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Functional near-infrared spectroscopy (fNIRS) is a widely used imaging method

for mapping brain activation based on cerebral hemodynamics. The accurate

quantification of cortical activation using fNIRS data is highly dependent on the

ability to correctly localize the positions of light sources and photodetectors

on the scalp surface. Variations in head size and shape across participants

greatly impact the precise locations of these optodes and consequently, the

regions of the cortical surface being reached. Such variations can therefore

influence the conclusions drawn in NIRS studies that attempt to explore

specific cortical regions. In order to preserve the spatial identity of each

NIRS channel, subject-specific di�erences in NIRS array registration must be

considered. Using high-density di�use optical tomography (HD-DOT), we have

demonstrated the inter-subject variability of the same HD-DOT array applied

to ten participants recorded in the resting state. We have also compared

three-dimensional image reconstruction results obtained using subject-specific

positioning information to those obtained using generic optode locations. To

mitigate the error introduced by using generic information for all participants,

photogrammetry was used to identify specific optode locations per-participant.

The present work demonstrates the large variation between subjects in terms

of which cortical parcels are sampled by equivalent channels in the HD-DOT

array. In particular, motor cortex recordings su�ered from the largest optode

localization errors, with a median localization error of 27.4mm between generic

and subject-specific optodes, leading to large di�erences in parcel sensitivity.

These results illustrate the importance of collecting subject-specific optode

locations for all wearable NIRS experiments, in order to perform accurate

group-level analysis using cortical parcellation.

KEYWORDS

optical neuroimaging, functional near-infrared spectroscopy, di�use optical

tomography, cortical parcellation, image reconstruction

Introduction

Functional near-infrared spectroscopy (fNIRS) is a highly promising neuroimaging

method, particularly for measuring brain activity during tasks performed in naturalistic

environments, due to its portability and low sensitivity to movement compared to other

neuroimaging modalities (Perpetuini et al., 2021). fNIRS non-invasively measures relative
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changes in oxygenated (HbO) and deoxygenated hemoglobin

(HbR) using an array of light sources and detectors placed

in contact with the scalp. Increased regional neuronal activity

demands an increase in oxygenated blood flow to that brain

region, which is faster than the rate of oxidative metabolism

and thus leads to discernible increases in regional oxygenation

(Phillips et al., 2016). As a result, the relative changes in blood

oxygenation measured by fNIRS can be viewed as markers of

brain activity (Yeung and Chu, 2022); this process is known as

neurovascular coupling.

However, the lack of inherent structural information available

from fNIRS data poses a challenge to performing valid comparisons

of cortical activity across individuals with varying head shapes

and sizes (Tsuzuki and Dan, 2013; Yücel et al., 2017; Zhai et al.,

2020). More specifically, variability in the partial optical pathlength

of fNIRS measurements across individuals has been previously

attributed, in part, to differences in head structure (Nakamura

et al., 2016; Cai et al., 2021). This in turn may lead to spurious

differences in the magnitude of functional response observed

between individuals.

High-density diffuse optical tomography (HD-DOT) is a

neuroimaging method which builds on the concept of fNIRS

by mapping three-dimensional changes in HbO and HbR

concentrations that occur in superficial brain tissues. These three-

dimensional images are produced by combining optical data

with a light transport model derived from a structural prior of

head anatomy (Hernandez-Martin and Gonzalez-Mora, 2020). In

HD-DOT, a dense array of sources and detectors placed on the scalp

is used to record light intensity from sampling overlapping volumes

of tissue (i.e., overlapping channels) at varying source-detector

separations. This can be used to yield information about the

depth at which measured concentration changes occur (Wheelock

et al., 2019) and permits the production of brain activity maps

with spatial resolutions approaching those of functional magnetic

resonance imaging (fMRI), as demonstrated in multiple studies

(White and Culver, 2010; Eggebrecht et al., 2012, 2014; Ferradal

et al., 2015).

As HD-DOT becomes more widely adopted, it is crucial to

account for variability in cranial anatomy, as it can significantly

impact the precise locations of optodes on the scalp surface

(Tsuzuki and Dan, 2013). Overlooking such inadvertent shifts in

optode locations may have important implications for research

using HD-DOT. For example, the increased spatial resolutions

achievable with HD-DOT offer the ability to perform finer-

scale analysis of brain subregions using anatomical parcellation

atlases (e.g., Fan et al., 2016; Gordon et al., 2016; Schaefer et al.,

2018), however, this is assuming that the optode positions on

the scalp surface can be correctly associated with the cortical

surface underneath.

Previous work has demonstrated the importance of precise

optode placement and accounting for anatomical variation

in fNIRS. For example, multiple studies have investigated

optimizationmethods for subject-specific optode placement guided

by structural MRIs (Machado et al., 2018; Benitez-Andonegui

et al., 2021). At the individual level, NIRS signal reproducibility

was found to be improved when using an anatomical optode

positioning approach (Novi et al., 2020), and in HD-DOT,

individual variations in subject anatomy have been shown to impact

image reconstruction quality (Zhan et al., 2012).

