed Isolation Forest 
algorithm, initializing the algorithm, iteratively building Isolation 
Trees and adding them, and returning the Isolation Forest 
(Algorithm 1).

The main idea of the algorithm is that anomalies are usually more 
sparsely distributed in the feature space than normal points, and 
therefore, anomalies are more likely to be isolated. To achieve this, the 
algorithm randomly selects features and segmentation values in the 
feature space, making it more likely that anomalies will be isolated to 
separate leaf nodes at an early stage of segmentation. By generating a 
set of isolation trees, an anomaly score can be calculated for each data 
point. The anomaly score is calculated based on the path length of the 
data point in each tree. Specifically, for each data point, its path length 
in each tree is calculated and averaged. The shorter the path length, 
the more likely the data point is to be isolated, and therefore the lower 
the corresponding anomaly score. The specific process can be divided 
into inputting the dataset and tree-related parameters, terminating the 
recursion if the tree has reached its maximum height or the dataset is 
empty, selecting features and split points, and recursively building 
subtrees (Algorithm 2).

The advantage of the Isolation Forest algorithm is its efficient 
computational speed and applicability to large-scale data. Due to the 
construction of random split trees, it is able to quickly detect 
anomalies in data points and provide low anomaly scores for the 
anomalies. This method is very effective for dealing with high-
dimensional data and large datasets, as it is able to quickly identify 

potential anomalies in a shorter period of time. The distribution of 
anomalous data points is shown in Figure 4.

In this paper, the Isolated Forest algorithm is used to measure the 
degree of isolation of data points in order to identify outliers and 
non-outliers, and thus effectively detect anomalous data in a dataset. This 

ALGORITHM 1 

Pseudo-Code iForest(X,T,H)

Inputs: Dataset X,Number of trees T, Maximum height H

Output: Isolation Forest F

1: F = empty forest

2: for i in 1 to t:

3: T = buildTree(X, H)

4: add T to F

5: return F

FIGURE 4

Histogram of the distribution of anomalous and non-anomalous data.

ALGORITHM 2 

Pseudo-Code function buildTree(X,H)

Input: Dataset X, Maximum height H

1: Output: Tree T

2: if H < = 0 or X is empty:

3: create leaf node T

4: return T

5: else:

6: randomly select a feature feat and a split point split

7: partition X into left subset X_left and right subset X_right based on feat and 

split

8: T = createSplitNode(feat, split)

9: T.leftChild = buildTree(X_left, H-1)

10: T.rightChild = buildTree(X_right, H-1)

11: return T
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FIGURE 5

Hyperparameter optimization flowchart.

approach helps to better weed out anomalous data points while balancing 
the differences between positive and negative samples in the datasets. 
The stochastic nature of the Isolated Forest algorithm enhances its 
adaptability to various data scenarios, whether the data involve large-
scale, high-dimensional datasets or datasets that are perturbed by noise 
and outliers. By using multiple isolation trees, the algorithm is able to 
classify anomalies and normal points more reliably. The advantage of this 
approach is that it isolates anomalies earlier and reduces their interference 
with normal samples, thus improving the overall classification accuracy.

2.4 Optimisation parameters of Parzen 
algorithm based on optuna framework

The fundamental concept of Bayesian hyperparameter optimization 
based on the Optuna framework involves utilizing Bayesian 
optimization algorithms to search the hyperparameter space. This 
process includes evaluating the current hyperparameter configuration, 
updating the model, selecting the next hyperparameter model for 
evaluation, and iteratively repeating this cycle to identify the optimal 
hyperparameter configuration (Figure 5). At its core, this is done by 
building a proxy model for approximating the potential response 
surface of the objective function. One of the commonly used proxy 
models is Gaussian Process Regression (GPR). Gaussian process is a 
probabilistic model used to describe stochastic processes, in which 
Gaussian process is used for regression analysis. In Bayesian 
hyperparameter optimisation, a Gaussian process regression model is 
used to model the relationship between the hyperparameters and the 
objective function. This agent model is continuously updated and 
optimized based on the already evaluated hyperparameter 
configurations and the corresponding objective function values. By 

continuously evaluating new hyperparameter configurations and 
updating the agent model. The Bayesian optimisation algorithm can 
identify the optimal hyperparameter configuration within a constrained 
number of iterations. The expression for hyperparameter optimisation 
(Equation 4):

