
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiuliang Jin,
Institute of Crop Sciences (CAAS), China

REVIEWED BY

Jingzhe Wang,
Shenzhen Polytechnic, China
Salah Elsayed Mohamed Elsayed,
University of Sadat City, Egypt
Xin Lv,
Shihezi University, China
Jinling Zhao,
Anhui University, China

*CORRESPONDENCE

Jianli Ding

dingjl@xju.edu.cn

RECEIVED 20 December 2023
ACCEPTED 06 February 2024

PUBLISHED 19 February 2024

CITATION

Wang Z, Ding J, Tan J, Liu J, Zhang T, Cai W
and Meng S (2024) UAV hyperspectral
analysis of secondary salinization in
arid oasis cotton fields: effects of
FOD feature selection and SOA-RF.
Front. Plant Sci. 15:1358965.
doi: 10.3389/fpls.2024.1358965

COPYRIGHT

© 2024 Wang, Ding, Tan, Liu, Zhang, Cai and
Meng. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 19 February 2024

DOI 10.3389/fpls.2024.1358965
UAV hyperspectral analysis of
secondary salinization in
arid oasis cotton fields:
effects of FOD feature
selection and SOA-RF
Zeyuan Wang1,2,3, Jianli Ding1,2,3*, Jiao Tan1,2,3, Junhao Liu1,2,3,
Tingting Zhang1, Weijian Cai1,2,3 and Shanshan Meng1,2,3

1College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, China, 2Xinjiang
Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China, 3Key Laboratory of Smart City
and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi, China
Secondary salinization is a crucial constraint on agricultural progress in arid

regions. The specific mulching irrigation technique not only exacerbates

secondary salinization but also complicates field-scale soil salinity monitoring.

UAV hyperspectral remote sensing offers a monitoring method that is high-

precision, high-efficiency, and short-cycle. In this study, UAV hyperspectral

images were used to derive one-dimensional, textural, and three-dimensional

feature variables using Competitive adaptive reweighted sampling (CARS), Gray-

Level Co-occurrence Matrix (GLCM), Boruta Feature Selection (Boruta), and

Brightness-Color-Index (BCI) with Fractional-order differentiation (FOD)

processing. Additionally, three modeling strategies were developed (Strategy 1

involves constructing the model solely with the 20 single-band variable inputs

screened by the CARS algorithm. In Strategy 2, 25 texture features augment

Strategy 1, resulting in 45 feature variables for model construction. Strategy 3,

building upon Strategy 2, incorporates six triple-band indices, totaling 51

variables used in the model’s construction) and integrated with the Seagull

Optimization Algorithm for Random Forest (SOA-RF) models to predict soil

electrical conductivity (EC) and delineate spatial distribution. The results

demonstrated that fractional order differentiation highlights spectral features in

noisy spectra, and different orders of differentiation reveal different hidden

information. The correlation between soil EC and spectra varies with the order.

1.9th order differentiation is proved to be the best order for constructing one-

dimensional indices; although the addition of texture features slightly improves

the accuracy of the model, the integration of the three-waveband indices

significantly improves the accuracy of the estimation, with an R2 of 0.9476. In

contrast to the conventional RF model, the SOA-RF algorithm optimizes its

parameters thereby significantly improving the accuracy and model stability. The

optimal soil salinity prediction model proposed in this study can accurately, non-
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invasively and rapidly identify excessive salt accumulation in drip irrigation under

membrane. It is of great significance to improve the growing conditions of

cotton, increase the cotton yield, and promote the sustainable development of

Xinjiang’s agricultural economy, and also provides a reference for the prevention

and control of regional soil salinization.
KEYWORDS

precision agriculture, UAV hyperspectral, fractional-order differentiation, feature
variables, SOA-RF
1 Introduction

Soil salinization, notably secondary salinization on mulched

irrigated land, is a mounting global issue significantly constraining

agricultural development (Wang et al., 2023). Currently, secondary

salinization in Xinjiang is highly severe and shows an inclination for

further escalation (Hua et al., 2019). The alarming ecological

degradation poses a significant threat to oasis agricultural

security, profoundly impacting regional socio-economic

development (Yu et al., 2022). Cotton is the pillar industry of

Xinjiang’s eight industrial clusters, accounting for more than 90% of

the national cotton industry, is China’s important strategic reserves

again resources (Liwen et al., 2019). About 1.6 million hectares of

cotton fields in Xinjiang are irrigated with drip irrigation, and the

area is still increasing (Hou et al., 2022), large-scale ground film

dripping in the short-term yield increase benefits produced after the

secondary salinization is serious, and the soil secondary salinization

is increasing (Wang et al., 2011). In the oasis ecosystem with

farmland as the main body, under the technical means of

membrane-covered drip irrigation, it leads to the vegetation

canopy again weakening the pure soil information that is

obscured, and it is difficult to dig out the important information

related to the soil, especially in the interference or influence of

water-saving conditions of drip irrigation under the membrane, and

it is difficult to intelligently and rapidly extract the secondary

salinization as the weak information. Therefore, it is imperative to

design a novel monitoring method for secondary salinization of soil.

This method should be able to obtain highly accurate, extensive and

rapid information on secondary soil salinization to provide

scientific support for the management of secondary soil

salinization and the development of precision agriculture.