Studies that do not account for anatomical variation rely on

the assumption that the same fNIRS array is sensitive to the

same cortical regions across individuals. In this work, we use

resting state data from multiple healthy adults to assess the degree

of between-subject variability in cranial anatomy and HD-DOT

array positioning, particularly on the underlying cortical regions

to which we are sensitive. Photogrammetry was used to localize

the optode placement on the scalp. This method involves using

multiple overlapping images of an object, from different views, to

determine the depth of points in a scene, allowing for the three-

dimensional digital reconstruction of the imaged object. Prior work

has demonstrated that photogrammetry-based approaches for

optode localization yield lower localization errors in comparison

to gold-standard electromagnetic digitizer methods (Mazzonetto

et al., 2022). Numerous fNIRS and HD-DOT studies have also

previously used photogrammetric optode registration methods for

anatomical localization (Bluestone et al., 2001; Hu et al., 2020, 2021;

Frijia et al., 2021; Vidal-Rosas et al., 2021; Uchitel et al., 2022, 2023).

Additionally, we investigate which brain regions suffer from the

greatest error when optode positioning is assumed to be constant

across all subjects. Although the error associated with localizing

cortical activity in the absence of a subject-specific structural MRI

(i.e., when using an anatomical brain atlas) has previously been

found to be approximately double the error associated with doing

so using subject-specific MRIs, atlas-guided methods for HD-DOT

still demonstrate reasonable accuracy in localizing brain activity

(Dehghani et al., 2009; Cooper et al., 2012). In this study, we thus

use a template head atlas and instead focus on the minimization

of other sources of error associated with the localization of cortical

activity, namely the localization and registration of optodes to the

head model. In doing so, we seek to demonstrate the ability to

accurately localize cortical activity in HD-DOT recording settings,

where the availability of subject-specific MRIs is not feasible.

Materials and methods

Participants

Prior to participant recruitment, a power analysis for a two-

tailed test was conducted at 80% power (α = 0.05) to determine the

sample size needed to reliably detect a difference between subject-

specific and generic optode locations (Yücel et al., 2021). This was

performed using data from an earlier pilot study (60s resting state

recording, n = 22) where subject-specific photogrammetric data

was available. To achieve a 10% minimum detectable difference

between the two groups, a sample size of eight participants was

deemed appropriate. Following this, ten healthy individuals were

enrolled in this study (seven females and three males, aged 29.1 ±

7.2 years). All participants were informed about the experimental

procedure and signed written informed consent forms prior to

participating in the study. These studies were approved by the

ethics committee within the Department of Engineering at the

University of Cambridge.

Frontiers inNeuroergonomics 02 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1283290
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Srinivasan et al. 10.3389/fnrgo.2024.1283290

Data acquisition

During the experiment, an HD-DOT system (LUMO;

Gowerlabs Ltd, London, UK) was used to record changes in

detected light intensity across the region of interest. Here, we

explore three regions of interest: the prefrontal, motor, and

visual cortices. These regions were selected as they are the most

widely interrogated in fNIRS studies (Huppert et al., 2009b). The

HD-DOT system features a modular design, with hexagonal tiles

that each contain three-dual wavelength sources (emitting at 735

and 850 nm) and four photodiode detectors (Zhao et al., 2021).

The tile and optode layouts for each of the three recording regions

can be found in Supplementary Figure 1. Two different cap designs

with different tile layouts were used in this study, both fitted to a

head circumference of 56–58 cm. The frontal cap featured 12 docks

covering the prefrontal-frontal cortex while the motor/visual cap

featured 30 total docks covering the parietal-temporal-occipital

cortices. For the frontal and motor recordings, 12 tiles (36 sources

and 48 detectors, 1,728 total channels) were used, while for the

visual recording, six tiles were used (18 sources and 24 detectors,

432 total channels). Frontal recordings sampled channels at a rate

of 12.5Hz, while motor and visual recordings sampled channels

at a rate of 5Hz (due to constraints on data streaming). Data was

recorded using a Dell Latitude laptop running LUMOx version

2.1.1. Experimental triggers were sent from the experimental

presentation laptop to the recording laptop to mark the start and

end of the measurement period.

Experimental design

Each experimental session was carried out in a quiet room, with

only the experimenters and participant present. The participant

sat in front of a 13-inch MacBook Pro 2020 laptop, which

presented the experimental instructions using PsychoPy (Peirce

et al., 2019). In total, three 1-min resting state recordings, one

for each region of interest (and thus tile layout), were taken per

recording session (Geng et al., 2017). During these resting state

recordings, participants were instructed to sit in a relaxed position

while keeping their eyes closed. An auditory tone was played at the

end of each 1-min period, after which the participant was allowed

to open their eyes. The order of the three resting state recordings

was varied across participants.

Optode registration

A visual representation of the processing pipeline and its

associated steps is shown in Figure 1. Photogrammetry was used

to accurately identify the positions of optodes on the scalp surface.

Since both the cap and tiles used are black, high-contrast green

triangular stickers were attached to each tile, with each triangle

corner overlying one of the three light sources on the tile (Vidal-

Rosas et al., 2021). Additionally, high-contrast blue circular stickers

were placed over five cranial landmark positions for each subject:

the nasion (Nz), inion (Iz), left pre-auricular point (Al), right

pre-auricular point (Ar), and vertex (Cz).