 X argmax f XX
∗ = ( ) (4)

In this context, X  represents a point within the hyperparameter 
space; X∗ denotes the optimal solution. Where f X( )  is the optimal 
hyperparameter configuration for the required solution and f f X( )( ) 
is the objective function which receives the hyperparameter f X( )  
configuration as input and returns an evaluation metric (e.g., accuracy, 
loss function, etc.) as the optimisation objective. In this paper, the 
accuracy rate is used as the evaluation metric for optimisation.

In Optuna, the problem of maximizing the objective function is 
transformed into a problem of finding the minimizing loss function. 
Thus, the objective function can be  expressed as a negative loss 
function, where x represents a set of parameters. i.e. (Equation 5):

 g x f x( ) = − ( ) (5)

In Bayesian Hyperparametric Optimisation, Gaussian Process 
Regression (GPR) is used as a proxy model to approximate the 
potential response surface of the objective function f f X( )( ) . The 
expression of Gaussian Process Regression can be  expressed as 
(Equations 6–8):

 
f x GP x x( ) ≈ ( ) ( )( )µ σ, 2
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In this context, GP  denotes a Gaussian Process, a probabilistic 
model employed for regression tasks; µ x( ) is the mean function of the 
Gaussian Process, representing the predicted value of the objective 
function; σ 2 x( ) is the variance function of the Gaussian Process, 
indicating the uncertainty in the prediction of the objective function; 
KT∗  represents the covariance vector between the new input x and the 
training inputs; σn

2 is the noise term added to the diagonal of the 
covariance matrix to ensure its invertibility; I  signifies the identity 
matrix; y is the vector of observed values of the objective function for 
the training inputs; k x x,( ) is the covariance of the new input x with 
itself. In each iteration, it updates the parameters of the agent model 
by using the observed data of the already evaluated hyperparameter 
configurations and objective function values. The posterior 
distribution can be obtained by Bayesian inference of the observed 

data., p x
n

´ x x

i

n

i



( ) = −( )
=
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1

, D x x x xn= …{ }1 2 3.  indicates observed 

data. Based on the posterior distribution, the next configuration of 
hyperparameters to be evaluated x argmaxEI xnext = ( ) can be chosen 
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to maximize the desired improvement in the objective function. 
EI x E f f x( ) = − ( )( [max ,min 0  is the expected improvement 
function. It usually use certain sampling strategies (e.g., pruning, 
adding noise, etc.) to balance the use of observed data and the 
exploration of unobserved data in order to better optimize the 
objective function and progressively converge to a better 
hyperparameter configuration.

By iteratively updating the agent model and selecting the optimal 
sample points and hyperparameter configurations, Bayesian 
hyperparameter optimisation is able to find better hyperparameter 
configurations within a limited number of iterations, thereby 
improving the model performance and efficiency. The agent model 
can use historical observation data to guide the search process, 
making the search more intelligent and avoiding the blindness of 
traditional grid search or random search methods. It is able to make 
full use of the information of the evaluated sample points and objective 
function values to intelligently explore and utilize the hyperparameter 
space to find the optimal hyperparameter configuration. The TPE_
OptGBM model proposed in this paper uses algorithms from the 
Bayesian Optimisation Library. In this paper, the TPE algorithm is 
improved by abandoning the traditional algorithm of reducing the loss 
downwards to improve the accuracy, and instead optimizing upwards 
with accuracy as the optimisation metric.

2.5 TPE_OptGBM fusion model

In order to improve the accuracy of sleep apnea detection based 
on ECG signals, a systematic approach was implemented in this study. 
Initially, the Isolated Forest algorithm is introduced for the screening 
of abnormal data points, addressing outliers effectively. Given the 
significant imbalance in the data, with diseased samples being notably 
fewer than normal samples, an undersampling strategy is employed to 
balance the differences between positive and negative samples in the 
dataset. Subsequently, an enhanced Bayesian hyperparameter 
optimization algorithm is utilized to automate the search for the 
model’s optimal parameter configuration. Ultimately, the identified 
optimal parameter configurations are input into the hybrid model for 
data training. The overall structure is illustrated in Figure 6.

