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Comprehensive transcriptomic
analysis revealing the regulatory
dynamics and networks of the
pituitary-testis axis in sheep
across developmental stages

Shanglai Li†, Bingru Zhao†, Hua Yang, Keke Dai, Yu Cai, Hui Xu,

Peiyong Chen, Feng Wang and Yanli Zhang*

Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China

Spermatogenesis is a complex process intricately regulated by the hypothalamic-

pituitary-testis (HPT) axis. However, research on the regulatory factors governing

the HPT axis remains limited. This study addresses this gap by conducting

a comprehensive analysis of transcriptomes from the pituitary and testis

tissues across various developmental stages, encompassing embryonic day

(E120), neonatal period (P0), pre-puberty (P90), and post-puberty day (P270).

Utilizing edgeR and WGCNA, we identified stage-specific genes in both the

pituitary and testis throughout the four developmental stages. Notably, 380,

242, 34, and 479 stage-specific genes were identified in the pituitary, while

886, 297, 201, and 3,678 genes were identified in the testis. Subsequent

analyses unveiled associations between these stage-specific genes and crucial

pathways such as the cAMP signaling pathway, GnRH secretion, and male

gamete generation. Furthermore, leveraging single-cell data from the pituitary

and testis, we identified some signaling pathways involving BMP, HGF, IGF,

and TGF-β, highlighting mutual regulation between the pituitary and testis

at di�erent developmental stages. This study sheds light on the pivotal role

of the pituitary-testis axis in the reproductive process of sheep across four

distinct developmental stages. Additionally, it delves into the intricate regulatory

networks governing reproduction, o�ering novel insights into the dynamics of

the pituitary-testis axis within the reproductive system.
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1 Introduction

In male animals, the intricate process of spermatogenesis involves the orchestrated

action of cell-specific gene products and collaboration among different cells. This process

is under the strict governance of developmental regulations, which profoundly influence

male reproductive health (1). The testis, serving as the primary site of sperm production,

undergoes distinct developmental stages in male animals, including the embryonic period,

neonatal phase, prepubertal stage, and sexual maturity. During embryonic development,

primordial germ cells differentiate into supporting cells, steroidogenic cells, and germ

cells within the developing testes. In the neonatal and prepubertal stages, spermatogenesis

remains dormant, and no initiation of sperm production occurs. The production of

spermatozoa commences at sexual maturity, typically around 6–9 months of age.
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The hypothalamic-pituitary-gonadal (HPG) axis is a precise

regulatory system that regulates the development of the

reproductive system (2). The hypothalamic-pituitary-testicular

(HPT) axis is a critical component in the process of sperm

production. The pituitary gland plays a crucial role in gonadotropin

secretion (3), which secretes luteinizing hormone (LH) and follicle-

stimulating hormone (FSH). These hormones are essential for

maintaining normal spermatogenic function by synergistically

regulating the development of spermatogenic cells, Leydig cells,

and Sertoli cells in the testis, as well as the synthesis and secretion

of gonadal steroid hormones. Besides, the research found that

suppression of PRL increases serum concentrations of LH and

testosterone in goats (4). The development and function of the

testis are thus intricately linked to the regulatory mechanisms of

the pituitary gland.

Recently, genomic studies on the pituitary-testis axis have

revealed candidate genes and pathways that are potentially

pivotal in regulating reproductive traits in animals. For instance,

transcriptomic sequencing was used to identify the important role

of GnRH and cAMP signaling pathways in rams with different

sexual behaviors (5). Fifteen genes involved in neuroactive ligand-

receptor and WNT signaling pathways have been identified as

potentially crucial for the development of goose external genitalia

(6). A study has demonstrated the expression patterns of lincRNAs

during postnatal testicular development of goats (7). However,

few studies focused on the interconnected mechanisms controlling

the development of the pituitary and testis, particularly in male

sheep. This gap highlights the need for comprehensive research

to elucidate the coordinated regulation of the pituitary-testis axis,

thereby advancing our understanding of male reproductive health

in animals.

Hu sheep, renowned for their exceptional prolificacy in China

(8), serve as an ideal model for investigating fecundity mechanisms.

To elucidate the novel genes and regulatory networks of the

pituitary-testis axis during various developmental stages in Hu

sheep, we performed a comprehensive analysis of transcriptomes

from both the pituitary and testis tissues by RNA sequencing

(RNA-seq). This study encompassed four critical stages: embryonic

development, neonatal period, pre-puberty, and post-puberty.