FIGURE 1

Processing pipeline for optode localization, head modeling and

registration, image reconstruction of hemodynamic changes, and

cortical parcellation in order to perform group-level anatomical

analysis of the HD-DOT data.

For each participant, two 360◦ panning videos of 10–15 s

lengths were taken for each cap design using an iPhone XR (Apple

Inc., Cupertino, USA), while the participant was seated with their

eyes closed. One video was taken at approximately eye-level while

the second was taken slightly above eye-level to ensure that all tiles

and cranial landmarks were captured. Approximately 60 equally

spaced frames were extracted from each video as still images and

imported into Metashape photogrammetry processing software

(Agisoft LLC, St. Petersburg, Russia). For each cap design, a three-

dimensional model of the participant’s head, with tile and cranial

landmark markers visible, was produced and exported as a point
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cloud. A program written in MATLAB R2022b (MathWorks Inc.,

Natick, USA) allowed for the high-contrast stickers to be isolated

according to their RGB color values. Based on these values, the

locations of each source and cranial landmark were approximated,

and the detector locations could then be identified using known

tile geometries.

Data pre-processing

The HD-DOT data were pre-processed using the Homer2

fNIRS analysis toolbox (Huppert et al., 2009a). Raw intensity data

were first converted to changes in optical density. Channels were

discarded if their coefficient of variation (standard deviation of

intensities/mean of intensities) was above 8%, their source-detector

separation was above 100mm, or the mean signal intensity was

> 1 × 1011 (Frijia et al., 2021; Vidal-Rosas et al., 2021; Zhao

et al., 2021). Motion correction was not performed in this study,

as the motion burden was determined to be low (between 10 and

15% of the total recording) for all sessions. Motion burden was

assessed using the Homer2 function hmrMotionArtifact. The data

were then visually inspected during the resting state period to

ensure that there were nomotion artifacts present. Optical densities

were converted to HbO and HbR concentration changes, and a

fifth-order Butterworth bandpass filter was used (cut-off: 0.01–

0.2Hz) on each channel (Pinti et al., 2019). TheDOT-HUBToolbox

(https://github.com/DOT-HUB/DOT-HUB_toolbox) was used to

perform local short channel regression (Uchitel et al., 2022). In this

case, data from the nearby short-separation channels (<12mm)

were used to regress out systemic interference in each long channel,

thus taking into account the localized variations in extracerebral

signals (Wyser et al., 2020).

Head modeling and image reconstruction

A four-layer mesh model of the head—mapping the spatial

distribution of gray matter, white matter, cerebrospinal fluid, and

extra-cerebral tissue—was used for all participants. This head

model was produced using the MNI152 atlas (Mazziotta et al.,

1995), which was derived from the MRI scans of 152 healthy

individuals, averaged together after registration to the common

MNI coordinate space (Mandal et al., 2012). The four-layer head

mesh model was created using the Iso2Mesh mesh generation

toolbox in MATLAB (Fang and Boas, 2009). This head model

was then warped to the native space of each subject via an

affine transformation between the five cranial landmarks (Nz, Iz,

Ar, Al, Cz) of the head model and the photogrammetry-derived

cranial landmarks of a given subject. Once the appropriate affine

transformation was determined, the subject-specific optode array

could be registered to the head model.

To quantify head size across participants, two distance metrics

based on the cranial landmark positions were used: nasion-

inion distance and distance between pre-auricular points. The

shortest path between the two relevant points on the head model,

constrained to passing through Cz, was calculated using the three-

dimensional Fast Marching algorithm (Deschamps and Cohen,

2001). Once this path was known, the geodesic distance between

the relevant points could be calculated as the arclength of the

curve. The head size distribution was tested for normality using the

Kolmogorov-Smirnov test.

The Toast++ software toolbox was used to perform image

reconstruction (Schweiger and Arridge, 2014). A forward model

of light propagation from source to detector for each channel

was computed using the diffusion approximation to the radiative

transfer equation. A Jacobian matrix, whose matrix elements

represent measurement sensitivity to small changes in optical

properties, was then calculated per-wavelength using the finite

element method (Schweiger et al., 1993). The inverse of the

Jacobian was calculated using the Moore-Penrose method, and

a zeroth-order Tikhonov regularization was performed with

a regularization hyperparameter of 0.01 (Wang et al., 2023).

Following this, reconstructed images of changes in HbO and HbR

concentrations were derived at each time point for each node of the

gray matter mesh. The DOT-HUB Toolbox was used to formulate

the forward model and perform the inversion.

Cortical parcellation

The cortex of the head model was parcellated into distinct

anatomical regions, based on the approach taken by Uchitel et al.

(2022). This enabled direct cross-participant comparisons to be

made regarding the cortical regions to which our HD-DOT array

was sensitive. For the purpose of this study, the highest resolution

Schaefer cortical parcellation atlas (1,000 parcels) was used, with

each parcel matched to one of the 17 Yeo resting-state functional

networks (Yeo et al., 2011; Schaefer et al., 2018). This parcellation

atlas was already registered to the volumetric MNI space and could

thus be directly converted from voxel positions to node locations.