3 Data sets and pre-processing

3.1 Data sets

The sleep apnea-ECG dataset used in this study come from the 
[Apnea-ECG Database v1.0.0 (physionet.org)] (Akiba et al., 2019; 
Goldberger et al., 2003), and consisted of 70 single-lead ECG signals, 

divided into a training set containing 35 records (a01 to a20, b01 to 
b05 and c01 to c10) and a test set of 35 records (x01 to x35). Each 
record contained a continuous digitized ECG signal from the patient 
for a full night, with recording times ranging from 401 to 578 min. The 
subjects contained males (57) and females (13), with ages ranging 
from 27 to 63, heights ranging from 158 to 184  cm, and weights 
ranging from 53 to 135 kg (Table 1).

3.2 Data pre-processing

Firstly, a consecutive full night of ECG signals was segmented, 
with each segment having a length of 60 s, from which a total of 34,313 
segments of data was obtained. In processing the ECG signals for each 
minute, the following steps were perfsormed:

Signal sampling and filtering: The sampling rate of the signal is 
adjusted to 100 Hz. The ECG signal was filtered using a Chebyshev 
band-pass filter to remove noise and baseline drift from it.

R-R interval analysis: The time interval between two adjacent R 
waves (ventricular contractions) of the heart is extracted from the 
ECG signal and is called the R-R interval. This interval is used to 
study heart rate variability, i.e., changes in heart rate over time 
(Wang, 2019).

Analysis of R-wave amplitude variations: The R-wave Amplitude 
Modulation Periodicities (RAMP) method was used to analyze the 

FIGURE 6

Fusion model flowchart.

TABLE 1 Dataset description.

Length 
(minute)

Non-Apnea 
(minute)

Apne 
(minute)

AI HI AHI Age
Height 

(cm)
Weight 

(kg)

Min 401 11 0 0 0 0 27 158 53

Max 578 535 534 86.8 57.1 93.5 63 184 135

Avg 481.82 305.17 305 21.83 12.38 28.04 45.14 175.84 86.75

SD ±31.57 ±156.57 ±172.27 ±24.10 ±9.42 ±27.57 ±10.83 ±5.58 ±20.73
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pattern of change of R-wave amplitude and period in the 
electrocardiogram (Varon et al., 2015).

ECG-derived respiratory signal extraction: generates a respiratory 
signal in the ECG called electrocardiographically derived respiratory 
signal (EDR). This signal is obtained by measuring the resistance (R) 
and capacitance (C) in the ECG and provides information about the 
heart function (Singh et al., 2020).

Signal processing and formatting: The extracted signals are 
subjected to spline interpolation and smoothing to fill in the missing 
data, and then the signals are down-sampled to retain the key 
information while reducing the amount of data. Ultimately, the 
processed electrocardiogram (ECG) signals were transformed into 
structured training and testing datasets, facilitating the analysis and 
evaluation of the model. Special attention was paid during this 
transformation process to minimize potential information loss during 
data conversion. Consequently, the ECG signals were meticulously 
formatted into two-dimensional vectors. This format not only preserves 
the integrity of the data but also aligns well with the processing 
requirements of the model. By providing direct numerical information, 
these vectors enable the model to capture traits more effectively and 
analyze key features of the ECG signals, thereby enhancing the model’s 
analytical capabilities and predictive accuracy (Figure 7).

4 Experimental results

4.1 Experimental environment

Experimental environment: the experiment was run on a 
computer with Windows 10 operating system. The CPU is Intel(R) 
Core(TM) i7-10700F CPU @ 2.90GHz 2.90 GHz. The GPU is NVIDIA 
GTX3060 and the space size is 12GB. The computer running memory 

size is 64GB. The experiment is run on the Python 3.6 and 
tensorflow environment.

4.2 Assessment of indicators

In this paper, accuracy, precision, recall rate, F1 score, ROC curve 
and P-R curve are used as evaluation indicators to evaluate the 
classification performance of the model.

