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Gut microbiota dysbiosis has been a serious risk factor for several gastric and 
systemic diseases. Recently, gut microbiota’s role in aging was discussed. Available 
preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus 
plantarums (LP) may influence the aging process via modulation of the gut 
microbiota. The present review summarized compelling evidence of LP’s 
potential effect on aging hallmarks such as oxidative stress, inflammation, 
DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut 
microbiota and improves overall endurance in aging animal models. LP cell 
constituents exert considerable antioxidant potential which may reduce ROS 
levels directly. In addition, restored gut microbiota facilitate a healthy intestinal 
milieu and accelerate multi-channel communication via signaling factors such 
as SCFA and GABA. Signaling factors further activate specific transcription 
factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense 
systems involving anti-inflammatory cytokines, MMPs, and protective enzymes 
against MAPKs. We  concluded that LP supplementation may be  an effective 
approach to managing aging and associated health risks.
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1 Introduction

The human gut microbiota (GM) plays a crucial role in multiple physiological activities, 
so a healthy composition of GM has been a widely discussed subject for overall health. 
Factors such as diet, environment, and inappropriate medication (antibiotics and 
xenobiotics) may alter the intrinsic composition of gut microbiota and induce microbial 
dysbiosis-associated health anomalies including arthritis, atherosclerosis, cirrhosis, 
intestinal cancer, hypertension, and diabetes (Li et al., 2017; Gupta et al., 2022). Growing 
evidence indicates gut microbiome dysbiosis may influence aging and associated health 
complications. Hitherto, little is understood about the significance of human GM in the 
complex aging process (Maynard and Weinkove, 2018; Ragonnaud and Biragyn, 2021; 
Ghosh et al., 2022). Aging is an inevitable, multifactorial complex process that influences 
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almost every organ and tissue (Campisi et al., 2019; Schumacher 
et  al., 2021). GM’s role in aging may be  a helpful approach to 
influencing and understanding the other dimensions of the aging 
process. Microbial therapeutic interventions such as probiotics have 
been the most promising agents in restoring those guts-friendly 
bacteria, in cases of repeated infectious diarrheas and irritable bowel 
syndrome; in recent years, the use of probiotics has been widened to 
many other health conditions such as lowering debilitating side 
effects of radio and chemotherapy. The concept of ‘bugs to drugs’ 
seems relevant as the use of probiotics extends (O’Hara and 
Shanahan, 2007; Vivarelli et al., 2019; Rahman et al., 2022).

The identification or development of new probiotics has been an 
alluring arena of microbiology. Members of Lactobacillaceae have 
been important probiotic agents (Azad et  al., 2018). Probiotics 
associated with several actions of mechanism, such as the host’s innate 
and adaptive immune modulation, considerable anti-inflammatory 
effects by TLR4/TLR2/MyD88/NFkB signaling, decreased gut 
permeability, and alterations in inflammasome, have been proposed 
by researchers (Van Zyl et al., 2020). Lactobacilli species are known to 
produce proteins p40 and p75  in the host, which showed 
immunomodulation; they trans-activated the epidermal growth factor 
receptor (EGFR) in intestinal epithelial cells of the host, and 
antimicrobial factors such as Aggregation-promoting factor (APF) 
and Bacteriocins decreased pathogens such as Salmonella 
typhimurium, Clostridium sporogenes, and Enterococcus faecalis 
colonization in host (García-Peña et al., 2017; Du et al., 2021). In 
particular, Lactobacillus plantarum (LP) or Lactiplantibacillus 
plantarum (updated name) has been a well-studied probiotic model 
subjected to multiple health effects such as anti-microbial, anti-
cancerous, and anti-inflammatory. LP supplementation associated 
with positive outcomes is observed in bowel disease, atopic dermatitis, 
intestinal infections, and maternal and neonatal hematological issues. 
LP is one of the most plausible lactic acid bacterium species found in 

diverse ecological conditions (Seddik et al., 2017; Zhou et al., 2021; 
Jeong et al., 2023; OjiNjideka Hemphill et al., 2023). LP’s effect on 
aging is in the initial stage (Lin et al., 2021; Ding et al., 2022; Kumar 
et al., 2022). Available studies showed LP may influence longevity and 
healthy aging via enhancing gut and host integrity. However, the role 
of LP supplementation in aging and associated health conditions is 
scarcely understood so far (Biagi et al., 2012). This review discusses 
the significance of LP supplementation in managing signs of aging-
associated health complications.