We aimed to provide new insights into the functioning of the

pituitary-testis axis across these diverse developmental stages. Our

study identified key regulators and signaling pathways within

these developmental stages of the testis so as to advance our

understanding of spermatogenesis at the molecular level. The

findings of this study not only enhance our comprehension of the

intricate processes involved in male reproductive health, but also

contribute to the identification of candidate genes crucial for male

reproductive capability in Hu sheep.

2 Materials and methods

2.1 Sample collection and preparation

2.1.1 Animal and tissue collection
All the experimental animals were obtained from Jiangsu

Qianbao Sheep Industry Limited Company, Yancheng, China. The

developmental period of the embryo lamb can be estimated based

on the mating records of the ewe. The embryos (E120) were

collected in pregnant ewes at 120 embryonic days (n = 5). In

the other three stages, three replicates were collected based on

the growth of lambs (n = 3). The pituitary and each right testis

from each ram were collected and snap-frozen in liquid nitrogen

immediately for RNA extraction.

2.1.2 RNA isolation and qualification
Total RNA was extracted using the TRIzol method (Invitrogen,

CA, USA) and treated with RNase-free DNase I (Takara,

Kusatsu, Japan). RNA degradation and contamination was

monitored on 1% agarose gels. RNA concentration and

purity was measured using NanoDrop spectrophotometer

(Thermo Scientific, DE, USA). RNA integrity was assessed

using the Agilent 2100 Bioanalyzer (Agilent Technologies,

CA, USA).

2.1.3 Library preparation for transcriptome
sequencing

RNA purification, reverse transcription, library construction

and sequencing were performed at Beijing Allwegene Technology

Company Limited (Beijing, China) according to the manufacturer’s

instructions (Illumina, San Diego, CA).

2.2 Data analysis

2.2.1 Quality control
Raw data (raw reads) of fastq format were firstly processed

through in-house perl scripts. In this step, clean data (clean

reads) were obtained by removing reads containing adapter, reads

containing ploy-N and low quality reads from raw data. At the same

time, Q20, Q30, GC-content and sequence duplication level of the

clean data were calculated. All the downstream analyses were based

on clean data with high quality.

2.2.2 Mapping analysis
The adaptor sequences and low-quality sequence reads were

removed from the data sets. Raw sequences were transformed

into clean reads after data processing. These clean reads were

then mapped to the reference genome sequence (Ovis_aries, ARS-

UI_Ramb_V2.0) by STAR (9). Only reads with a perfect match or

one mismatch were further analyzed and annotated based on the

reference genome.

2.2.3 Identification of stage-specific genes
Stage-specific genes (FDR < 0.05) for the pituitary and testis

were identified between one stage and others using the R package

edgeR (10) and Mfuzz (11). All functional enrichment analyses

were conducted for each stage-specific gene type using the R

package clusterProfile (12).
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2.2.4 Weighted gene co-expression network
analysis (WGCNA)

To investigate the co-expression patterns of genes in the

pituitary and testis tissues across four distinct developmental stages,

we used the R package WGCNA (13) to construct gene co-

expression networks. The analysis involved the construction of a

gene co-expression network based on pairwise correlations between

gene expression profiles. To achieve this, a soft-thresholding power

was selected to emphasize strong correlations and mitigate weaker

ones. Modules of highly correlated genes were identified, and

the eigengene of each module was calculated to represent the

overall expression pattern of the module. Module-trait associations

were then assessed to link co-expression modules with specific

developmental stages. This comprehensive WGCNA approach

facilitated the exploration of dynamic gene expression patterns

and potential regulatory modules governing the developmental

transitions in both pituitary and testis tissues. The sequence motif

enrichment analysis of promoters of genes in hub modules was

conducted by MEME v.5.5.4 (14), based on the JASPAR(2020) core

non-redundant vertebrate motifs from Tomtom (15).

2.2.5 Exploration of pituitary and testis cell–cell
interaction patterns

Testis single-cell RNA sequencing data for Hu sheep were

downloaded from the GEO database (GSE184343), while the

pituitary data originated from our unpublished dataset. These

two datasets were amalgamated for analysis, and the R package

“Harmony (16)” was employed to eliminate batch effects. Utilizing

marker genes, the clusters were delineated into 21 distinct clusters,

with eight clusters representing pituitary cells and 13 clusters

representing testicular cells. Subsequently, we utilized CellChat (17)

to explore the intercellular communication dynamics between the

pituitary and testicular cells.