Each node in our standard gray matter surface mesh, previously

derived from our atlas head model, could then be matched to its

nearest node in the parcellation atlas. Using the Jacobian matrix,

we defined the gray matter nodes to which the array was sensitive

as those that have any channels with a sensitivity value above 5%

of the maximum sensitivity value for that channel, across both

wavelengths (Uchitel et al., 2022). Thus, for a parcel to be included,

it needed to demonstrate sufficient sensitivity at both wavelengths.

As a result, for any given participant, the specific parcels to which

our HD-DOT array was sensitive do not vary across chromophores

(HbO and HbR).

Comparison of generic and
subject-specific array sensitivity

Using the method described above, differences in array

sensitivity were assessed using both generic optode locations

and the subject-specific optode locations that were derived using

photogrammetry. The generic optode locations and generic cranial

landmarks positions were measured using a Polhemus PATRIOTTM

digitizer system (Polhemus, USA) from a phantom adult head

on which the cap was placed. This process took place during
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device manufacture and was applied to all participants during pre-

processing. Given the rigid geometry of each tile, the exact within-

tile distance between sources and detectors (either 10 or 20mm) is

known (Frijia et al., 2021).

All pre-processing and image reconstruction steps were

kept the same between the two methods. To assess whether

there were significant differences in optode localization errors

between the three head regions and between hemispheres, a

two-sided Wilcoxon signed rank test was used for each paired

comparison. Scattered data interpolation between optode locations

was performed using a Delaunay triangulation to generate a

smooth map of optode localization errors (Amidror, 2002), with

extrapolation to all points in the scalp surfacemesh that were within

20mm of an optode.

Individual- and group-level parcellation
analysis

Parcel sensitivity percentages were calculated for each subject,

at the individual level, using both subject-specific and generic

optode locations. For the purpose of our analysis, we report parcel

sensitivity as the percentage of gray matter surface mesh nodes

that the NIRS array was sensitive to for a given parcel. Parcels

were then included in the group-level analysis if at least six out of

eight participants (75%) demonstrated any sensitivity (>0%) to any

nodes in the same parcel. Mean parcel sensitivity percentages across

participants were calculated for these included parcels.

Afterward, group-level parcellation maps were converted to

binary images classifying whether a parcel was included or not.

The Jaccard index was determined for these greyscale group-level

parcellation maps as a means of quantifying the similarity between

parcellation maps calculated using generic optode locations and

subject-specific optode locations. A Jaccard index of 1 indicates

that the two parcellation maps are in total agreement, while a

Jaccard index of 0 indicates that there is no overlap between the

parcellation maps. Additionally, the HbO values for all parcels that

we were sensitive to were determined as the average HbO value

across all nodes within that parcel at a given time point. Paired t-

tests were used to compare the difference between subject-specific

and generic HbO parcel values at both the individual and group

levels, and false discovery rate (FDR) correction was used to adjust

for multiple comparisons.

Results

Of the ten HD-DOT datasets collected as part of this study,

errors in data acquisition occurred for two participants, leading to

their datasets being excluded from the parcellation analyses due to

very low signal-to-noise ratios (≪8% for all channels between 20

and 40mm) across channels. Thus, for the parcellation analysis, our

final sample size was comprised of eight healthy adults (five females

and three males, aged 28.8 ± 7.9 years). However, cap placement

data for all ten original participants were still utilized in all analyses

that solely required optode location information. The distribution

of head sizes across all ten original participants was found to be

normally distributed (Nz-Iz distance: 37.3± 1.9 cm, Ar-Al distance:

37.8 ± 2.2 cm). Supplementary Table 1 provides additional detail

on these metrics for each subject. Additionally, because the parcel

sensitivity maps are independent of chromophore (HbO and HbR),

we have presented our HD-DOT array sensitivity results in the

context of HbO, with HbR results being consistent.

Region-specific o�set in optode location

The error in optode location, defined as the Euclidean distance

between generic and subject-specific HD-DOT optode arrays, is

summarized in Figure 2. Maximum errors between generic and

FIGURE 2

Error between generic and subject-specific optode locations, where error is defined as the Euclidean distance between optode (source/detector)

locations using both methods, shown for n = 10 participants. (A) Heatmap of median di�erence in optode locations using both generic and

subject-specific positions. (B) Error in optode localization for each NIRS array. For arrays that had >6 tiles (frontal and motor), only the six tiles with

maximum error (three per hemisphere) were chosen to avoid biasing the boxplot.
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FIGURE 3

Maps of sensitivity di�erences between the subject-specific and generic optode locations for the motor cortex (lateral view), shown for n = 8

participants. Dark gray areas represent the maximum area we can be sensitive to across all participants using the motor HD-DOT array layout,

derived from the union of parcels in the individual parcel sensitivity maps (both subject-specific and generic). Colored parcels are those that showed

>10% di�erence in parcel sensitivity across at least half (4/8) of the participants. Parcel colors refer to the functional network they belong to.

subject-specific positions were found overlying the motor cortex,

particularly on the lateral regions of the head (Figure 2A). Three

tiles in both the left and right hemispheres overlying the motor

cortex demonstrated the highest error, with a median error of

27.4mm (IQR: 15.9–37.9mm). For the frontal recordings, the

largest errors were found overlying the lower frontal region,

above the brow ridge, with a median error of 16.3mm (IQR:

9.9–13.6mm). The visual recordings demonstrated the lowest

error between the generic and subject-specific optode locations

(median error= 5.9mm, IQR: 4.5–7.4mm). Statistically significant

differences in optode location errors were found across all

three HD-DOT array layouts at the p < 0.05 significance level,

indicating region-specific optode localization errors. No significant

hemispheric differences in localization error were found in any of

the three recordings.