Obtaining accurate information on soil salinity in cotton fields

is challenging due to the presence of mulch, which makes it

impossible to directly acquire electromagnetic spectrum images of

the soil surface through remote sensing (Ding et al., 2013). Soil

salinity accumulation hinders effective water uptake by the cotton

root system (Zhang et al., 2017). Simultaneously, the near-infrared

and mid-infrared bands exhibit high sensitivity to the moisture

content of cotton leaves (Arshad et al., 2018). Additionally, spectral

reflectance of cotton leaves progressively rises with increasing soil
02
salinity (Zhang et al., 2012). For indirect soil salinity monitoring,

selecting spectral bands closely linked to cotton plant growth as

characteristic bands allows for obtaining richer spectral features

through band combinations. This approach facilitates the use of

spectral data to infer soil salinity.

Prior studies commonly utilized conventional satellite-mounted

multispectral sensors or synthetic aperture radar (SAR) to acquire

remotely sensed imagery to invert soil salinity (Wang J. et al., 2019).

Despite their easy accessibility, these data sources often exhibit

drawbacks like low spatial (Tan et al., 2023) and spectral resolution

alongside lengthy revisit periods (Fan et al., 2021). While the lower

spatial resolution and longer revisit period are advantageous for soil

salinity detection across vast regions (Sahbeni et al., 2023), precision

agriculture requires a method apt for monitoring soil salinity in

smaller areas. Conversely, traditional multispectral imagery, due to

fewer bands, covers a limited spectral range. The broader bands

frequently lack specificity and fail to provide sufficient spectral

information to delineate abnormalities caused by salt stress on

crops (Huang et al., 2021). The hyperspectral data, comprising

multiple consecutive bands, facilitate the spectral characterization

of distinct bands (Borsoi et al., 2021), aiding in establishing the

correlation between soil salinity and crop canopy spectral response.

This facilitates extracting anomalous information and enables

monitoring soil salinity in cotton fields by linking this anomalous

information to soil salinity. Recently, due to the proliferation of

UAV technology in commercial applications and enhanced UAV

capabilities, low-altitude imaging platforms equipped with

hyperspectral sensors on UAVs have found extensive utilization

across various research domains (Zhang et al., 2021), encompassing

precision agriculture (Daponte et al., 2019), biomass estimation

(Jones et al., 2020), water quality monitoring (Sibanda et al., 2021),

and forest protection (Jiménez López and Mulero-Pázmány, 2019),

among other fields. Imagery obtained through UAV platforms

equipped with hyperspectral sensors achieves accuracy at the

centimeter level, proving to be an efficient, cost-effective, and real-

time method for monitoring salinity in small-scale agricultural

fields (Paul et al., 2022).

Hyperspectral data encompass numerous spectral bands, often

displaying high redundancy, necessitating band selection to

diminish data dimensionality and enhance information extraction
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efficiency (Sun and Du, 2019). Competitive Adaptive Reweighted

Sampling (CARS) is a widely used method in hyperspectral band

selection (Lei et al., 2022). This method combines competitive

learning and adaptive sampling strategies aimed at selecting the

most informative spectral bands for downscaling and feature

selection of hyperspectral data. The CARS method has achieved

excellent performance on many hyperspectral datasets, and the

accuracy and efficiency of feature selection can be significantly

improved by selecting the most relevant bands. The Band

Combination Index (BCI) method is a powerful tool for

constructing optimal band feature combinations (Liu et al., 2023),

which helps to improve the efficiency of information extraction and

analysis of hyperspectral data by selecting the optimal band

combinations. Although these spectral processing methods have

been widely used, there are fewer cases of applying them to

hyperspectral inversion of soil salinity, and the prediction is still

unclear. Texture features as model variables can add information

about spatial distribution to the model, and some studies have

demonstrated that texture information in UAV-based imagery has

great potential for crop parameter monitoring (Li et al., 2019), but

there have been few studies on the use of texture features for the

estimation of soil salinity.

Prediction of soil properties by linking spectral information to soil

properties throughmathematical modeling is already a well-established

scheme (Beattie and Esmonde-White, 2021). The Random Forest (RF)

model is an integrated learning algorithm that makes predictions by

constructing multiple decision trees. Each decision tree is constructed

based on a training dataset obtained from random sampling and

features are randomly selected for partitioning at each node

(Sheykhmousa et al., 2020). The final prediction results are

synthesized from the predictions of all the decision trees and have
Frontiers in Plant Science 03
been widely used for regression prediction of soil attributes by virtue of

its excellent ability to handle nonlinear relationships. However, the RF

algorithm itself suffers from some problems, such as susceptibility to

overfitting and sensitivity to parameters (Beattie and Esmonde-White,

2021). To address these problems, the Seagull Optimization Algorithm

(SOA) was introduced to optimize the RF algorithm. SOA is a bionic

intelligence algorithm that simulates the foraging behavior of seagulls.

It optimizes the performance of the algorithm through the search and

learning process in the foraging behavior (Dhiman et al., 2021). SOA is

used to optimize parameter selection and feature selection for

RF algorithms.