2 Materials and method (searching 
strategies)

The present review is comprised of recent relevant articles 
including pre-clinical and clinical studies. Searching strategies mainly 
include online research databases such as Google Scholar, PubMed, 
and Science Direct. Overall, 17,209 results were obtained when 
specific filters such as time period (2015 to 2023) and keywords 
(‘Probiotic Lactobacillus plantarum’, ‘Lactobacillus plantarum and 
aging’, ‘Lactobacillus plantarum effect on aging’, ‘Lactobacillus 
plantarum medicinal uses’) were applied. More specific keywords were 
also recruited to fill the potential gap. Figures and illustrative works 
were original and designed according to compiled research outcomes, 
and in case of retrieval, significant modifications were employed. For 
instance, some vector images were retrieved from Pixabay under the 
no attribution required category and modified completely (99%) using 
tools such as Adobe Photoshop and Microsoft PowerPoint. Articles 
selection and shortlisting criteria were based on the significant impact 
factors and citations of relevant publications (Figure 1). A total of 645 
relevant articles were selected initially. Duplicate and irrelevant 
articles were removed. Finally, 112 articles were incorporated in the 
present review.
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3 Gut microbiota, microbial dysbiosis, 
and aging

Humans have been reviewed as ‘metaorganisms’ due to their 
integral symbiotic association with the intestinal microbiota (Dam 
et  al., 2019). Noticeably, most diseases might be  linked to gut 
microbiota dysbiosis (Langille et al., 2014). Evidence of aging and 
microbiome association is also growing (Lustgarten, 2016; Wei et al., 
2022). Perturbed GM composition could be responsible for several 
geriatric degenerative diseases such as Parkinson’s disease, Alzheimer’s 
disease, sarcopenia, and physical frailty (Figure 2; Lakshminarayanan 
et al., 2014; Nadeem et al., 2015; Mossad et al., 2021). GM’s role in the 
aging process could be important in minimizing the risk of aging-
associated ailments. However, the diversity and specificity of the 
human gut microbiome have been influenced by multiple intrinsic 
and extrinsic factors. A cohort analysis showed that gut microbiome 
biodiversity is positively associated with age in young adults in the 
United Kingdom, the United States, and Colombia (Heintz and Mair, 
2014). It was observed that 16S rRNA gene sequencing of the infant 
to elderly macaques microbiome indicates microbiome composition 
variation and connectivity responsible for age-dependent network 
changes and altered metabolic functions of amino acids, 
carbohydrates, lipids, and phenotypes in the microbial community 
(De la Cuesta-Zuluaga et  al., 2019). Moreover, abnormal DNA 
methylation, characterized by gradual genome demethylation and 
hypermethylation was observed during the aging process. Usually, 
DNA methylation is an inevitable normal process that occurs 

throughout the lifetime. However, why changes occur in DNA 
methylation is not explained in detail. DNA methylation is susceptible 
to external factors such as environment, smoking, and lifestyle. So, 
DNA methylation biomarkers may predict tissue’s biological age 
across the human lifespan, including development (Jung and Pfeifer, 
2015; Zampieri et al., 2015; Salameh et al., 2020). GM’s role in DNA 
methylation is insufficiently understood. Recent studies show that 
DNA methylation is significantly associated with GM composition 
and intestinal homeostasis. In addition, GM may also induce histone 
modification and the immune system (Jones et al., 2015; Ye et al., 
2017; Ansari et al., 2020). Microbiota modulation approaches such as 
fecal microbiota transplantation (FMT) have been helpful in the 
recovery of abnormal hypomethylation (Ramos-Molina et al., 2019). 
Probiotic LP’s modulating role in methylation has been studied (Spath 
et al., 2012; Zhang B. et al., 2023), so probiotic bacteria such as LP may 
be  a useful agent to modulate microbial dysbiosis and associated 
aging signs.

The evidence of probiotics in aging is growing. Usually, lower 
animals such as invertebrate Caenorhabditis elegans are used as aging 
models to observe potential bacterial intervention (Derrien et al., 
2019; Teame et al., 2020). Probiotic bacteria may influence some drug’s 
efficacies. For instance, metformin is the most prescribed anti-
hyperglycemic drug that acts as a potential pro-longevity molecule 
due to its key target being adenosine mono-phosphate-activated 
protein kinase (AMPK). However, feeding metformin to C. elegans 
increases significant lifespan only in the presence of bacteria. 
Interestingly, Metformin showed no effect on worms when cultured 

FIGURE 1

Summary of the methodology.
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without bacteria or killed bacteria (Cabreiro et  al., 2013; 
Zhang A. et al., 2023).

