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Introduction: Dual-energy CT (DECT) is a non-invasive way to determine the
presence of monosodium urate (MSU) crystals in the workup of gout. Color-
coding distinguishes MSU from calcium following material decomposition and
post-processing. Manually identifying these foci (most commonly labeled
green) is tedious, and an automated detection system could streamline the
process. This study aims to evaluate the impact of a deep-learning (DL)
algorithm developed for detecting green pixelations on DECT on reader time,
accuracy, and confidence.
Methods:We collected a sample of positive and negative DECTs, reviewed twice
—once with and once without the DL tool—with a 2-week washout period. An
attending musculoskeletal radiologist and a fellow separately reviewed the
cases, simulating clinical workflow. Metrics such as time taken, confidence in
diagnosis, and the tool’s helpfulness were recorded and statistically analyzed.
Results: We included thirty DECTs from different patients. The DL tool
significantly reduced the reading time for the trainee radiologist (p= 0.02), but
not for the attending radiologist (p= 0.15). Diagnostic confidence remained
unchanged for both (p=0.45). However, the DL model identified tiny MSU
deposits that led to a change in diagnosis in two cases for the in-training
radiologist and one case for the attending radiologist. In 3/3 of these cases,
the diagnosis was correct when using DL.
Conclusions: The implementation of the developed DL model slightly reduced
reading time for our less experienced reader and led to improved diagnostic
accuracy. There was no statistically significant difference in diagnostic
confidence when studies were interpreted without and with the DL model.
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Introduction

Dual-energy CT (DECT) is widely used in musculoskeletal radiology for various

clinical purposes, such as diagnosing gout, pseudogout, inflammatory bone conditions,

bone marrow tumors, and bone marrow edema (1–6) Specifically, DECT serves as a

non-invasive method to determine the presence and burden of monosodium urate

(MSU) crystals which plays a crucial role in the evaluation of gout (1). Through
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material decomposition and post-processing, pixels exhibiting x-

ray attenuation consistent with MSU crystals are distinguished

from calcium and are color-coded accordingly. In most software,

MSU is labeled as green, while calcium is designated as blue

(Figure 1). DECT exhibits high sensitivity and specificity in

detecting MSU crystals (7, 8). A conclusive DECT result has

been shown to reduce the need for confirmatory joint

aspiration (1).

Recent advancements in AI can be attributed to deep learning

(DL) technology, which is inspired by human neural networks

(9, 10). In the field of radiology, computer-aided diagnosis (CAD)

has been studied even before the emergence of DL (11). DL-based

CAD has also been developed to detect lesions, such as brain

hemorrhage on head CT (12), and pulmonary embolisms on chest

radiographs (13). Evaluating the extent to which CAD can

improve the performance of radiologists or raise the efficiency of

the daily reading workflow is important. The usefulness of CAD,

particularly for inexperienced radiologists, has been reported in

the diagnosis of pulmonary nodules on CT images (14, 15).

Despite the diagnostic value of DECT in gout evaluation, the

identification of small areas displaying green pixels within a large

dataset can be a laborious diagnostic task. In cases with small

amounts of green, the radiologist must carefully evaluate 3 planes

of color-coded images to ensure that all pixels are identified and

characterized appropriately. Automated detection using DL

algorithms could enhance workflow efficiency. We hypothesized

that a previously developed DL-based CAD with a mean Dice

similarity coefficient (DSC) of 0.8934 would assist
FIGURE 1

Schematic illustration of the review process. CADx, Computer assisted dete
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musculoskeletal radiologists in accurately assessing DECT during

gout workup. This study sought to evaluate the impact of DL-

based CAD on reading time, confidence, and diagnostic accuracy

for the diagnosis of gout on DECT examinations, for both in-

training and experienced radiologists.
Methods

Institutional review board approval was obtained for

this retrospective study. The requirement for informed consent

was waived.
Subjects

DECTs acquired between 7/23/2019 and 7/13/2022 were

included in this study. Cases were identified from a pre-existing

dataset of DECT examinations, with a final diagnosis of gout

determined based on the criteria described in the 2015 Gout

classification criteria: an American College of Rheumatology/

European League Against Rheumatism collaborative initiative

which uses imaging findings, joint aspiration, serum uric acid

level, and/or clinical evaluation (16). The cohort of positive cases

comprised consecutive participants with a positive diagnosis of

gout. The cohort of negative cases comprised consecutive

participants with a negative diagnosis of gout.
ction tool.
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Dual-energy CT images