The main research objectives of this study are (1) to investigate

the effect of FOD treatment on drone hyperspectra and to explore

how the correlation between plant canopy spectra and soil salinity

varied with order after treatment with FOD; (2) to construct and

screen the single-band features, texture features, and triple-band

features by using the CARS algorithm, the Boruta algorithm, the

grayscale covariance matrix and the BCI algorithm, respectively,

and to explore how the sensitivity of these feature variables to the

model; (3) to analyze and compare the capabilities exhibited by

SOA-RF and traditional RF models in soil salinity prediction.
2 Study area and data

2.1 Study area and soil samples

Wujiaqu City is located in the urban agglomeration of the

northern slope of Tianshan Mountain, the northern foothills of

Tianshan Mountain and the southern edge of the Junggar Basin

(43°59′25″ to 44°39′00″N and 87°17′42″ to 87°43′15″E). As warm
FIGURE 1

Schematic map of the study area [(A) Zoning location of Wujiaqu city; (B) Landscape photographs of the study area; (C) Schematic map of the
location of typical cotton fields; (D) Distribution of sampling points].
frontiersin.org

https://doi.org/10.3389/fpls.2024.1358965
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1358965
and humid air masses are difficult to enter the Xinjiang Basin due to

the obstruction of mountain ranges, resulting in scarce precipitation

and large temperature variations throughout the year (-38~42°C);

scarce precipitation (150mm) and strong evaporation (2000mm). In

order to better explore the ability and ubiquity of UAV

hyperspectral data to indirectly monitor soil salinization through

vegetation spectral information in oasis farmland in arid zones, a

field study was conducted in June 2022 in a typical cotton field in

Wujiaqu City (Figure 1).

The field sampling time was selected on June 12, 2022, which

was in the cotton bud stage, with no interference from precipitation,

irrigation, or anthropogenic factors, and the unmanned data

hyperspectral data were sampled at the same time as the soil

samples to ensure the reliability of the measured data. Thirty-

three surface (0-10 cm) soil samples were collected using the five-

point sampling method, and the coordinates of each sampling point

were recorded using a portable GPS device. Soil samples were air-

dried and ground in the laboratory, and sieved through a 2-mm

sieve. Soil solutions were prepared according to the method of 1:5

soil leachate, and soil parameters such as solution EC1:5 and pH

were measured using a multiparameter meter (WTWinoLab®

Multi3420 set B, WTW GmbH, Germany) at a constant room

temperature of 25°C. Soil EC1:5 can be used to indicate soil salinity.
2.2 Drone data

In order to acquire the UAV hyperspectral data in the study

area, a Nano-Hyperspec (Headwall Photonics Inc., Bolton, MA,

USA) ultra-miniature airborne hyperspectral imager (UHI) was

mounted on a M600 Pro six-rotor UAV flight platform for spectral

data acquisition. for spectral data acquisition. The parameters of the

hyperspectral imager are shown in Table 1. Hyperspectral images

with a spatial resolution of 4.4 centimeters and a spectral range of

400~1000 nm can be acquired at a flight altitude of 100 meters. The

hyperspectral image data were acquired on June 12, 2022 at 13:00
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BST in a clear, cloudless environment with a wide field of view, and

a calibrated white cloth with an area of 2.5m×2.5m and a reflectance

of 60% was used for reflectance correction and dark current

correction. After data acquisition, the hyperspectral images were

processed using Hyperspec III (version 1.3) and SpectralView

(version 1.0) software for radiance-to-brightness conversion,

atmospheric correction, and geometric correction.
3 Methods

3.1 Spectral pre-processing

Savitzky-Golay (SG) smoothing is the most efficient way to

process spectral reflectance data of saline soils (Ge et al., 2021). The

hyperspectral images acquired in this study had a resolution of

4.4 cm and covered 272 bands, and in order to ensure that this

dense spectral information can objectively and accurately represent

the spectral features of cotton that are subjected to abnormal

changes due to salinity, the hyperspectral images were first

subjected to Savitzky-Golay (S-G) smoothing with eight points

and a polynomial order of nine. Standard normalized variate

(SNV) is often used to remove spectral signal variance and is

widely used in spectral analysis (Wang H.-P. et al., 2022). In

order to correct the spectral errors between samples due to

scattering, the hyperspectral images were corrected individually

for each spectrum using the SNV. These preprocessing

procedures were implemented using the MATLAB R2021b

software was implemented.
3.2 Fractional-order differentiation

Hyperspectral data contain information from different

wavelengths, which may contain noise (Ge et al., 2022).

Fractional order derivative (FOD) can be used to smooth and

remove this noise, thus improving the quality of the data (Wang

J. et al., 2022), and can also be used to enhance features in

hyperspectral data (Jiang et al., 2022). Since the G-L definition is

relatively concise and has a better performance in terms of for

transform and spectral processing (Hong et al., 2019), In this study,

the G-L definition form is chosen to process the hyperspectral data,

and the G-L definition expression is shown in Equation (1).

da f (l)
dla =f (l)+(−a)f (l−1)+ (−a)(−a+1)

2 +⋯+ G(−a+1)
n!(−a+1) f (l−n) (1)

Where a is the order, G is the Gamma function, l is the

wavelength, and n is the D-value of the constraint limit of the

differential equation.
3.3 Screening and construction of features

3.3.1 Competitive adaptive reweighted sampling
Competitive adaptive reweighted sampling (CARS) is a feature

variable selection method that combines Monte Carlo sampling and
TABLE 1 Nano-Hyperspec hyperspectral imager main parameters.