Individual- and group-level di�erences in
HD-DOT array sensitivity

Large participant variations were found in the cortical

sensitivity of the same HD-DOT tile layout. Thus, only parcels

that ≥75% of participants were sensitive to were included in

the parcellation analysis. Throughout, we refer to the abbreviated

network names as defined by Yeo et al. (2011). However, it

is important to note the proper functional networks that these

correspond to. As such, the Control A and Control B networks refer

to the frontoparietal control network and the Default A, B, and C

networks refer to the default mode network.

Surprisingly, though the optode localization error for the visual

recordings was the lowest of the three HD-DOT array layouts, the

Jaccard index (range: 0–1), which was used to measure similarity

between the generic and subject-specific parcel sensitivity maps at

the group-level, was found to be lower (0.76) than that of the frontal

recordings (0.82). The Jaccard index for the motor recordings was

the lowest of the three layouts (0.73), signifying the least agreement

between parcellation maps.

As seen in Figure 3, most parcels demonstrating >10%

difference in sensitivity between the subject-specific and the generic

arrays for the motor recordings occurred in the posterior of the

total cortical surface we were sensitive to. Overall, the motor

HD-DOT array was reliably sensitive to parcels in six bilateral

networks. Additionally, the mean absolute percentage difference

in sensitivity was greatest for the motor recordings (19.42 ±

19.30%), which was in line with the optode localization errors in

this area. For the frontal and visual recordings, the mean absolute

percentage difference in sensitivity was lower (14.70 ± 12.00% and

14.23 ± 15.14%, respectively). For the frontal array, parcels in

five bilateral networks were identified, with the lower prefrontal

cortex showing the largest differences in sensitivity between the two

optode localization methods, as seen in Figure 4. This was again in

line with our findings for the optode localization errors in this area.

The visual array demonstrated reliable sensitivity to parcels in three

bilateral networks, though most participants demonstrated greater

sensitivity to parcels in the left hemisphere (see Figure 5; Table 3).

For all eight participants, significant differences were found at

the p< 0.05 significance level betweenHbOparcel values calculated

using the subject-specific and generic optode locations. For frontal

recordings, >84% of parcels at the individual level demonstrated

p-values (FDR-corrected) below the significance level. For motor

and visual recordings, the percentage range for parcels with p-

values below the significance level was>71 and>86%, respectively.

At the group level, significant differences in HbO parcel values at

the p < 0.05 significance level were seen in a higher percentage

of parcels than at the individual level. For group-averaged frontal

measurements, 95.7% of parcels had p-values below the significance

level. For group-averaged motor and visual measurements, this

percentage was 84.4 and 96.4%, respectively.

To assess whether there was a relationship between parcel size

and parcel sensitivity, we plotted the average parcel sensitivity
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FIGURE 4

Map of sensitivity di�erences between the subject-specific and

generic optode locations for the prefrontal cortex (frontal view),

shown for n = 8 participants. Dark gray areas represent the

maximum area we can be sensitive to across all participants using

the frontal HD-DOT array layout, derived from the union of parcels

in the individual parcel sensitivity maps (both subject-specific and

generic). Colored parcels are those that showed >10% di�erence in

parcel sensitivity across at least half (4/8) of the participants. Parcel

colors refer to the functional network they belong to.

FIGURE 5

Maps of sensitivity di�erences between the subject-specific and

generic optode locations for the visual cortex (posterior view),

shown for n = 8 participants. Dark gray areas represent the

maximum area we can be sensitive to across all participants using

the visual HD-DOT array layout, derived from the union of parcels in

the individual parcel sensitivity maps (both subject-specific and

generic). Colored parcels are those that showed >10% di�erence in

parcel sensitivity across at least half (4/8) of the participants. Parcel

colors refer to the functional network they belong to.

percentage against the total number of nodes comprising each

parcel (see Supplementary Figure 2). For each of the three

recording types, no clear relationship between parcel size and

sensitivity could be determined.

Generic optode locations overestimate
cortical sensitivity

In general, using the generic optode locations led to an

overestimation of the NIRS array sensitivity to the cortical parcels.

In Tables 1–3, the difference in sensitivity percentage is shown,

calculated as the difference between the subject-specific and generic

models. There are more negative values for the percent difference in

sensitivity, indicating that parcel sensitivity for the generic model

was systemically higher than that of the subject-specific model.