4 Lactiplantibacillus plantarum effect 
on aging hallmarks

Management of aging and associated health burdens has been 
challenging and complex. In modern medical research, great success 
has been observed in lowering mortality; consequently, the lifespan 
of humans has been extended remarkably as the aged population 
grows rapidly in the modern world (Cong et al., 2021). Aging is a 
complex, natural process influenced by multiple factors including 
oxidative stress, inflammation, environmental factors (UV, pollution, 
and geography), lifestyle, genetics, and epigenetics factors 
(Rodríguez-Rodero et al., 2011; Trist et al., 2019; Welker et al., 2020).

By managing those factors, the aging process can be improved. 
For instance, one of the age-promoting factors of DNA methylation, 
which is susceptible to bioactive nutrients, probiotic 
supplementation, and gut microbiota composition, may affect the 
DNA methylation (Halloran and Underwood, 2019; Vähämiko 
et al., 2019; Allison et al., 2021).

Probiotic bacterial intervention in aging in the early stage is 
limited to a few preclinical studies. In particular, Lactobacillus spp. 
showed promising effects on the aging model (Ni et  al., 2019; 

Vaiserman et al., 2020). Compounds derived from microbes such 
as melleolide and microbial invertase may confer rejuvenating and 
positive effects on several types of aging cells (Gupta et al., 2019; 
Salekeen et  al., 2021). A recent experiment suggests that 
gut-microbes-associated compounds such as indole-3-propionic 
acid, dihydropteroate, phenyllactic acid, phenylpyruvic acid, 
all-trans-retinoic acid, and multiple deoxy-, methyl-, and cyclic 
nucleotides from gut microbiota are the considerable regulators of 
NAD+ metabolism and could be the indirect markers for aging-
associated degeneration in humans (Rabe et al., 2006; Chen et al., 
2023). Fermented soya food items and L-ergothioneine may also 
provide a series of beneficial antioxidant effects to minimize aging-
associated damage (Das et al., 2020). A perturbing consortium of 
gut microbiota (due to environmental factors, diet, and long-term 
antibiotics) may weaken the host barrier against pathogens and 
consequently decrease SCFA production and cause frailty, diabetes, 
malnutrition, and sarcopenia in the elderly (Nakaya et al., 2014). 
Probiotics such as LP may help to modulate altered gut microbiota 
and associated aging hallmarks. Studies suggest that gut microbiota 
dysbiosis is significantly associated with aging. A recent 
experimental study in China indicated that a pathogenic alteration 
in intestinal microbiota composition could decrease telomerase 
mRNA in mice, while gut microbiota modulation may improve the 
signs of the aging model (Shenghua et al., 2019). The gut microbiota 
is one of the most discussed aspects of aging. Altered or disarranged 

FIGURE 2

Gut microbiota dysbiosis-causing factors and imbalanced microbiota-associated geriatric ailments.

https://doi.org/10.3389/fmicb.2024.1260793
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gupta et al. 10.3389/fmicb.2024.1260793

Frontiers in Microbiology 05 frontiersin.org

gut microbiota increases age-related disorders, while a healthy 
composition contributes to longevity and minimization of 
age-related diseases (Vaiserman et  al., 2017; Cӑtoi et  al., 2020; 
Mossad et  al., 2022). In addition, the role of organ-specific 
microbiota could be  associated with aging. For instance, skin 
microbiota composition significantly changes according to age (Li 
et al., 2020; Vaiserman et al., 2020).

LP’s role in the gut microbiota-associated aging process showed 
promising antioxidant potential against aging models (Das and 
Goyal, 2015; Luan et  al., 2021). LP can modulate perturbed 
microbiota and stimulate SCFA levels to build gut microbiota 
organ-specific crosstalk, which further allows the transmission/
activation of activated p38 mitogen-activated protein kinase 
(MAPKs) and other factors to minimize aging hallmarks such as 
oxidative stress and inflammation in aging models (Zhang et al., 
2019; Lin et al., 2021; Lee et al., 2021a,b).

LP has shown significant antioxidant potential in the 
D-galactose-induced aging mice model. LP gavage can increase 
antioxidant activities; reduce malondialdehyde, alanine 
aminotransferase, aspartate aminotransferase, blood urea, and 
muscle glycogen levels; and increase overall endurance in mice 
(Cabreiro et  al., 2013; Lee et  al., 2021a,b). LP-based probiotic 
supplementations may influence immune-related genes and toll-like 
receptor 4 expression. Particularly, Lactiplantibacillus plantarum 

WCFS1 and Lactobacillus casei BL23 increased regulatory T-cell 
frequencies in mesenteric lymph nodes and specific antibody 
production to support T cell-dependent immune response, which 
prevents age-related decline in the intestinal mucus of mice (Chen 
et al., 2017).