Parameters Value

Spectral range 400~1000nm

Number of spectral channels 272

Number of space channels 640

Spectral sampling interval 2.2nm/pixel

spectral resolution 2.2nm

Maximum numerical aperture F/2.5

lens focal length 8mm (12mm)

field of view 32°(22°)

Maximum frame rate 350fps

power wastage 13W

Weight (with head) <1.3kg
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regression coefficients of the PLSR model, and the algorithm is

based on the principle of “survival of the fittest” in Darwinian

evolution (Dai et al., 2015), which mainly consists of four steps: (1)

Monte Carlo model sampling, the percentage of the absolute value

of regression coefficients as the importance of the variables or the

interpretability of the target variables; (2) exponential decay

wavelength selection, the first stage for rapid selection to

eliminate a large number of variables, and the second stage for

accurate analysis; (3) adaptive reweighting sampling, resampling

according to the number of variables determined in the previous

step, to establish a screening-based variables to build an analytical

prediction model based on screening, and calculate its cross-

validated root mean square error RMSECV; (4) loop iteration, set

the number of iterations, and determine the optimal set of variables

based on the smallest RMSECV, which is the desired feature variable.

In this study, CARS was implemented using MATLAB

R2021b software.

3.3.2 Gray-Level Co-occurrence Matrix
Texture features are spatially dimensional information that

characterize spatial distribution (Haralick et al., 1973). Band-

based estimation models use only one dimension of information,

the amount of change, without considering its distribution. The

combination of band indices with image texture parameters can

increase the dimensionality of the information. Gray-Level Co-

occurrence Matrix (GLCM) is one of the important tools used for

image texture analysis. GLCM analysis has a wide range of

applications in image processing and analysis, especially in the

fields of texture recognition, image classification (Sidek, 2015). It

can help you describe the spatial relationship between pixels in an

image at the gray level and extract various texture features from it.

The computational steps of GLCM are as follows: (1) Select a

specific direction and distance: determine the image region and

direction of interest. Within this region, for each pixel, observe its

relationship with neighboring pixels at a specific distance and

direction. (2) Construct the cooccurrence matrix: for the selected

direction and distance, count the frequency of occurrence between

each gray level pixel and its neighboring pixels in the image. This

frequency matrix is known as GLCM, and the texture is

characterized by four features, namely, contrast, entropy, angular

second-order distance, and correlation, computed from the gray-

level co-production matrix (Table 2), where P(i,j) denotes the
Frontiers in Plant Science 05
frequency of simultaneous occurrences of pixel pairs of gray levels

i and j(i, j =0, 1,2 3,…, N), that is the frequency of gray level

cooccurrence matrices were normalized GLCM and image texture

measurements were computed using ENVI software and

MATLAB R2021b.

3.3.3 Boruta feature selection
Boruta is a feature selection algorithm designed to help identify

the most important features in a dataset. It is based on the idea of

random forests and is able to handle datasets with high-dimensional

feature spaces (Subbiah and Chinnappan, 2021).The Boruta

algorithm progressively distinguishes between important and

unimportant features by means of continuous iteration until a

pre-determined number of feature selections or some stopping

criterion is reached. Eventually a result ranking the importance of

the features will be given. This method is able to find the most

distinguishable features without a priori information and is very

effective when dealing with high dimensional datasets. This study is

based on R4.3.0 to accomplish Boruta Feature Selection.

3.3.4 Three-dimensional spectral characterization
The basic principle of the BCI method is to combine any three

bands to construct three-dimensional spectral indices (Dou et al.,

2023). Since the hyperspectral data cover hundreds of bands, there

must be redundancy in the large amount of information, in order to

streamline the information and effectively reduce the data

dimensions, this study uses the BCI method to construct the

optimal band feature combinations. The principle of this method

is that the smaller the correlation between bands, the larger the

standard deviation of the bands, the larger the information content

of the band combination. The information content of the waveband

combination is inversely proportional to the correlation coefficient

between wavebands and directly proportional to the standard

deviation of the wavebands themselves. By traversing the 272

bands of the 20th order differential and selecting the optimal

wave combinations, the following six three-band indices are

calculated Equations (2–7):

TBI1(Ri,Rj,Rk)=
Ri

(Rj�Rk) (2)

TBI2(Ri,Rj,Rk)=
Ri

(Rj+Rk) (3)
TABLE 2 Texture features and their implications.

Textural features Formula Implication of the formula

Contrast(Con) (Szantoi et al., 2013) COM=o
i
o
j

P(i,j)(i−j)2 Indicates localized changes in the image

Entroy(Ent) (Szantoi et al., 2013) ENT=−o
i
o
j

P(i,j)log(P(i,j)) Indicates the randomness of the amount of information contained in the image

Angular Second Moment(Asm) (Szantoi
et al., 2013)

ASM=o
i
o
j

P(i,j)2
Indicates the uniformity of the gray level distribution of the image and the

thickness of the texture

Correlation(Cor) (Szantoi et al., 2013) C= o
quank

i=0
o

quantk

j=0

(i−Mean)�(j−Mean)�P(i,j)
Var

Indicates the similarity of image gray levels in the row or column direction
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TBI3(Ri,Rj,Rk)=
(Ri−Rj)
(Rj+Rk)

(4)

TBI4(Ri,Rj,Rk)=
(Ri−Rj)
(Rj−Rk)

(5)

TBI5(Ri,Rj,Rk)=
(Rj+Rk)

Ri
(6)

TBI6(Ri,Rj,Rk)=
(Ri−Rj)

½(Ri−Rj)−(Rj−Rk)� (7)