For both the motor and the visual recordings, ∼58% of sensitivity

percentage differences are due to an overestimation of cortical

sensitivity using the generic optode locations. In addition, for the

motor recordings, it was found that the number of parcels that

≥75% of subjects were sensitive to using the subject-specific array

was 23, while with the generic array, the number of sensitive

parcels was overestimated to be 31. In particular, the generic motor

array demonstrated sensitivity to parcels in the superior parietal

lobule (left hemisphere: n = 1 parcel), inferior parietal lobule (left

hemisphere: n = 8 parcels), intraparietal sulcus (left hemisphere: n

= 4 parcels), post central gyrus (right hemisphere: n = 10 parcels),

and precentral gyrus (right hemisphere: n = 2 parcels) across at

least 75% of participants, all of which the subject-specific arrays did

not demonstrate any sensitivity to. Furthermore, large variations

in sensitivity (>50% difference in parcel sensitivity) were seen in

multiple participants, particularly for motor parcels (bolded entries

in Tables 1–3).

Discussion

To our knowledge, this study is the first to investigate

regional differences in optode localization error and anatomical

sensitivity using HD-DOT data. Using an atlas-guided parcellation

method for performing group-level analysis, as shown in

Figure 1, we have demonstrated that subject-specific optode

localization reveals large cortical sensitivity differences between

subjects (Tables 1–3) which must be taken into account when

performing region-of-interest analyses at the group level, to

ensure that equivalent cortical regions have been reliably sampled

across subjects.

We have found that the brain region being imaged (frontal,

motor, or visual) greatly impacts the degree of error between

subject-specific optode locations and generic optode locations.

These brain regions were selected to replicate the most used

regions in fNIRS studies. Additionally, we have shown that for

the same HD-DOT array, cortical sensitivity varies substantially

between participants and is largely overestimated when the same

generic optode locations are assumed for all participants. This is

particularly important for HD-DOT studies that perform group-

level analysis, to ensure comparability across subjects.

Variation in optode placement across the
head

As demonstrated in Figure 2, while there were large variations

in the optode localization error between the generic and subject-

specific maps across the head, the median errors for both the

motor and frontal HD-DOT array placements were non-trivial

when compared to the smallest source-detector distance of the

LUMO system (∼10mm between adjacent light sources and

photodetectors on the same tile). Only the median error for the

Frontiers inNeuroergonomics 07 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1283290
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Srinivasan et al. 10.3389/fnrgo.2024.1283290

TABLE 1 Di�erences in motor parcel percent sensitivity observed when using the subject-specific optode locations compared to the generic optode

locations.

Hemisphere Network (parcel) % di�erence in sensitivity (subject-specific—generic model)

P1 P2 P3 P4 P5 P8 P9 P10

Left Somatomotor A −4.49 −15.58 −8.61 −17.42 −10.86 –23.19 −21.68 −7.35

Right –30.26 −19.49 −29.63 −13.16 −2.79 −11.97 −13.30 −5.81

Left Dorsal Attention B (post

central)

11.42 7.72 23.70 −35.02 −1.32 –59.50 −49.50 0.00

Left Salience/ventral

attention A (parietal

operculum)

20.63 12.47 −0.08 −16.00 3.89 –26.12 −12.20 0.00

Left Salience/ventral

attention B (inferior

parietal lobule)

40.00 19.36 0.00 −8.33 11.67 –58.33 −56.67 0.00

Right 9.46 0.00 3.99 −17.86 27.92 0.00 −27.44 0.00

Left Control A (intraparietal

sulcus)

12.07 −4.84 12.18 −39.23 −26.18 –40.00 –40.00 0.00

Right –32.36 0.00 3.99 −17.86 27.92 0.00 −27.44 0.00

Left Control B (inferior

parietal lobule)

−4.33 −16.95 −20.51 −65.70 −17.23 −66.10 –67.78 0.00

Right −15.02 0.00 −12.70 −54.13 −32.28 0.00 –54.51 0.00

Left Control B (lateral PFC) 4.65 −1.96 10.85 58.81 −3.14 65.72 48.84 7.82

Parcels listed in the table are those that at least half (4/8) of the participants demonstrated sensitivity to. The maximum sensitivity difference for each parcel is shown in bold.

TABLE 2 Di�erences in prefrontal parcel percent sensitivity observed when using the subject-specific optode locations compared to the generic optode

locations.

Network (Parcel) % di�erence in sensitivity (subject-specific—generic model)

P1 P2 P3 P4 P5 P8 P9 P10

Left Limbic B (orbitofrontal

cortex)

−2.97 −9.13 0.68 −10.25 −11.04 −15.43 –16.97 −4.68

Right −4.01 −14.36 –17.04 −12.84 −14.93 −15.47 −14.16 −2.79

Left Control B (dorsal PFC) −9.61 0.00 −12.47 21.86 19.78 14.96 17.68 26.82

Left Control B (lateral PFC) 0.39 0.00 22.91 12.08 17.56 11.67 2.35 11.76

Left Control B (lateral ventral

PFC)

−2.24 23.36 14.26 −10.88 −12.64 78.34 −37.36 −8.95

Right −18.05 24.94 5.92 −0.41 −20.62 −23.02 −24.92 –29.36

Left Default A (dorsal PFC) −6.80 0.40 −9.92 −21.69 −16.50 12.50 12.50 –34.10

Right Salience/ventral

attention B (lateral PFC)

−5.41 −32.61 41.28 4.92 11.04 0.00 0.00 18.19

Right Default B (ventral PFC) −9.06 −12.42 26.24 −15.36 −21.81 −10.61 −17.13 −14.16

Parcels listed in the table are those that at least half (4/8) of the participants demonstrated sensitivity to. The maximum sensitivity difference for each parcel is shown in bold.

visual array was smaller than the shortest channel length, though

the maximum error for this array (9.72mm) was very close to

10mm. The lower median error for the visual array may be partly

attributed to the smaller area covered.