The accuracy rate is the proportion of the number of samples that 
were correctly predicted to the total number of samples. The formula 
for calculating the accuracy rate is as follows (Equation 9):

 
Acc TN TP

TN TP FN FP
=

+
+ + +  

(9)

Precision is the probability that the sample is actually positive out 
of all the samples that are predicted to be positive. The precision is 
calculated as follows (Equation 10):

 
Pre TP

TP FP
=

+  
(10)

Recall is the probability that it is correctly predicted in all positive 
samples and is calculated as follows (Equation 11):

 
Rec TP

TP FN
=

+  
(11)

When the sample ratio is unbalanced, there is often a bias in 
evaluating model performance by precision and recall. Good results 
for one metric and poor results for the other, the model’s capability 

FIGURE 7

Data preprocessing flowchart.
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cannot be  accurately assessed. For this reason, we  introduce the 
F1-score by weighted average recall and precision values. The F1-score 
is higher only if the recall and precision results are good. The formula 
for calculating the F1-score is as follows (Equation 12):

 
F Pre Rec

Pre Rec
1 2= ×

×
+  

(12)

The ROC curve is a curve plotted on the axes of (FPR) and (TPR), 
which is a measure of the classification problem, and the closer the 
ROC curve is to the upper left corner, the better the model 
performance. Recall is used as the horizontal axis and precision is used 
as the vertical axis. AP is the area of the graph enclosed by the PR 
curve and the x-axis, and the model performs best when the AP 
value is 1.

4.3 Optimisation results

The selection of model parameters has an important impact on 
model performance. In order to ensure that the model performs at an 
optimal level, a modified Bayesian hyperparameter optimization 
algorithm is used to find the optimal performance of the five key 
parameters of the TPE_OptGBM model. This step is crucial to ensure 

the performance and stability of the model. During the 
hyperparameter optimisation process, we  randomly generated 
parameter values within the pre-given parameter range and performed 
100 iterations to find the optimal parameter configurations. The 
results after parameter optimisation for different algorithms are shown 
in Table 2 (Figures 8–13).

Figure 8 vividly demonstrates that, throughout the optimization 
process, as the number of trials increases, the performance of our 
model is enhanced to optimal levels through iterative refinement. The 
progression of finding the optimal value over time is distinctly visible. 
Figure 9 reveals the significant impact of learning rate variations on 
the model’s objective function value, underscoring the importance of 
adjusting the learning rate in optimizing model performance. By 
analyzing this trend, we can pinpoint the optimal learning rate, a 
pivotal step in the model tuning process. Figure 10, by depicting the 
temporal increase in the number of trials, allows us to observe periods 
of intensified experimentation, possibly indicating further exploration 
of specific parameter settings or an acceleration of the optimization 
process. Figure  11 highlights the substantial influence of the 
hyperparameters min_gain_to_split and learning_rate on model 
performance, emphasizing their critical roles in enhancing 
performance. The Cumulative Distribution Function (CDF) chart 
(Figure 12) offers a global perspective for assessing the stability of 
model performance, indicating that the majority of trials achieve or 

TABLE 2 Parameters obtained by different algorithms.

Parametric GridSampler RandomSampler TPESampler

n_estimators 1,000 1,000 2000

learning_rate 0.0421 0.3765 0.1748

max_depth 6 6 5

num_leaves 160 100 260

min_data_in_leaf 500 500 1,000

min_gate_to_split 8.7606 5.8583 0.1055

FIGURE 8

TPE_OptGBM model iteration accuracy. (The horizontal axis represents the sequence of trials, the vertical axis represents the value of the objective 
function, the blue dots indicate the objective function value for each trial, and the orange line shows the best objective function value obtained so far).
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FIGURE 9

TPE_OptGBM model param learning_rate. (The chart shows the impact of the learning rate on accuracy; as the learning rate parameter changes, the 
objective function value also changes, thereby selecting the optimal learning rate to optimize model performance).