Where Ri, Rj, Rk are the reflectance values for all possible bands

i, j, k in the wavelength range of 400−1000 nm with i ≠ j ≠ k. In this

study, the construction of band indices was implemented in

PyCharm 2022 software.
3.4 Predictive modeling and
evaluation indicators

3.4.1 Modeling strategy
To assess the significance of various characteristic variables and

their impact on themodel’s sensitivity, this study devised three strategies

for constructing the model (Figure 2). Strategy 1 involves constructing

the model solely with the 20 single-band variable inputs screened by the

CARS algorithm. In Strategy 2, 25 texture features augment Strategy 1,

resulting in 45 feature variables for model construction. Strategy 3,

building upon Strategy 2, incorporates six triple band indices, totaling 51

variables used in the model’s construction. Comparing these three

strategies enables a discussion to investigate the contribution of

distinct characteristic variables to the estimation model.

3.4.2 Combined with seagull optimization
algorithm for random forest models

SOA is a bionic intelligence algorithm that simulates the

foraging behavior of seagulls. It optimizes the performance of the
Frontiers in Plant Science 06
algorithm through the search and learning process in the foraging

behavior (Dhiman et al., 2021). SOA is used to optimize the

parameter selection and feature selection of the RF algorithm.

Specifically, SOA improves prediction accuracy by tuning

parameters in the RF algorithm, such as the number and depth of

decision trees. Also, SOA reduces the impact of redundant features

on the prediction results by selecting the best subset of features.

3.4.3 Evaluation indicators
In this study, three evaluation metrics are used to assess the

performance of our model, which include root mean square error

(RMSE), mean square error (MSE), relative analytical error (RPD),

and coefficient of determination (R2). Among these metrics, smaller

values of RMSE and MSE, larger values of RPD along with R2, and

R2 close to one, all represent high accuracy of the inverse model.

Conversely, larger values of RMSE and smaller values of RPD and

R2 imply lower accuracy of the model. These metrics will help us to

comprehensively assess the performance of the constructed model

and ensure the reliability of the research results.
4 Results

4.1 Statistical analysis of soil samples

Descriptive statistics of 33 soil samples, as shown in Figure 3,

showed that the EC1:5 of the samples ranged from 2.26 dS m-1 to

20.09 dS m-1, with a mean of 5.19 dS m-1, a standard deviation of

4.05 dS m-1, and a coefficient of variation (CV) of 78.06%

(10%<CV<90%, which is a moderate variation), which suggests

that the data have a sufficiently discrete degree for model

construction and prediction.
4.2 Spectral response characteristics

Comparing the original spectrum (Figure 4A), the SG-filtered

spectrum (Figure 4B) and the SNV-treated spectrum (Figure 4C),

the influential noise is further eliminated after SG smoothing, and

the spectral reflectance range is expanded to -2 to 2.5, which well

highlights the spectral characteristics of cotton. Soil salinity mainly

images cotton’s absorption of water and nitrogen, which in turn

affects chlorophyll synthesis, and the degree of salinity leads to

differences in the degree of reflection and absorption of

electromagnetic waves in the bands at 555 nm and 680-690 nm

affected by chlorophyll, and also affects the reflectance intensity of

the red-edge bands, as well as the degree to which the

electromagnetic waves at 763 nm, 821 nm, and 935 nm are

absorbed by water.
4.3 FOD treatment results

The soil reflectance spectra were processed by FOD with the

order of 0-2 and the step size of 0.1, and the processed results are
FIGURE 2

Modeling Strategies for Soil Salinity Estimation Models.
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shown in Figure 5. With the increase of FOD order, the values in the

whole spectral reflectance range gradually decrease and converge to

0. The small differences between spectra are highlighted to avoid the

loss of important information and enhance the effect of data

preprocessing. In the 0.1-1 order spectra, positive peaks appear at

506 nm, 606 nm and 770 nm, and negative peaks appear at 761 nm

and 932 nm; in the 1-2.0 order spectra, positive peaks appear at 501

nm, 766 nm and 939 nm, and negative peaks appear at 759 nm and

930 nm.
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4.4 Construction of the
characteristic index

4.4.1 Single-band feature construction
Firstly, the spectral information of 0.1-2.0 order differentiation

is used for the selection of single band eigenvariable by CARS, the

number of iterations is set to 300, and the data is centered and the

step size is set to 10. The process of CARS processing is shown in

Figure 6, with the increase of the number of iterations, the number
A

B

C

FIGURE 4

(A) The original spectrum, (B) the spectrum after Savitzky-Golay filtering and (C) the spectrum after Standard Normal Variate (SNV) processing.
FIGURE 3

Soil salinity samples and their descriptive statistics (blue area shows the kernel density distribution of the samples).
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of selected bands decreases, and the RMSECV decreases gradually,

and when the number of iterations is 216, the RMSECV reaches the

minimum value. The result can be seen that the best FOD order for

CARS screening is 1.9, and the minimum RMSECV is 0.269

(Figure 7), at this time, the best band with the maximum amount

of information is determined, that is the requested feature band.

A total of 20 best characteristic bands were screened out, which

only accounted for 7.35% of the full spectral bands, but did contain the

maximum amount of information that could express the relationship

between soil salinity and spectra. 20 characteristic bands were labeled in

Figure 8, of which eight bands were located in the visible spectra

(400~760 nm), and 12 bands were located in the near-infrared spectra

(760~1000 nm).