Furthermore, for the motor array placement, the median error

was found to be just under 30mm, which is the standard length of

a NIRS channel used for recording from the cortex. This highlights

the importance of subject-specific optode localization and standard

placement across participants to ensure that accurate group-level

comparisons can be made. Variabilities in channel coverage at this

scale may lead to the association of brain activity originating from

adjacent non-motor regions to the motor cortex, or vice versa.

In particular, we found that our motor array demonstrated high

sensitivity across participants to post central and precentral ventral

parcels in the dorsal attention network, which are adjacent to the

somatomotor networks, and can result in the misattribution of

activity in these areas to the motor cortex if care is not taken

to perform subject-specific optode localization. These results are

in line with previous findings in infants that variabilities in array

positioning are the primary factor behind different anatomical

inferences at both the individual-level and the group-level for small

group sizes (Collins-Jones et al., 2021).
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TABLE 3 Di�erences in visual parcel percent sensitivity observed when using the subject-specific optode locations compared to the generic optode

locations.

Hemisphere Network (parcel) % di�erence in sensitivity (subject-specific—generic model)

P1 P2 P3 P4 P5 P8 P9 P10

Left Visual central (striate

cortex)

0.44 −0.85 −10.33 −20.43 0.00 3.71 −27.26 –72.34

Right −19.71 −8.58 −5.89 −2.90 0.00 –26.45 −15.12 −21.76

Left Dorsal attention A

(parietal cortex)

−11.36 −8.99 15.38 8.04 16.49 6.36 28.84 0.00

Left Default C (inferior

parietal lobule)

−32.52 0.00 28.16 15.20 0.00 12.75 35.56 0.00

Parcels listed in the table are those that at least half (4/8) of the participants demonstrated sensitivity to. The maximum sensitivity difference for each parcel is shown in bold.

Variations in optode placement are important for both fiber-

based and fiberless systems, however the impact is likely more

severe in fiberless systems where the geometry of the sources

and detectors is pre-defined (e.g., Chitnis et al., 2016; Zhao

et al., 2020). For modular, fiberless systems in particular, such as

the one used in this study, the rigidity of the sensor modules

and the dock layout of the cap may limit variations in optode

placement and make it difficult to align optodes consistently

across subjects. This device design may partially contribute to the

uncertainties in generic optode positions across subjects. Fiber-

based HD-DOT systems could mitigate this issue, though the

optodes are still typically integrated into a cap which may again

limit consistent subject-specific optode alignment, albeit to a lesser

degree than modular systems (e.g., Eggebrecht et al., 2014; Fishell

et al., 2020). However, even for traditional fiber-based fNIRS

studies, where optodes can be individually placed on the scalp

surface, typically according to the international 10–20 positioning

system, the spatial identity of a given channel across participants

should be verified to ensure that the same cortical volume is

being recorded from. For example, in fNIRS-based brain-computer

interfaces (BCIs), where recording over the primary motor cortex

is most common (Naseer and Hong, 2015), accounting for inter-

subject variability by performing optode localization may lead

to more robust and accurate classification. This is particularly

true for generic fNIRS BCIs, where classification models are

trained to identify different hemodynamic signals across subjects

(as opposed to being tailored to individual subjects), given that

one of the largest challenges for subject-independent BCIs is the

presence of inter-subject variability (Abdalmalak et al., 2020). As

has been demonstrated in EEG-based BCI literature, accounting

for variation in individual electrode positioning and head anatomy

can lead to classification improvements using generic models

(Wronkiewicz et al., 2015). Image reconstruction results for

HbO, shown in Supplementary Figure 3, further demonstrate the

difference in spatial activity maps for the motor cortex when using

the generic and subject-specific optode locations at the group level.

The lateral and frontal views in Figure 2A demonstrate that

the highest errors in optode localization occur along the sides of

the head and above the brow ridge. This is potentially due to

larger variability between participant head shapes in these areas,

possibly as a function of greater curvature in these regions. For

each participant, the LUMO cap was tightened using an adjustable

chin strap to ensure adequate tension throughout the cap and good

optical coupling across all optodes. As we did not observe lower

optical coupling in the regions that demonstrated higher errors in

optode localization, we believe that our results are a function of the

variability in head curvature as opposed to the stress distribution

of the cap design. This is also supported by previous work that

demonstrated slightly larger prediction errors around the brow

bone and above the ears when attempting to generate subject-

specific head models using three-dimensional adult head scans and

anatomical landmarks (Park et al., 2021). It is also important to note

that in this study, the same cap (56–58 cm head circumference) was

used for all participants. In practice, different cap sizes may be used

for different individuals, depending on the size of the individual’s

head, to ensure optimal fit during HD-DOT scanning.