FIGURE 10

TPE_OptGBM model experimental efficiency. (This is a chart of 
cumulative trial numbers over time, with the horizontal axis 
representing time and the vertical axis representing the number of 
trials, showing that the number of trials increases more quickly at 
certain points in time).

surpass the established performance threshold. Finally, Figure 13, 
through the visualization of multiple parameter combinations and 
their effects on the objective function value, enables us to identify the 
most crucial parameter combinations, which is vital for a deeper 
understanding of the model’s internal workings and for guiding 
future optimizations.

4.4 Comparative experiments

To ascertain the effectiveness of the model proposed in this study, 
we implemented a scientific and systematic approach for the selection 
of comparative models. This involved a detailed search through major 
scientific databases, followed by the randomized selection of five 
diverse models for comparative analysis. In recent years, these models 
have been widely applied in the field of sleep apnea detection research, 
ensuring the comprehensiveness and relevance of our comparison to 

this area of study, including Random Forest (Razi et  al., 2021), 
LightGBM (Han and Oh, 2023), XGBoost (Yan et al., 2022), ResNet 
(Yang et al., 2022), and Bi-LSTM (Anbalagan et al., 2023). Using a 
comparison with these classical methods and deep learning models 
allows us to evaluate the performance of the new models and their 
advantages in problem solving. These benchmark methods, such as 
Random Forest, have been widely used in related fields, so using them 
as comparisons can reveal the advantages of the new model proposed 
in this paper for practical tasks. Meanwhile, the comparison with the 
deep learning model ResNet and Bi-LSTM can demonstrate the 
performance under different model classes, thus assessing their 
applicability more comprehensively. In addition, the comparison with 
models such as XGBoost can explore the potential advantages of 
different models on different types of problems. To ensure impartiality 
in the evaluation process, the proposed enhancement algorithm was 
integrated into each model under comparison and the best 
performance achieved by these comparative models was selected as 
the final outcome. The results are as follows (Table 3).

From the experimental results, it can be seen that our proposed 
TPE_OptGBM model performs well in several performance 
indicators. In particular, the TPE_OptGBM model achieves 95.08% in 
accuracy, 97.51% in recall, and 96.14% in F1 score. This means that 
our model is able to identify the patient’s condition with very high 
precision and accuracy in the sleep apnea detection task. Relative to 
other models, our model possesses higher accuracy and precision, 
which indicating that it is better at distinguishing between normal and 
abnormal samples during identification.

4.5 Ablation experiments

In order to verify the effectiveness of each module of the fusion 
model, we  conducted ablation experiments to test the model 
performance by adding different algorithmic modules to the base 
model, step by step, to determine the actual effectiveness of the 
fusion model.

In the experiments, the Isolation Forest algorithm and the 
improved Bayesian hyperparameter optimization algorithm are 
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introduced in this paper, and these algorithm modules are fused with 
the LightGBM model to improve the accuracy of the LightGBM 
model. Specifically, we separately fused the Isolation Forest algorithm 
and the Bayesian hyperparameter optimisation algorithm in our 
experiments, and then compared the fused model with the original 
and analyze changes before and after the introduction of algorithms. 
The comparison results are shown in Table 4 (Figures 14–16).

Let these two improvement methods be A1 and A2 respectively:
A1: Isolated forest algorithm.
A2: Improved Bayesian Hyperparametric Optimisation Algorithm.
In the laboratory, we visualized the performance of four different 

improved algorithms through confusion matrices, ROC curves, and 
Precision-Recall (PR) curves (Figures 14–16). Figure (a) shows the 
performance of the standard LightGBM algorithm; Figure (b) 
represents the performance of the A1-LightGBM algorithm; Figure 
(c) corresponds to the A2-LightGBM algorithm, which is the second 

improvement to the standard LightGBM; finally, Figure (d) 
demonstrates the performance of the A1-A2-LightGBM algorithm, 
which is the result of combining the previous two improvements 
applied to LightGBM. Table 5 shows the sample sizes of the a-d model 
training set and the test set.

The results of the ablation experiments demonstrate that by using 
only the LightGBM model, a good performance was obtained, 
providing an accuracy of 87.82% and an F1 value of 90.27%. 
Subsequently, different improved algorithmic modules were gradually 
introduced. When the Isolated Forest algorithm (A1-LightGBM) was 
utilized, the accuracy rate was significantly improved to 92.62%, and 
the precision rate, AUC and F1 value were also significantly improved. 
Similarly, when the improved Bayesian Hyperparameter Optimization 
algorithm (A2-LightGBM) was introduced, the model performance 
was also improved to a certain extent in all indicators.