4.4.2 Construction of texture features
The four features of contrast, entropy, angular second order distance

and correlation calculated using the gray scale covariance matrix were

used to characterize the texture (Figure 9). According to the results of

single-band screening conducted by CARS, the best order of FOD is 1.9,

which shows that 1.9 order differential spectra can better characterize the

correlation information features with EC1:5, so in this study, we calculate
FIGURE 5

0.1~2.0 Order Differential Spectral Curves (X-axis is wavelength, Y-axis is reflectance).
FIGURE 6

competitive adaptive weighted sampling (CARS) process.
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the grayscale co-generation matrix for the 20 bands screened by CARS

from the 1.9 order differential spectra, and the window size of the

grayscale co-generation matrix is selected to be 5×5, and the direction is

selected to be x=2 and y=2, which yields 80 texture features.

In order to avoidmodel overfitting with toomany feature variables,

the Boruta algorithm was used to filter out unimportant feature values.

The results show that 25 of the 80 texture features are very important,

including 6 contrast variables, 3 entropy variables, 11 angular second-

order moment variables and 5 correlation variables; the remaining are

5 generally important and 50 unimportant variables. In this study, 25

very important texture features were selected to participate in the

modeling strategy (Figure 10).

4.4.3 Construction of 3D features
CARS selects characteristic bands from spectra only from a one-

dimensional perspective to seek the relationship between spectral
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information and soil salinity, and in order to consider the

interaction between bands and soil salinity, the BCI method is

utilized to construct a three-dimensional band index to explore the

relationship between spectral information and soil salinity in a

more comprehensive way.

The 3D spectral indices in different order spectral forms were

calculated and the correlation coefficients between the indices and soil

EC1:5 were calculated and the results are shown in Table 3 and finally

the most sensitive way of combining the bands with EC1:5 was selected

for the different orders TBI1, TBI2, TBI3, TBI4, TBI5 and TBI6. The

3D cubic plot of the correlation coefficients is shown in Figure 11.
4.5 Modeling and evaluation

The soil samples were divided into training set and test set input

models according to 7:3, and the SOA-RF performance results of

the three modeling strategies are shown in Table 4 and Figure 12,

which shows that the R2 and RPD of the three modeling strategies

gradually increase, the RMSE and MSE gradually decrease, and

there is a significant improvement in the modeling accuracy of

modeling strategy III. At the same time, the MSE of SOA-RF and

traditional RF models are compared, and the MSE of the three

modeling strategies of SOA-RF are much smaller than those of RF

models, which shows that the introduction of SOA algorithms

improves the model performance greatly.

The spatial distribution of top soil salinity in cotton fields was

mapped using the SOA-RF model (Figure 13). From the descriptive

statistical analysis conducted by EC1:5, the measured EC1:5 of the

soil ranged from 2.26 dS m-1 to 20.09 dS m-1, and the optimal model

predicted soil salinity ranging from 1.15 dS m-1 to 20.34 dS m-1, and

the spatial distribution of soil salinity was in accordance with the

results of the field survey. Sub-membrane drip irrigation technology

provides a breakthrough for the sustainable development of agro-

ecology in this region. Sub-membrane drip irrigation technology

can achieve the purpose of water-saving irrigation, but the small

amount of irrigation water is difficult to adequately wash the salts in

the soil, and the strong evapotranspiration in this region has been

continuous, which makes the salts in the soil will always be migrated

to the surface of the soil, so that the salts in the surface layer of the

soil accumulates year by year, especially when the soil is not covered

with a membrane it is very obvious to see that there are soil salts

higher than the plant salinity, so that the salts in the surface layer of

the soil are higher than the plant salts. The soil salinity is higher

than that of the vegetated areas, especially in the case of non-

mulched areas.
5 Discussion

5.1 Importance of fractional order
differential treatment

Preprocessing of hyperspectral data is the most important step

before building quantitative prediction models (Minu et al., 2016).

In this study, the hyperspectral data were first subjected to S-G
FIGURE 8

Optimal bands obtained from Competitive adaptive reweighted
sampling (CARS).
FIGURE 7

RMSECV values for 0 to 2.0 order differentiation.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1358965
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1358965

Frontiers in Plant Science 10
smoothing and SNV processing, which clearly represented the

spectral characteristics of cotton affected by salinity with

abnormal changes at the level of spectral reflectance, and

removed and amplified the spectral characteristics by removing

the spectral signal variance.

However, hyperspectral data are complex and contain a large

amount of intricate information and noise between consecutive and

short spaced bands, which requires further fractional order

differentiation processing of hyperspectral data (Sun et al., 2021).