Between-participant di�erences in cortical
sensitivity

In the parcellation analyses presented, we aimed to assess the

degree to which cortical sensitivity between participants varies as

a function of array positioning, as well as assessing the validity of

assuming generic optode locations when performing anatomical

parcellation. For all three HD-DOT arrays evaluated, multiple

parcels, that at least half of the participants showed sensitivity

to, had large differences in sensitivity when using subject-specific

and generic optode locations. We found that these differences

were largest for the motor array, followed by the frontal array,

both of which are consistent with our findings for the largest

optode localization errors. In particular, while we found that

using the generic optode locations leads to an overestimation

of cortical sensitivity across the brain regions measured, they

also demonstrated more uniform cortical sensitivity between the

left and right hemispheres. By contrast, the use of subject-

specific optode locations demonstrated resting state lateralization,

particularly for the frontal array. Our results are consistent with

findings of lateralization in resting state networks from fMRI

literature (Agcaoglu et al., 2015). Additionally, the most strongly

lateralized networks identified with resting state fMRI were found

to be the visual, default, and attentional networks (Liu et al.,

2009). This may explain why we also saw larger differences in

parcel sensitivity between the subject-specific and generic optode

locations within these networks. In particular, we found a lower

Jaccard index for the visual recordings, which is likely due to strong
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lateralization in the resting state visual network, something which

we observed with the subject-specific, but not generic, visual optode

array. We also found that for both the frontal and motor arrays,

the mean difference in sensitivity percentage was higher for parcels

in the control networks (see Tables 1, 2). This is again in line

with our findings for optode localization error, as the majority of

sensitive parcels in these networks lie within the regions where

the greatest optode localization error was found (see Figures 3, 4),

further outlining the need to accurately relate scalp locations with

the cortical area underneath.

We initially investigated different sensitivity thresholds to

assess whether greater agreement between the generic and subject-

specific optode array sensitivities could be achieved simply by

changing this value. With a lower sensitivity threshold (2.5%),

we observed that array sensitivity to any given parcel increased,

along with the total number of parcels we were sensitive

to, demonstrating slightly greater agreement between the two

methods. However, we still found that the generic optode array

systemically overestimated sensitivity to a majority of parcels

compared to the subject-specific optode array. As a result, we

chose to present our results using the 5% threshold, as defined in

the literature (Uchitel et al., 2022), as a conservative measure of

array sensitivity.

In this study, we have measured resting state data across

three brain regions, primarily to record intrinsic, rather than task-

related, activity in the brain. Doing so allowed us to match parcels

to resting state networks defined from fMRI, in order to assess

not just the anatomical regions we are sensitive to, but also the

functional areas. One common misunderstanding may arise from

the use of anatomical parcels registered to resting state networks:

While the resting state networks refer to the cortical regions that

exhibit synchronous activity, as measured in the resting state, the

parcels simply refer to anatomical areas, independent of resting

or task-related activity. Measuring resting state data reduces the

risk of task-based confounding factors leading to the under- or

over-estimation of cortical sensitivity (Fox and Greicius, 2010).

Additionally, when measuring resting state data, spontaneous

changes in hemodynamic response are measured over the entire

cortex, without having to design tasks that localize activity to a

particular region of interest (Lee et al., 2013; Huang, 2019).

It has been shown that, in the human brain, there are

approximately 400 distinct cortical areas (Van Essen et al., 2012).

Thus, while a lower resolution parcellation such as the 400-parcel

Schaefer atlas may be sufficient for certain applications and may

mitigate some of the error introduced by optode array variability,

owing to the larger parcel volumes in lower resolution parcellation

atlases, we instead chose to use the 1,000-parcel Schaefer atlas to

avoid oversimplifying the high-density spatial data that we have

collected. Additionally, we found that parcel size was not related

to parcel sensitivity (see Supplementary Figure 2), meaning that

errors in parcel sensitivity are likely due to differences in array

positioning rather than the size of the individual parcels themselves.

Limitations and future work

This study demonstrates the importance of collecting subject-

specific anatomical and array placement information for fNIRS

studies, particularly HD-DOT studies, in order to accurately

draw conclusions about the anatomical regions where functional

responses are seen. The identification of these regions also allows

for direct comparison of fNIRS findings to those from more

prevalent functional imaging techniques such as fMRI.

However, one limitation of this work is that a standard head

template was used, under the assumption that cortical structure

for healthy participants could be adequately represented by the

MNI152 template. The use of subject-specific MRI data to develop

individual headmodels and perform image reconstruction has been

demonstrated to reduce the localization error in DOT by a factor

of two (Cooper et al., 2012). While atlas-guided head modeling

has been shown to demonstrate slightly higher errors compared

to subject-specific MRIs (Ferradal et al., 2014), Custo et al. (2009)

found that with a high-resolution atlas, spatial precision at the

gyral/sulcal-level was achievable in DOT image reconstruction.

Nevertheless, future studies should consider evaluating the

error reduction achievable when using subject-specific MRIs in

conjunction with subject-specific optode localization, as well as the

performance of non-linear registration methods, which have been

established as more accurate alignment methods than simple affine

transformations (Klein et al., 2009). While the findings we have

presented can be extended in multiple ways, we believe that we

have verified the need to collect subject-specific optode locations

for wearable fNIRS experiments, particularly HD-DOT studies, in

order to perform accurate group-level analysis to then be able to

relate brain structure and function.
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