3 Results

3.1 Characterization of transcriptional
profiles in sheep pituitary gland and testis
development

We collected pituitary and testis tissues from embryos (E120),

newborns (P0) pre-puberty (P90), and post-puberty (P270) for

transcriptome sequencing (Figure 1A). In total, we integrated 28

distinct RNA sequencing datasets across four developmental stages

in pituitary and testis. Additionally, we integrated two single-

cell sequencing datasets for analysis, a summary of the analysis

workflow referred to Figure 1B. The developmental stage was

consistently themain factor that distinguished the 14 samples based

on their molecular profiles in the principal component analysis

(PCA). Furthermore, we examined the histologic morphology of

the pituitary gland and testis. In the testis of P0 and E120 groups,

there were only a few Sertoli cells (Sg), Leydig cells (LCs), and

spermatogonia cells (SCs). Spermatocytes appeared in the P90

stage, and fully developed sperm were observed at the P270 stage

(Figure 2). There were no significant histological changes observed

in the pituitary gland (Supplementary Figure S1).

3.2 Stage-specific genes in pituitary and
testis across developmental stages

To investigate key genes in the pituitary and testis across

various developmental stages in Hu sheep, we conducted a

detailed analysis of the upregulated genes at each stage and

subsequently performed GO enrichment analysis on these genes.

Our results demonstrated that during the embryonic and neonatal

stages of pituitary development, the upregulated genes were

significantly enriched in the mitotic cell cycle and ATP metabolic

processes. As age progressed, there was a notable shift in the

pituitary gene expression profile, with enrichment of processes

related to hormone secretion, growth regulation, and male sexual

characteristics (Figure 3A).

In a parallel analysis of testis development, we observed that

the upregulated genes during the embryonic and neonatal stages

were primarily enriched in energy metabolism and the regulation

of cellular metabolic processes, including ATP synthesis. Notably,

upon reaching sexual maturity, a significant upregulation of genes

in the testis were predominantly associated with reproductive

processes such as fertilization and male gamete generation

(Figure 3B).

3.3 Dynamic expression patterns of genes
during the development of pituitary and
testis

To analyze the variation trend of differential genes, we classified

all differentially expressed genes into five clusters based on their

expression levels. In the pituitary, cluster 1 genes demonstrated

a gradual decrease in expression levels across developmental

stages, with significant (P < 0.01) enrichment in embryonic organ

development and ATP metabolic processes. Conversely, Cluster 3

genes exhibited a progressive increase in expression levels across

developmental stages and were significantly enriched in hormone

secretion. Cluster 4 genes showed the highest expression levels at

P0 and were significantly (P < 0.01) enriched in the regulation of

growth (Figure 4A).

In the testis, genes in Cluster 1 exhibited elevated expression

levels primarily during the early stages of development, particularly

at birth. Notably, genes such as ACTN1, ACE, and FSHRwithin this

cluster were significantly enriched in pathways related to biological

adhesion and vasculature development. Conversely, Clusters 2 and

3 displayed contrasting expression patterns, while Clusters 4 and 5

exhibited opposing trends in gene expression. Additionally, these

clusters differed in the enriched functional pathways, underscoring

their distinct roles in testicular physiology (Figure 4B).

3.4 WGCNA and stage-specific gene reveal
hup genes associated with di�erent stages

We created gene co-expression networks for different

developmental stages and identified eleven modules using

the weighted gene co-expression network analysis (WGCNA)

(Figure 5A). We then analyzed the correlation between

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2024.1367730
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Li et al. 10.3389/fvets.2024.1367730

FIGURE 1

Overview of the pituitary and testis transcriptome during four development stages. (A) Schematic of experimental design. Marks on the timeline

denote the age in which the pituitary gland and testis were collected. (B) Schematic of the analysis workflow. (C) PCA plot for pituitary gland and

testis samples based on gene expression. After filtering for low-count genes, log2(normCounts+1) was used to perform principal component

analysis (PCA).

each module and the different stages of tissue development

(Figure 5B). To determine whether certain transcription

factors (TFs) were regulating the genes in these stage-specific

modules, we performed a motif enrichment analysis on the

promoters of stage-specific genes separately (Figure 5C). We

found that these TFs also exhibited stage-specific expression,

indicating that they might play crucial roles in embryo and

organ development.