The results show that FOD is more helpful to reduce the sharp peak

aberrations than integer-order differencing, which maintains the

structure of the original spectral curves and preserves the original

information, but also makes the baseline vary within a moderate

curvature range, which makes more useful information of the

spectral data to be highlighted (Hong et al., 2020). In this study,

we differentiated the hyperspectral data by 20 orders at 0.1 intervals

and found that the FOD spectra could reveal hidden information

related to the vegetation spectral information. A correlation heat

map of the 0 to 2.0 order spectra with soil EC1:5 was plotted

(Figure 14), with wavelength on the horizontal axis, order on the

vertical axis, and the color representing the magnitude of the

correlation coefficient. The correlation heat map shows a nearly

symmetrical pattern, when the FOD order is between 0.1 and 1, the

reflectance in the wavelength range of 400-700 nm is basically

positively correlated with soil EC1:5, and the reflectance in the

wavelength range of 700-1000 nm is basically negatively correlated

with soil EC1:5; when the FOD order is between 1.0 and 2.0, the soil

reflectance in the range of 400-700 nm shows a weak correlation

with soil EC1:5. When the FOD order is between 1.0 and 2.0, the

reflectance of soil in the range of 400-700nm shows a weak positive

or negative correlation; the reflectance of soil in the range of 700-

1000nm basically shows a positive correlation. With the increase of

FOD order, the correlation of reflectance at the blue light
A

B

D E

C

FIGURE 9

Texture characteristics [(A) Original; (B) Contrast (Con); (C) Entroy (Ent); (D) Angular Second Moment (Asm); (E) Correlation (Cor)].
FIGURE 10

Boruta algorithm screening results (The blue variables are shaded
features, the green variables are essential, the yellow ones are
undetermined, and the red ones are irrelevant).
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wavelength is gradually weakened, the negative correlation of

reflectance at the red light and near-infrared wavelengths is

changed to a positive correlation with the division of 1.0 order,

but the overall correlation is strong, and the weak correlation of

reflectance at the green light wavelengths tends to be stabilized. The
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core purpose of FOD processing is to bring out the useful

information from the complex and noisy hyperspectral data, and

the subsequent processing of the FOD processed data will help to

improve the accuracy of the model, but for different research areas

and different data, the FOD processing may present different effects

and even results, and the method needs to be further investigated

and improved in a variety of different research areas and using

different data sets.
5.2 Impact of different spectral features on
prediction models

Extracting appropriate feature variables from hyperspectral data

containing a large amount of information is a key step in

constructing a stable model (Lao et al., 2021), and the three

modeling strategies can be compared to derive the degree of

sensitivity of the three feature indicators.
TABLE 3 Optimal Differential Order and Band Combinations for
Constructing Three-Dimensional Features(R is the
correlation coefficient).

3D index Optimum order wave portfolio(nm) R

TBI1 1.0 423.957,506.137,777.108 0.868

TBI2 0.9 421.736,865.952,996.995 0.891

TBI3 0.6 401.746,945.910,421.736 0.865

TBI4 1.8 421.736,526.126,925.921 0.912

TBI5 0.9 415.072,521.684,934.805 0.885

TBI6 1.0 423.957,954.795,923.700 0.891
A B

D

E F

C

FIGURE 11

Three-dimensional band index [(A–F) are TBI1, TBI2, TBI3, TBI4, TBI5, TBI6 respectively].
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Modeling strategy I used only the single-band feature variables

screened by CARS to participate in the modeling, and the results

showed that the 1.9 order was the optimal differential order which

was the same as the optimal differential order for region I in the

study of salinity content estimation in different saline zones by (Fu

C. et al., 2021). The characteristic bands were scattered in the visible

(408-777 nm), but mainly concentrated in the near-infrared (NIR)

shortwave (800-1000 nm), which indicated that the NIR bands

performed better in the characterization of soil salinity using

vegetation spectra, which was also confirmed in the results of

(Tian et al., 2021) and (Nguyen et al., 2020). However, since the

single-band variables can only reflect the spectral properties from a

one-dimensional perspective, the R2 of modeling strategy I is only

0.9107, with the lowest coefficient of determination among the three

modeling strategies, and the RPD is 1.8736, which is also the

weakest in terms of stability.

Modeling strategy II adds 25 texture features to the single-band

variables, and the results show that modeling strategy II improves

R2 by 0.0129 and RPD by 0.8118.The overall improvement of R2 is

not significant, which may be due to the fact that texture features are

also statistics of single-band information (Zhang et al., 2018), and
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although texture features increase the spatial distribution describing

spatial dimensionality information, it lacks the characterization of

interconnected information between bands (Fu Y. et al., 2021). The

RPD enhancement is more obvious compared to R2, and the

stability of the model is significantly improved by adding texture

features. Overall, the combination of single-band indices with image

texture parameters can increase the dimensionality of the

information, which can more accurately characterize yield

variations, which is consistent with the findings of (Wang et al.,

2021) in the performance of spectral indices alone and in

combination with spectral indices based on texture measurements

of UAV-based hyperspectral images in seed yield estimation.

However, the inclusion of texture features provided less overall

improvement to the prediction model.

Modeling strategy three adds six three-band indices to strategy

two, and the results show an improvement of 0.0369 in R2 and

1.6478 in RPD compared to strategy one, which is a very significant

overall improvement (Figure 15). The three-band index improves

the model performance more than the single-band index, which is

consistent with the conclusion that the three-band index

constructed by OBCA in the study of (Zhu et al., 2022) improves
TABLE 4 SOA-RF model performance (MSE left side indicates SOA-RF, right side indicates RF).