When we introduced both improved algorithmic modules into the 
LightGBM model (A1-A2-LightGBM), significant performance gains 
were observed, with accuracy reaching 95.08%, precision at 94.80%, 
AUC of 0.951, F1 value of 96.14%, and a peak recall performance of 
97.51%. This demonstrates the superior outcomes achievable by 
integrating the Isolated Forest algorithm and the Bayesian 
Hyperparameter Optimization algorithm into the LightGBM model.

4.6 TPE_OptGBM fusion model

In the paper, we validate the performance of the TPE_OptGBM 
fusion model on a variety of metrics, including accuracy, precision, 
recall, F1 score, AUC (area under the curve), and ROC curve. 
We  trained the model using a training set and evaluated its 
performance with a test set. Figure 8 shows the training and testing 
history curves of the TPE_OptGBM fusion model on each detection 
segment. It is worth noting that the difference in values is not large 
in each test, which indicates that the model has a good 
generalization performance and is not prone to overfitting. 
Meanwhile, we plotted the ROC curves of different networks to 
evaluate the performance of the model under different thresholds. 
By looking at the ROC curves, we can determine the AUC (area 
under the curve), which is a common metric for evaluating the 

FIGURE 11

TPE_OptGBM model hyperparameter importance. (Describe the degree of influence of different hyperparameters on the model's objective function 
value; the larger the value, the more significant the impact).

FIGURE 12

TPE_OptGBM model cumulative probability. (This chart is a 
Cumulative Distribution Function (CDF) graph that displays the 
cumulative probability of the objective function. As the cumulative 
probability approaches 1, the corresponding objective function value 
nears 0.95, indicating that almost all trials are able to achieve this 
value, which is used to assess the stability of model performance).
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TABLE 4 Comparison of models with different modules.

Modeling ACC Pre Rec F1

LightGBM 87.82% 87.40% 93.35% 90.27%

A1-LightGBM 92.62% 92.32% 96.23% 94.23%

A2-LightGBM 90.83% 90.45% 95.24% 92.79%

A1-A2-LightGBM 95.08% 94.80% 97.51% 96.14%

The bold values represents the method we have proposed, and it is also the method that 
works best.

performance of a classifier. In our experiments, it is observed that 
the TPE_OptGBM fusion model achieves the highest AUC value of 
0.951. This indicates that our model performs well under different 
thresholds and has high classification ability. In order to verify the 
performance of proposed method, before the data was fed into the 
TPE_OptGBM model, we concatenated the training and testing 
sets, removed a portion of anomalous data, and then conducted 
10-fold cross-validation, with 10% of the data being utilized as the 
test set. Through this process, we obtained the average accuracy as 
the final result. This step ensures more credibility and stability in 
the performance evaluation of the model.

5 Discussion

Sleep apnea has attracted a lot of attention in recent years, 
especially for its association with serious health problems such as 
cardiovascular disease and its early detection can be extremely helpful 
in the treatment and rehabilitation of the disease. The aim of this study 
was to explore an efficient and accurate method to detect sleep apnea 
to enable earlier intervention and treatment of this disorder. 
Experiments have also demonstrated that our proposed TPE_
OptGBM model exhibits excellent performance in this task, and its 
effectiveness is not only reflected in the various performance 
indicators but also in the overall robustness of the model and 
its efficiency.

In the experimental section of this paper, we  compare our 
proposed model with the current state-of-the-art methods, including 
Random Forest, LightGBM, XGBoost, Bi-LSTM and ResNet, and the 
results show that our proposed model has excellent results and 
achieves the best performance in terms of accuracy, precision, and F1 
value. The model achieves better results due to our fully consideration 
of the following key factors at the beginning of the model design: (1) 
Applicability of the model. This model demonstrates effective 
capability for ECG data processing. ECG data samples can 
be perceived as two clusters in a high-dimensional space that overlap; 
for most of the characteristics of the obvious positive samples and 
negative samples, the model has a better ability to classify, and the 
cause of the difficulty in improving the classification accuracy is the 
differentiation between the part of the samples that are crossed. 
We  have found that the tree model shows excellent classification 
accuracy for this kind of samples as shown on the experiments. 
Therefore, for ECG signals and other physiology, we can consider 
machine learning for prediction, especially the tree model, which may 
have better results. (2) We have fully considered the impact of the data 
and abandoned the practice of extracting sleep apnea information 
only from heart rate variability; instead, we integrated and extracted 

TABLE 3 Comparison of different models.