All patients were scanned on a third-generation dual-source

CT system (SOMATOM Force, Siemens Healthcare) with tube

potentials of 80 kV(tube A) and 150 kV (tube B). Tin

prefiltration was applied to the high-energy beam for improved

spectral separation. The reconstructed images were analyzed

using commercially available software (syngo.via VB30A, Siemens

Healthcare). The software uses a material decomposition

algorithm to identify uric acid and calcium voxels on the basis of

their material-specific behavior under two different x-ray beam

energy levels. No IV contrast material was used.
Data preprocessing

Material decomposed DECT images were acquired in the axial

(2-dimensional) plane and presented in a 3-color pixel image:

green (MSU deposits), blue (calcium), and black (background). It

is imperative to note that all DECT images in this study were

processed using routine clinical protocols with no specialized

modifications, ensuring consistency across all cases. This

standard approach was applied uniformly for both human

interpretation and Deep Learning-Computer Aided Detection

(DL-CAD) systems. Using pydicom and nibabel packages

(17, 18), the three-channel color-coded DECT images were

transformed from 2-dimensional Digital Imaging and

Communications in Medicine (DICOM) format to a three-

channel, 3-dimensional format, Neuroimaging Informatics

Technology Initiative (NIfTI), a segmentation-compatible format.
TABLE 1 Participant characteristics and gout status.

Subject characteristics All subjects (N = 30)
Median age in years (IQR) 65 (18)

Age range in years 40–89

Female 8/30 (26.67%)

Male 22/30 (73.33%)

Gout status
Positive 18/30 (60%)

Negative 12/30 (40%)

IQR, interquartile range.
Reading process

The experiment was designed as a prospective, randomized,

crossover study, and it involved two separate review sessions for

all cases. Two musculoskeletal radiologists participated in the

study: an attending radiologist with 10 years of post-training

subspecialty expertise in interpreting DECT scans (NR) and an

in-training musculoskeletal radiology fellow (SP). All cases were

reviewed twice, in two separate sessions, once with and once

without the DL tool. A 2-week washout period was used between

the two sessions to reduce reader-order bias and contextual bias

(19, 20). During each session, half of the cases were randomly

selected to be reviewed with the assistance of the CADx tool,

while the other half were reviewed without the tool (Figure 1).

This process allowed for fair comparison and evaluation of the

DL tool’s impact on the diagnostic process. The radiologists

evaluated the post-processed DECTs to determine the presence

or absence of gout. To simulate a real clinical workflow, they also

distinguished false-positive green from MSU deposits.

The following data were recorded for each case during both

review sessions: a. Time Taken: The time taken for the

radiologists to evaluate each case. b. Diagnosis: Gout yes or

no. c. Confidence Levels: The radiologists’ confidence in their
Frontiers in Radiology 03
gout diagnosis was rated on a 5-point Likert scale (0–4). d. DL

Tool’s Helpfulness: The radiologists subjectively rated the DL

tool’s helpfulness on a 3-point Likert scale (0–2) for each case.

Furthermore, the accuracy, sensitivity, and specificity were

calculated for each reader, both with and without the utilization of

the DL tool. The distribution of the reading times and confidence

scores was checked for normality using the Shapiro-Wilk test. The

reading times and confidence scores were analyzed by comparing

the trials using the Wilcoxon signed-rank test.
Model

We utilized a previously developed Unet-based DL segmentation

model[Our previous work/under review]. This model generates masks

for green foci in red, enhancing their visibility and facilitating their

identification for the detection of them. It achieves a sensitivity and

specificity of 98.72% and 99.98%, respectively, with a DSC of

0.9999 for background pixels, 0.7868 for green pixels, and an

average DSC of 0.8934 for both types of pixels. As a computer-

assisted detection tool, the model also generates a comma-separable

variable file containing the coordinates of the identified matches in

each plane, facilitating effortless navigation.
Results

Thirty subjects who had a DECT exam were included in this

study. The median age of subjects was 65 years (interquartile

range = 18). The exams comprised 19 (63.33%) feet and ankles, 7

(23.33%) wrists and hands, 3 (10%) knees, and 1 (3.34%) elbow.

Patient demographics are summarized in Table 1.

The mean and standard deviation (SD) reading time for the in-

training radiologist was 183 (SD = 32.36) seconds with the DL

model and 190 (SD = 32.97) seconds without the model (p-value

= 0.02), resulting in a 3.68% reduction in reading time. The

mean reading time for the attending radiologist was 102 (SD =

38.75) seconds with the DL model and 106.84 (SD = 36.54)

seconds without the model (p-value = 0.15), resulting in a 4.45%

reduction in reading time. There was no statistically significant

difference in diagnostic confidence between the two conditions

for either radiologist. Table 2 summarizes the diagnostic

confidences of readers with and without using CADx. The

subjective assessment of the DL tool’s helpfulness was high for
frontiersin.org
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TABLE 2 Summary of diagnostic confidence, and subjective helpfulness of
a deep learning model for the diagnosis of gout using dual-energy CT.