Modelling strategy R2 RMSE (dS m-1) RPD
MSE (dS m-1)
(SOA-RF/RF)

Strategy 1 0.9107 1.4707 1.8736 2.1630/15.3478

Strategy 2 0.9236 1.3917 2.6854 1.9367/15.2769

Strategy 3 0.9476 1.2554 3.5223 1.5761/12.4969
A B

C

FIGURE 12

Scatter plots of measured and estimated EC in (A) Strategy 1, (B) Strategy 2 and (C) Strategy 3.
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the relationship between spectra and soil salinity, which is of high

importance in modeling, and this study is the first time that texture

features are added into the modeling strategy to compare with the

three-band index, and it is seen that the three-band index is also

more sensitive than the texture features are more sensitive. The

correlations between the six tri-band indices and soil EC1:5 were

similar in magnitude, with TBI4 showing the best performance with

an R of 0.912, and it can also be found that all six tri-band index

band combinations contain bands within 777~1000 nm, which

shows that for the tri-band indices, the near-infrared band is still the

most sensitive band to soil EC1:5, which is also consistent with the

findings of (Wang S. et al., 2019) study in which the selected

characteristic bands using the SPA method showed that different
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spectral transformation forms characterize soil salinity differences,

mainly in the NIR band in agreement.

The screening and construction method of feature indices used in

this study can extract effective spectral variables from highly redundant

hyperspectral data while ignoring most irrelevant variables, thus

substantially improving the accuracy of the model. However, there

may be different results for different crop types and regions, and further

research on the generalizability of the method is needed.
5.3 Advantages of the SOA-RF model

There are many studies that use machine learning methods for

soil salinity prediction (Zhu et al., 2022), utilized RF model R2 to

reach 0.815 in a study of soil salinity inversion of Abbey Lake Oasis

based on UAV hyperspectral imagery; (Jia et al., 2022) used an RF

model with an R2 of 0.93 in a study of salinity inversion for different

cultivated soil types based on hyperspectral data and machine

learning; (Hu et al., 2019) reached an R2 of 0.94 in quantitative soil

salinity estimation using RF model predictions based on UAV

hyperspectral data; (Cui et al., 2023) used unmanned aerial

multispectral remote sensing and three machine learning

algorithms to invert the soil salinity of farmland at different depths

under crop cover, and the optimal prediction model had an R2 of

0.775. After comparison, the accuracy of the SOA-RF model used in

this study exceeds that of the previous models used (Zhao et al.,

2022). used SOA algorithm to optimize the RF model in the study of

vulnerability of agricultural soil and water resources system, and the

R2 reached 0.9999; (Li et al., 2023) in the prediction of concrete

compressive strength showed that the SOA-RF model outperformed

ANN, ELM and empirical models; (Zhou et al., 2023) used the SOA-

RF model in a study of maximum surface settlement prediction with
FIGURE 13

Soil Salinity (EC1:5) Mapping Based on Optimal Strategy and SOA-RF Modeling.
FIGURE 14

Thermogram of correlation between 0 to 2.0 order spectra and
soil EC1:5.
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an R2 of 0.9372. In this study, the SOA-RF model was innovatively

used for the inversion of soil EC1:5, and the parameters of the RF

model were optimized using the SOA algorithm, and there was a

great improvement in the accuracy. A comparison of the outputs of

the traditional RF and the SOA-RF model is shown in Figure 16, and

although the traditional RF showed better results in the training set,

the performance in the test set was very poor, and the suppression of

the overfitting problem can be seen in the SOA-RF.
5.4 Research characteristics and limitations

To cope with the complex scenarios of vegetation and film cover

during the cotton growing season, a method of quantitatively

extracting soil salinity from cotton fields covered with film has

been developed by combining spectral processing, band selection,

spectral indices, texture features and machine learning algorithms,

with the advantages of speed, simplicity, and non-destructive

nature, with the main theme of “Salinity Information Extraction

in Cotton Fields”, using hyperspectral remote sensing by unmanned

aerial vehicle (UAV) as a means to enhance soil salinity monitoring
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in cotton fields, and providing a useful reference to optimize the

irrigation technology in cotton fields.

Remote sensing by drones offers the possibility of obtaining

crop growth information on a large scale and continuously.

However, the area of remote sensing by drones is still limited,

and future work needs to be carried out in conjunction with satellite

remote sensing. And in the subsequent research, based on the UAV

hyperspectral data, applying the developed optimal prediction

model to map the soil salinity distribution in different fertility

periods of cotton, we can try to explore the distribution law of soil

salinity in different fertility periods of cotton, grasp the health status

of cotton in different periods, put forward countermeasures to deal

with excessive accumulation of soil salinity, and safeguard the

cotton yield from the impact of soil salinity.
6 Conclusions

In this study, single-band features, texture features, and three-

band features are constructed based on S-G, SNV, and FOD-

processed hyperspectral data through a series of feature
FIGURE 15

SOA-RF training set and test set results.
FIGURE 16

Comparison of SOA-RF and RF output results.
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construction methods, and three modeling strategies are established

using feature variables. The main results are as follows:
Fron
(1) The SNV treatment amplified the spectral properties and

the correlation between soil EC1:5 and spectra varied

with order.

(2) 1.9 order differentiation is the best differentiation order for

constructing the single-band index; adding texture features

can improve the estimation accuracy of the model, but the

improvement of the accuracy is not obvious; after adding

the three-band index, the estimation accuracy of the model

is obviously improved, and the R2 reaches 0.9476.

(3) SOA-RF provides a dramatic increase in model accuracy

and stability compared to traditional models.
The optimal soil salinity prediction model proposed in this

study can accurately, non-destructively and quickly determine

whether there is excessive salt accumulation in drip irrigation

under the membrane, which is of guiding significance for the

growth condition of cotton, the improvement of cotton yield and

the sustainable development of the agricultural economy in

Xinjiang, and also provides a reference for the regional

prevention and control of soil salinization.
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