Oxidative stress is one of the most intrinsic factors associated 
with aging (Tan et al., 2018), and its corollary reactive oxygen species 
(ROS) can induce the overall aging process including skin aging. 
Esthetically, the skin is the outermost and largest organ of the human 
body showing signs of aging directly (Figure 3). Comparatively, the 
skin aging process may also be accelerated by extrinsic factors such 
as ultraviolet radiation. Such long-term sun exposure and UV 
radiation are associated with skin aging known as photo-aging. 
People with lighter skin are the most sensitive to photo-aging (Sun 
et al., 2021). UV light exposure may provoke the production of ROS 
and accelerate photo-aging. ROS hyperactivation causes a signaling 
pathway that activates matrix metalloproteinases (MMPs) and 
reduces collagen production. Low collagen level promotes the 
degrading of connective tissues. On the other hand, induced 
autophagy and mitochondrial ROS may be able to contribute to aging 
(Lee et al., 2021a,b; Kumar et al., 2022). Also, a master regulator of 
redox homeostasis Nrf2 deficiency exacerbates age-related 
mitochondrial oxidative stress (Chen et  al., 2016). A healthy 
composition of gut microbiota may influence ROS hyperactivation. 

FIGURE 3

A possible anti-aging pathway induced by L. plantarum strains. LP interacts with gut cells and induces signals to other cells such as SCFAs (1); bacterial 
and host cells crosstalk lead to Nrf2 activation in host cell (2); activated Nrf2 enters the nucleus and activates specific genes to encode enzymes and 
protein to protect cells from aging factors (3); transcription and DNA repair (4); translated specific anti-inflammatory, antioxidant protein, and oxidative 
stress-reducing enzymes (5); translocation of cell-protecting proteins and enzymes (6); reduction of ROS (7); deactivation of the MAPKs and other 
photo-aging and DNA damaging factors (8).
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FIGURE 4

Intestinal collagen and oxidation stress-reducing effect of L. plantarum (LP). The right half shows age-promoting factors of matrix metalloproteinases 
(MMP-1) and reactive oxygen species (ROS). The left half shows LP cell wall constituents: lipoteichoic acid (LTA), exopolysaccharides (EPS) oxidation 
damage, and collagen degradation reducing effect.

An oncological study suggests gut microbiota may modulate ROS 
generation in tumor cells (Kim I. S. et  al., 2019). Probiotic 
intervention has been a promising approach to modulating gut 
microbiota. Studies show the probiotic antioxidant effect can check 
ROS and maintain gut homeostasis (Liguori et al., 2018; Yu et al., 
2022). In particular, probiotic bacteria LP cell wall constituents such 
as lipoteichoic and exopolysaccharides can regulate MMP1, MMP2, 
MMP3, MMP9, and MMP10 expression, decrease the high level of 
reactive oxygen species, and show promising anti-collagenase and 
antioxidant activities (Figure 4) (Zhang et al., 2013; Hong et al., 2015; 
Raza et al., 2017; Shirzad et al., 2018; Kitaoka et al., 2019; Gu et al., 
2020; Warraich et al., 2020; Kang et al., 2021; Singh et al., 2022). 
Therefore, LP supplementation may decrease free radicals and 
oxidative stress and control the expression levels of TGF-β-related 
transcription factors in human dermal fibroblasts (Sun et al., 2021). 
LP also regulates the tight junction in human intestinal epithelial cells 
and is able to retain moisture in human dermal fibroblast cells by 
serving as a functional substance in skin-gut axis communication 
(Lee et al., 2021a,b).

5 Lactiplantibacillus plantarum 
associated potential age-ameliorating 
pathway.

According to the available evidence, LP strains may play an 
important role in the aging process via gut microbiota modulation, 

Table 1. LP may help to maintain healthy gut microbiota which maintains 
intestinal homeostasis by regulating the SCFA and GABA levels (Ni et al., 
2019). SCFAs are bacterial signals, crucial to maintain numerous 
physiological functions. Induced SCFA levels facilitate gut-organ 
crosstalk, which helps to relocate various essential factors to distant host 
cells, in order to control cell-damaging factors such as inflammatory 
responses (Nogal et al., 2021). SCFAs facilitate redox signaling between 
host and bacterium for normal physiology of the cells (Figure 5).