Diagnostic
confidence

with the (0–2
scale) [mean

(SD)]

Diagnostic
confidence
without the
model (0–2
scale) [mean

(SD)]

Subjective
assessment of

model
helpfulness
(0–2 scale)
[mean(SD)]

Attending
musculoskeletal
radiologist

3.74 (0.72) 3.8 (0.54) 1.7 (0.58)

In-training
musculoskeletal
radiologist

3.47 (0.82) 3.3 (0.96) 1.2 (0.47)

SD, standard deviation.

Faghani et al. 10.3389/fradi.2024.1330399
both radiologists, with a mean score of 1.7 (SD = 0.58) for the

attending and 1.2 (SD = 0.47) for the in-training radiologist.

The diagnostic performances of the radiologists are

summarized in Table 3. Although there were no statistically

significant differences between the two occasions, the DL model

identified tiny MSU deposits that led to a change in diagnosis in

two cases for the in-training radiologist and one case for the

attending radiologist (Figure 2). In 3/3 of these cases, the

diagnosis was correct when using DL.
Discussion

The present study investigated the use of a DL algorithm to

detect MSU deposits on DECT as a part of a gout workup. The

results showed that the DL algorithm was able to reduce reading
TABLE 3 Summary of diagnostic performance of the readers with and withou

With deep learning tool

Accuracy Sensitivity Specificity
Reader 1 86.67% 94.45% 75%

Reader 2 93.34% 100% 83.34%

FIGURE 2

A sagittal view of the ankle dual-energy CT image of a patient diagnosed wi
the yellow arrow at the cuboid-navicular joint space, was initially overlooked
tool as it makes the depositions stand out.
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time for the in-training radiologist, without a significant impact

on diagnostic confidence. Additionally, the DL algorithm

identified tiny MSU deposits that led to an appropriate change in

diagnosis in 5% of cases.

These findings suggest that even early DL algorithms have the

potential to improve the efficiency and accuracy of gout diagnosis

with DECT. This is particularly important for less experienced or

in-training radiologists, who may not have as much experience

with DECT interpretation and require more time to review the

post-processed images. Although time saving was not significant

for the attending radiologist, even incremental improvements in

efficiency have the potential to make a busy work day more

efficient. This current model scrutiny of all images. A trusted

algorithm may lead to less time intensive review.

The ability to identify tiny MSU deposits could also be

beneficial for patients with early gout or those with low disease

burden, who may not have other obvious signs of the disease.

In 3 cases, tiny deposits such as these were only noticed when

utilizing the DL tool. The reviewing radiologist changed their

diagnosis to “yes” in all 3 cases, which agreed with the

reference standard. Identifying tiny deposits in characteristic

locations may allow radiologists to make a more accurate

diagnosis, helping patients receive appropriate treatment sooner

and improve patient outcomes. The superior detection

capability of DL-CAD can be attributed to its advanced pattern

recognition algorithms, which can discern subtle anomalies that

might elude human observation, particularly in cases of low

disease burden or early-stage gout.

Thus far, DL models in musculoskeletal radiology have

primarily focused on applying them to radiographs for tasks such

as fracture detection, osteoarthritis grading, bone age assessment,
t using the deep learning tool.

Without deep learning tool

Accuracy Sensitivity Specificity
83.34% 88.89% 75%

86.67% 88.89% 83.34%

th gout. (A) The monosodium urate deposit coded in green, indicated by
during the review process, but it was (B) detected using the deep learning
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quantification, and characterization of orthopedic implants (21–26).

While fewer studies have been conducted on musculoskeletal MRI

and CT, there are a growing number of investigations describing

DL for image reconstruction, tissue segmentation, and detection

of musculoskeletal diseases using cross-sectional imaging (21, 27–

29). In the domain of disease detection using MRI scans, a

majority of DL-based studies have been performed on the knee

joint. These studies have concentrated on detecting various

pathologies within the knee, including cruciate ligament tears,

meniscus tears, and the integrity of the articular surface. Research

in other joints and musculoskeletal regions has been limited. DL

solutions have the potential to reduce the burden of the most

time-intensive studies for radiologists.

Limitations of the current study include the small number of

cases reviewed and the evaluation by only two readers. Further

studies with larger sample sizes and larger reading cohorts are

needed to confirm the findings of the present study and to assess

the long-term clinical impact of using DL algorithms in gout

diagnosis. Additionally, the DL algorithm was trained on a

dataset of DECT images from the same institution.

Despite these limitations, the present study provides promising

evidence for the use of DL algorithms in gout diagnosis with

DECT. The present study suggests the future potential value of

computer-aided diagnosis tools in detecting MSU deposits on

DECT Further algorithm improvement and study is needed to

confirm our findings and to establish the clinical impact of using

DL algorithms in gout diagnosis.
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