Next, we generated Venn diagrams to intersect genes

from stage-specific modules with those upregulated at each

developmental stage. Through KEGG functional enrichment

analyses, we observed a predominant enrichment of these

genes in reproductive signaling pathways, including the cAMP

signaling pathway, TNF signaling pathway, and Notch signaling

pathway (Supplementary Figure S2). Subsequently, we employed

these genes to construct a Protein-Protein Interaction (PPI)

network. The MCODE algorithm was applied to extract pivotal

subnetworks, identifying them as hub modules. For example, in

the pituitary at E120, a network was identified among ASCL1,

OTX2, FOXN4, LHX2, and FEZF1. In the P0 group, a network

comprising ACSL1, ELOVL5, FABP4, and PDK4, was established.

In the P270 group, networks were constructed among genes

like PTAR1, CHML, ARL5B, and others. However, for the P90

group, no interaction network was established due to minimal
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FIGURE 2

Histological analysis of testis at di�erent developmental stage. The testicular tissues were observed under the microscope at ×100, ×200, and ×400

magnification. The di�erent cell types were indicated by black arrows and numbered accordingly. 1: Leydig cells, 2: Sertoli cells, 3: spermatogonia, 4:

spermatocytes, 5: round spermatids, 6: elongated spermatids, 7: sperm.

interactions (Figure 6A). In the testis, we constructed four stage-

specific modules. The E120 group module comprised twelve

genes, including MRPL30 and NME3. The P0 group module

consisted of fifteen genes, including TPM4 and MYH1. The P90

group module included four genes, such as FATE1, SLC4A5,

VSIG1, and ADAM11. The P270 group module comprised six

genes, including NUTM1, PHF7, ADGB, and ENO4 (Figure 6B).

Importantly, the genes within these subnetworks demonstrated

significant correlations with each other, suggesting a tightly

regulated network of interactions that are critical at each

developmental stage.

3.5 Exploration of pituitary and testis
cell-cell interaction patterns

We analyzed the single-cell RNA sequencing data to explore

interactions between the pituitary and testis. After rigorous

processing and filtration of raw data, 23,837 cells in total were

identified, among which, 10,927 testis cells and 12,910 pituitary

cells were used for further analysis. Cell clustering revealed a clear

separation between pituitary cell clusters and testis cell clusters

(Supplementary Figure S3A), indicating the high quality of the data

used for analysis. After conducting more analysis, it was discovered
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FIGURE 3

The upregulated stage-specific genes across developmental stages pituitary and testis. (A) Heatmap (left) shows the expression level [log2(TPM+ 1)]

of the top 10 upregulated stage-specific genes across pituitary developmental stages; heatmaps (right) show the normalized consensus scores of

significantly (FDR < 0.05) enriched Gene Ontology (GO) terms for all upregulated genes at each stage. The horizontal axis represents the various

stages of the pituitary. (B) Similar to (A), but for the testis.
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FIGURE 4

Dynamic expression patterns of genes during pituitary and testis development. (A) The clusters of di�erentially expressed genes in the pituitary.

Corresponding biological processes are shown next to each cluster. (B) Similar to (A), but for the testis.
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FIGURE 5

The weighted gene co-expression network analysis (WGCNA). (A) The eigengene dendrogram and heat map identify groups of correlated

eigengenes cross modules. (B) Correlations between gene modules and developmental stages. The model-developmental stage relationship’s

statistical significance is corrected for multiple testing using the FDR method. The yellow stars denote FDR < 0.05. Each cell contains the correlation

and the corresponding FDR value in the bracket. (C) Heatmap shows the normalized gene expression for genes in the top seven significant modules.

The normalized gene expression for module-enriched TFs and the top representative sequence motif are shown next to each module.

that there are eight different types of pituitary cells and 13 different

types of testicular cells (Supplementary Figure S3B).

Then, we predicted major signaling inputs and outputs for

different cell clusters. We identified a list of ligand-receptor

pairs among the cell clusters, such as TGFβ, FSH, PTN, BMP,

NPR2, HGF, and IGF pathways. The numbers and weights of the

ligand–receptor pairs were calculated and detailed (Figure 7A).

Among all cell types, folliculostellate cells, gonadotrope cells,

adark, Leydig cells, and somatotropes exhibited relatively high

activity. We analyzed cell communication patterns among various
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FIGURE 6

Hup network construction among di�erent stages. (A) Subnetworks screened by MCODE among di�erent stages in pituitary, MCODE score = 4.5,

3.3, 4.2. (B) Subnetworks screened by MCODE among di�erent stages in testis, MCODE score = 12, 8, 5, 7.

cell types, considering the similarity in ligand and receptor

expression (Figure 7B). Our observation indicated that the ligand

patterns of secreting cells automatically clustered based on similar

cell types.