Modeling ACC Pre Rec F1

Random forest 85.9% 91.75% 75.50% 84.36%

LightGBM 87.82% 91.83% 84.87% 87.76%

Bi-lstm 89.71% 92.50% 90.36% 89.36%

ResNet 90.30% 91.90% 87.60% 89.70%

XGboost 93.51% 95.02% 92.02% 93.53%

TPE_OptGBM 95.08% 94.80% 97.51% 96.14%

The bold values represents the method we have proposed, and it is also the method that works best.

FIGURE 13

High-dimensional data visualizes parallel coordinates. (Visualization analysis of multidimensional data, where the path of the line shows how a set of 
parameters are combined together and their collective impact on the objective function value. By observing which combinations of parameters lead to 
higher or lower objective function values, one can gain insights into which parameter combinations are most critical for model performance).
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features from various perspectives, including the RRI, RAMP, and 
EDR signals, which makes the data input to the model to contain more 
original features, and the model can obtain better classification results 
based on multiple features. (3) We introduced the Isolation Forest 
algorithm to cope with the problem of anomalous data points present 
in the ECG signal. These anomalous data points are often disturbed 
by noise and are difficult to classify accurately. By introducing this 
method, we can ensure that it is still possible to get better results in the 
case of complex data. Furthermore, within the sleep apnea data set, 
the quantity of positive samples significantly outnumbers the negative 
ones, resulting on a disproportionate sample distribution. For deep 
learning models, under the premise that the ratio of one sample is 
higher than that of another sample, the model is more willing to 
believe that the sample belongs to a larger number of samples, which 
is also an important reason why it is difficult for deep learning to 
improve the accuracy rate. However, with the introduction of the 
Isolation Forest algorithm, this problem is successfully solved, 
providing a robust solution to the data analysis and classification 
problem. (4) The improved Parzen algorithm optimizes the parameters 
of the LightGBM algorithm. There are many parameters in the 
LightGBM model, and there are interactions and constraints among 
them, so how to find the important parameters and their specific 
values directly affect the performance of the model. How to find the 
important parameters and their specific values directly affect the 
model performance, so finding the optimal parameters of the model 
is key to maximize model performance. The traditional way is mainly 

based on the experience of manually adjusting the parameters and the 
results exhibit randomness, this paper adopts the latest hyper-
parameter optimisation framework by comparing a variety of 
adjustment algorithms. This approach identifies the model parameters 
best suited for this task, leading to significant improvements in 
model performance.

In the ablation experiments, we found that each module of our 
proposed fusion model plays a key role in improving the overall 
performance of the model. The effectiveness of each module in the 
proposed model is verified through the ablation experiments. Table 4 
lists the evaluation results of the models with different modules: when 
only the isolated deep forest algorithm is introduced, the numerical 
relationship shows that the accuracy is improved by 4.8%, which 
indicates that the algorithm is able to balance the data effectively. 
When only the improved Bayesian hyper-parameter optimisation 
algorithm is introduced, the accuracy is improved by about 3%, which 
shows that the introduced optimisation algorithm is able to accurately 
find the best parameters to fit the model. When both the Isolation 
Forest algorithm and the improved Bayesian hyperparameter 
optimization algorithm are incorporated, the fusion model’s accuracy 
notably increases to 95.08%, surpassing other current models. In 
terms of precision, recall and F1, 94.80, 97.51 and 96.14%, respectively, 
are higher than other models. Figure 14 shows the confusion matrix 
of the four models, and our proposed model produced the best results 
with far fewer samples with wrong predictions than the other models. 
From this, it can be concluded that our proposed model performs best 

FIGURE 14

Confusion matrix incorporating different algorithms (A–D).
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FIGURE 15

ROC curves incorporating different algorithms (A–D).
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in the classification of sleep apnea detection, which also implies that 
our model is not just a simple fusion, but obtains a significant 
improvement in overall performance with the introduction of each 
algorithm. In addition to this, compared to deep learning models, the 
model proposed in this paper improves overall classification 
performance, occupies less memory, it is faster and more efficient to 
train and can obtain higher accuracy rates while consuming less 
computer resources and time.