SCFAs may also activate the nuclear factor erythroid 2-related 
factor 2 (Nrf2) production (González-Bosch et al., 2021). Nrf2 is 
known to trigger a significant antioxidant pathway in cells. Usually, 
Nrf2 remains inactive in normal physiologic conditions, while in the 
activated form, it can enter into the nucleus from the cytoplasm and 
further activate the antioxidant response element (ARE) to prevent 
oxidative stress in the host cell. LP supplementation can activate 
nuclear factor erythroid 2-related factor 2 (Nrf2) in the various types 
of cells like the skin, liver, and spleen of aging mice (Zhou et al., 
2021). Activated Nrf2 may regulate hundreds of genes encoding 
proteins with anti-inflammatory, antioxidant, drug-metabolizing, 
and other homeostatic aspects (Figure 2; Liu et al., 2019; Dinkova-
Kostova and Copple, 2023). We  have discussed that excess 
accumulation of reactive oxygen species (ROS) is also associated with 
age-related degenerative disorders such as neurological ailments, 
chronic sarcopenia, and frailty (Zhang et al., 2017; Hong et al., 2021). 
LP effect on aging mainly involves the regulation of reactive oxygen 
species (ROS), stimulation of anti-inflammatory cytokines, and DNA 
repairing by activating Nrf2 (Tiwari and Wilson, 2019). LP cell wall 
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constituents such as polysaccharides (EPS) are usually responsible for 
recovering the altered gut microbiota and conferring anti-oxidative 
effect in aging cells by stimulating enzymes like glutathione 
peroxidase, superoxide dismutase, and catalase and improving signs 
of premature aging such as collagen elastin, skin diseases such as 
atopic dermatitis, and metabolic disorders such as obesity (Zhang 
et al., 2017; Kim H. R. et al., 2019; Ge et al., 2021; Fu et al., 2022; Yu 
et al., 2022). Overall, the LP effect against the aging model is positive. 
LP supplementation can reduce important aging hallmarks such as 
oxidative stress, inflammation, and mitochondrial dysfunctions via 
gut microbiota modulation (Figure  2). Although most available 
research is preclinical, more extensive studies are suggested to explore 
the possibilities of LP supplementation in aging-associated 
risk management.

6 Conclusion

Human gut microbiota modulation by probiotic LP may 
influence several aging hallmarks. LP has shown significant 
antioxidant effects, which prevent oxidative damage in 

aging cells. Compelling outcomes from available preclinical 
research suggest that LP strains may induce gut-microbiota-
associated signaling such as SCFA and GABA and 
activate inducible transcription factor Nrf2. Nrf2 induces a cell-
intrinsic defense system by regulating multiple specific genes 
resulting in the production of anti-inflammatory cytokines and 
protective/antioxidant enzymes (against MAPKs) and reducing 
ROS. This review suggests LP supplementation may help to 
manage some aging hallmarks. Yet, significant studies are 
required to explore LP possibilities to manage the complex 
aging process.
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TABLE 1 Recent findings on the effect of various strains of L. plantarum on aging models.

L. plantarum strains Model organism Key finding References

L. plantarum NJAU-01 Mice Prevents galactose-induced aging Ge et al. (2021)

L. plantarum KSFY01 Mice
Activation of the Nrf2 improved the 

athletic ability of mice.
Chen et al. (2022)

L. plantarum WCFS1 Mice Probiotics may influence aging. Van Beek et al. (2016)

L. plantarum GKM3 Mice Promotes longevity. Lin et al. (2021)

L. plantarum HY7714 Mice
Improves UVB-induced skin damage 

via the skin-gut axis.
Lee et al. (2021a)

L. plantarum JBC5 Roundworm (Caenorhabditis elegans)
Promotes healthy aging, gut integrity, 

and overall lifespan
Kumar et al. (2022)

L. plantarum69–2 Mice
Increased SCFA levels alleviate signs 

of aging via the liver-gut axis.
Wang et al. (2021)

L. plantarum ZS62 Mice

Prevents morphological changes in 

hepatocytes via anti-inflammation and 

anti-oxidant pathways.

Gan et al. (2021)

L. plantarum TWK10 Mice
Improves muscle mass and energy 

level.
Chen et al. (2016)

L. plantarum JBMI F5 Human foreskin fibroblast cell line, Mice

Anti-photo aging (skin aging due to 

Ultraviolet radiation). Prevents UVB-

induced wrinkles.

Kim et al. (2019)

FIGURE 5

LP-induced SCFA Signaling.
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