3.6 BMP, HGF, IGF, and TGFβ signaling
network among all cell types

To investigate the regulatory networks between the pituitary

and testis at various developmental stages, we conducted signal

pathways analysis that influence testicular regulation from the

pituitary (Figure 8A). Our focus was on signal pathways including

BMP, HGF, IGF, and TGFβ, for which we computed the

communication probability between each pair of cell types

involved. Our findings indicated that the BMP signaling pathway

predominantly functions within Leydig cells of the testis. The HGF

signaling network exhibited maximal active among folliculostellate

cells, dark Leydig cells, and corticotrope. For the IGF signaling

network, high activity was observed among folliculostellate cells,

adark cells, and somatotrope cells. In the TGFβ signaling pathway,

folliculostellate cells in the pituitary mainly act as senders, while

adark cells in the testis predominantly function as receivers and

other cells act as influencers in this pathway (Figure 8B).

Additionally, we analyzed the expression patterns of key ligands

and receptor genes within these signaling pathways in the pituitary

and testis across different stages. We observed that the expression

trends of these ligand and receptor genes were largely consistent

in both the pituitary and testis. Specifically, in the HGF signaling

pathway, the gene expression of the ligand HGF showed relatively

higher expression in the pituitary at birth and 90 days compared to

other stages. In contrast, its receptor gene MET exhibits the highest

expression in the testis at 90 days. Similarly, in the TGF signaling

pathway, the ligand gene TGFB2 and the receptor gene TGFBR1

exhibited high expression levels in the pituitary and testis at birth,

respectively (Figure 8B).

4 Discussion

The HPT axis plays an important role in reproduction,

with extensive research focusing on the hypothalamus (18, 19),

pituitary (20), and testis (21) across various developmental stages.

The pituitary gland is critical in mammalian reproduction and

growth development by secreting hormones such as GH, FSH,

LH, and PRL. Notably, endocrine cells appear on the gestation

of 60 days in the pituitary of sheep (22). A study identified

FSHβ cells in the fetal pituitary at day 100, accompanied by

numbers increasing as the gland matures (23). In our study,

we explored pituitary development in sheep at 120 days of the

embryonic and the other three postnatal stages using RNA-

seq. We identified 380, 242, 34, and 479 specific-stage genes in

the pituitary among the four developmental stages, respectively.

Transcriptome dynamics primarily regulates testis development

and spermatogenesis in a dynamic and stage-specific manner (24).

The cell types in the testis differ at various stages of development

through morphological analysis. Consistent with this observation,

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2024.1367730
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Li et al. 10.3389/fvets.2024.1367730

FIGURE 7

Exploration of the pituitary and testis cell-cell interaction patterns. (A) Circle plot of the ligand-receptor pairs of all cell types, with the thickness of

the string representing the number of ligand-receptor pairs. (B) The river plot shows the contribution of ligands and receptors to di�erent patterns

and the contribution of patterns to di�erent cell types.

886, 297, 201, and 3,678 specific-stage genes were identified in

the testis. During their development, ram testes undergo three

histological changes: prepuberty, maturity, and adulthood. During

the stage of pre-puberty, which lasts from the first month until

the fifth month, the process of spermatogenesis does not begin.

These results are consistent with those observed by histologic

morphology. The stage of spermatogenesis begins between 6 and

9 months of age, when the production of spermatozoa is initiated

(25). Notably, the increased number of genes identified at the

P270 stage suggests a potential link with spermatogenesis and

sexual maturation.

The development of pituitary and testis is regulated by core

genes (26). In this study, we utilized various analytical methods to

construct the specific-gene network at each stage. In the pituitary,

most of the stages-specific genes were enriched in embryonic organ

development and mitotic cell cycle in the E120 and P0 groups.