In the comparison of prior knowledge, we find that the model 
maintains a relatively high level of accuracy even without using any 
prior information. This indicates that our model does not completely 
depend on prior information, i.e., it has weak a priori properties, and 
it also indicates that the proposed model has good robustness.

In summary, the exceptional performance of our proposed TPE_
OptGBM fusion model in sleep apnea detection is inextricably linked 
to the organic integration of its multiple factors. The model not only 
demonstrates strong performance in our area of interest, but also has 
the potential to be extended for application in other areas. Through 

experiments, we have shown that our method not only enhances the 
diagnostic accuracy of sleep apnea but also possesses the stability and 
flexibility to make it suitable for various practical scenarios. These 
include: (1) Integration into medical devices for comprehensive 
detection; (2) Development of portable mobile devices for sleep 
apnea detection.

In the future, we will further optimize the method, improve the 
classification accuracy of the model, and try to develop a more 
powerful sleep apnea diagnostic model to better assist doctors in 
clinical diagnosis. Meanwhile, developing portable wearable devices 
based on the reliable, stable and efficient features of this model in 
conjunction with hospitals and sleep centers is also the next step. 
Certainly, this study has several limitations which are reflected on the 
following aspects: (1) The limited sample size could potentially affect 
the generalizability of our results. Constrained by the availability of 
data, our model was trained and tested on a relatively small sample set, 
which may not provide a comprehensive evaluation of the model’s 
performance. This issue could potentially be mitigated through data 
augmentation and the recruitment of a larger number of participants 
for the study. (2) The model in this study was validated solely on the 
Apnea-ECG database. Despite encouraging outcomes on this 
database, performance on other databases remains untested. Different 
databases may exhibit diverse data distributions. Testing the model 
across various datasets enables an evaluation of its performance under 
different environments and conditions, thereby ascertaining the 
model’s robustness and applicability. (3) We implemented a specific 
preprocessing protocol in our study. Although we aimed to minimize 

FIGURE 16

PR curves incorporating different algorithms (A–D).

TABLE 5 Training and testing sets for different algorithms.

Training set Test set

a 27,108 3,012

b 26,874 2,986

c 27,117 3,013

d 28,737 3,193
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the impact of preprocessing on the data, different preprocessing 
approaches could lead to varying outcomes, an area that warrants 
further investigation. (4) The computational complexity of the model 
is relatively high, posing potential challenges for real-time monitoring 
applications. Future research should focus on algorithm optimization 
to reduce resource consumption in practical applications.

6 Conclusion

Sleep apnea requires early detection and diagnosis for effective 
treatment and recovery. In this study, the characteristics of sleep apnea 
ECG signals are thoroughly investigated. Subsequently, we proposed 
an innovative model, TPE_OptGBM, which is capable of conveniently 
detecting sleep apnea solely through patients’ ECG signals. 
Experiments demonstrate that the model performs more efficently in 
several key metrics, including 95.08% accuracy, 94.80% precision, 
97.51% recall, and 96.14% F1 score. The robustness of the model is 
fully validated by tests on balanced and unbalanced data and by 
cross-validation.

The advantages of the model proposed in this paper are as follows: 
(1) Our proposed model is designed for the diagnosis of sleep apnea 
and achieves the highest accuracy rate, effectively assisting doctors in 
making accurate diagnoses. (2) The TPE_OptGBM model proposed 
based on the idea of model fusion can effectively solve the key problems 
existing in the field of sleep apnea detection. (3) Compared to the deep 
learning model, our model has a faster training speed, which can 
obtain higher accuracy while occupying fewer computer resources and 
can provide reliability and high efficiency in the clinical process.
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