And the specific-gene network mainly contained OTX2, ASCL1,

FOXN4, and other genes. Previous studies have suggested that

these genes play a crucial role in both pituitary development and

stem cell differentiation (27, 28). A single-cell RNA sequencing

analysis of the developing human pituitary gland revealed that

ASCL1 expression was a prominent feature of Pro.PIT1_all cells

(29). It indicates that the pituitary glands of embryos and newborns

possess stem cell properties and play a vital role in regulating

the proliferation and differentiation of endocrine cells. Besides,

we identified key genes in the pituitary of P90 and P270, but

only the genes in P270 conducted a network. The main functions

of these genes are vesicle-mediated transport and metabolism of

proteins. This may be related to pituitary hormone secretion. In

the embryonic stage, mitochondrial ribosomal protein genes are the

core genes, indicating that energy metabolism mainly occurs in the

testis. In the newborn group, the core network primarily comprised

genes associated with muscle structure (30). At P90 and P270 days,

the core network mainly consists spermatogenesis-related genes.
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FIGURE 8

BMP, HGF, IGF, and TGFβ signaling network among all cell types. (A) Bubble plot of the ligand-receptor pairs of some cell types. (B) The boxplot

shows the expression of ligands and receptors in BMP, HGF, IGF, and TGFβ signaling pathways across di�erent stages of the pituitary and testis. (C)

Heatmap shows the relative importance of each cell group based on the computed four network centrality measures of BMP, HGF, IGF, and TGFβ

signaling network, respectively. (D) Hypothesis of the pituitary–testis axis.
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For example,VSIG1, a member of the junctional adhesionmolecule

family, is primarily expressed in the stomach and testis, and plays

important roles during spermatogenesis (31). Earlier studies have

highlighted ENO4 as the primary enolase in mouse sperm, and

its absence leads to structural abnormalities in sperm (32). This

underscores the absence of mature sperm in the testicles at 90

days, with spermatogenic functions predominating. By P270 days,

mature sperm are evident in the testis, with a majority of key genes

participating in the regulation of sperm fertilization. During the

development of the pituitary and testis, key genes play a crucial role

in the production of sperm.

Spermatogenesis is regulated by the coordinated endocrine

action of the HPT axis. GnRH secreted by the hypothalamus

is transported to the anterior pituitary, which stimulates the

gonadotrophin to secrete LH and FSH. LH stimulates Leydig

cells to produce testosterone, while FSH regulates spermatogenesis

via its effects on Sertoli cells in the seminiferous tubules (33).

Numerous other signaling pathways play a crucial role in regulating

this process. Therefore, we used single-cell RNA sequencing

data from the pituitary and testis to investigate the signaling

pathways that act on the testis and identify potential underlying

mechanisms. The signaling pathways, such as BMP, HGF, IGF,

and TGFβ were highly active in the pituitary and testis cell types.

Previous experiments in mouse testis have shown that BMPR-

1B signaling inhibits testosterone production by regulating HSD

isoforms and aromatase, both in vivo and in vitro (34). It has

been demonstrated in previous studies that bone morphogenetic

proteins (BMPs) play a crucial role in male reproduction, along

with LH and FSH (35–37). In the present study, it was discovered

that the pituitary gonadotrope is linked to spermatocytes in the

testis through the BMP pathway. The HGF signaling pathway

is actively expressed at all stages of testicular development (38,

39). This was confirmed by the expression of MET in this

experiment. Besides, HGF can stimulate protease secretion in

stromal cells, enhance TGF-β activity, modulate tight junctions

between supporting cells, and impact the formation of the blood-

testis barrier (40). In vitro, cultured testicular stromal cells

were observed to synthesize testosterone, develop embryonic

testicular stromal cells, and increase testicular stromal cell survival

when stimulated by HGF (41). A recent report highlighted the

significance of IGFs as the primary growth factor in regulating

the number of SCs and testis size (42). SCs are the sole somatic

cells present in the seminiferous epithelium and play a crucial

role in supporting spermatogenesis (43). In vivo experiments have

demonstrated that the proliferative effects of FSH on immature SCs

during the neonatal stage are mediated through the insulin/IGF

signaling pathway. This indicates the involvement of insulin/IGF

signaling in facilitating the actions of FSH on SC proliferation

(42). TGF-β superfamily ligands regulate testis development by

controlling germline fate specification and cellular reorganization

that underlies testis formation in embryos. Besides it can influence

both somatic and germ cells during the onset of spermatogenesis in

juvenile testis growth (44). Activins and inhibins in TGFβ pathways

play a key role in regulating the hypothalamic-pituitary-gonadal

axis in domestic animals. To summarize, the pituitary-testicular

axis is significantly influenced by these four signaling pathways.

5 Conclusion

In summary, we characterized the global changes of the

transcriptome across four developmental stages of the pituitary

and testis in sheep. Besides, according to scRNA data, we provided

fundamental evidence that the pituitary might regulate testis

functions through multiple signaling pathways, the mechanism

associated with our findings should be validated in the future.
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