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Do lumped-parameter models provide
the correct geometrical damping?
L. Andersen†

†Department of Civil Engineering, Aalborg University, Aalborg, Denmark

Abstract

This paper concerns the formulation of lumped-parameter models for rigid footings
on homogenous or stratified soil. Such models only contain a few degrees of freedom,
which makes them ideal for inclusion in aero-elastic codes for wind turbines and other
models applied to fast evaluation of structural response inthe time domain. However,
the order of a lumped-parameter model must be sufficiently high to provide the cor-
rect dynamic stiffness of the ground. The aim of the present analysis is to examine
the quality of low-order lumped-parameter models with respect to the prediction of
the maximum response during excitation and the geometricaldamping related to free
vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is
determined for each degree of freedom, i.e. horizontal and vertical translation as well
as torsion and rocking. In particular, the necessity of coupling between horizontal
sliding and rocking is discussed.

Keywords: Foundations, soil dynamics, wave propagation, structuralvibration.

1 Introduction

The dynamic response of engineering structures is highly dependent on the impedance
of the foundation. The dynamic response of footings has beenstudied by several
researchers. Torsional vibrations of a rigid circular footing were considered by Luco
and Westmann [1], Veletsos and Nair [2], Novak and Sachs [3] and Aviles and Pérez-
Rocha [4]. The vertical impedance of a flexible circular foundation on a homogeneous
ground was examined by Krenk and Schmidt [5], while Yong et al. [6] considered a
layered soil. Rocking and horizontal sliding of circular footings were considered by
Veletsos and Wei [7], and by Luco [8]. Later, Wong and Luco [9]gave a solution
to the impedance of rigid massless square foundations resting on layered viscoelastic
soil, and Vrettos [10] studied the impedance of a rigid rectangular footing on a half-
space with continuously increasing shear stiffness over depth. A further summary of
the work concerning rocking and sliding of foundations was given by Bu and Lin [11].
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Unfortunately, advanced numerical or analytical models describing the structure
and the subsoil may be computationally inefficient—especially in the case of time-
domain analyses. Alternatively, soil-structure interaction may be accounted for by fit-
ting a lumped-parameter model (LPM) to the results of, for example, a finite-element
(FE) model of the ground. In contrast to the original FE model, the LPM introduces
few degrees of freedom in addition to those of the structure,thus leading to a signifi-
cant reduction in the size of the global system of equations.This is particularly useful
in parametric studies and lifetime analysis of structures.

The present paper concerns the calibration of consistent lumped-parameter models
for rigid footings on a homogeneous or layered half-space with emphasis on three
characteristics of the approximate solution: Firstly, theability of an LPM to reproduce
the maximum response of a structure subject to a transient load is examined; secondly,
the damping of free vibrations is considered. Here, geometrical dissipation due to
wave propagation into the subsoil accounts for the major part of the energy loss in the
structure. Thirdly, the influence of coupling between horizontal sliding and rocking is
examined, since the number of internal degrees of freedom inan LPM may be reduced
significantly if such coupling may be disregarded.

Numerical studies show that the maximum response of the structure may be deter-
mined correctly by the application of an LPM with a few internal degrees of freedom,
indicating that the dynamic stiffness of the footing is preserved. However, an accurate
prediction of free vibrations cannot be achieved with low-order models, suggesting
that geometrical dissipation is not well-represented. This leads to the conclusion that
an LPM with several parameters is necessary to correctly predict the fatigue lifetime
of structures subject to repeated transient loads. Finally, in the case of a footing on a
homogeneous half-space, sliding–rocking coupling may be disregarded with little loss
of accuracy. However, a correct prediction of the geometrical damping in stratified soil
may only be achieved when the coupling is taken into consideration.

2 Model of the ground and footing

The foundation is modelled as a regular hexagonal rigid footing with the side length
r0, heighth0 and mass densityρ0. This geometry is typical for offshore wind turbine
foundations. As illustrated in Fig. 1, the centre of the soil–foundation interface coin-
cides with the origin of the Cartesian coordinate system. The mass of the foundation
and the corresponding mass moments of inertia with respect to the three coordinate
axes then become:

M0 = ρ0h0A0, J1 = J2 = ρ0h0I0 +
1

3
ρ0h

3

0A0, J3 = 2ρ0h0I0, (1a)

whereA0 is the area of the horizontal cross-section andI0 is the corresponding geo-
metrical moment of inertia,

A0 =
3
√

3

2
r2

0, I0 =
5
√

3

16
r4

0. (1b)
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Figure 1: Hexagonal footing on a stratum with three layers over a half-space.

It is noted thatI0 is invariant to rotation of the foundation around thex3-axis. This
property also applies to circular or quadratic foundations.

The ground consists ofJ horizontal layers over a homogeneous half-space (see
Fig. 1). The soil in each layer and the underlying half-spaceis idealised as a linear
viscoelastic, homogeneous and isotropic material defined by the mass densityρj , the
P-wave velocitycj

P and the S-wave velocitycj
S, j = 1, 2, . . . , J + 1 (materialJ +

1 refers to the half-space). Hysteretic damping with the lossfactor ηj is assumed,
knowing well that this provides a non-causal response of theground. However, for
small values ofηj, the error is acceptable [12, 13]. The material damping model is
further discussed below. All interfaces, including the soil–foundation interface, are
rough, i.e. welded contact is assumed.

The surface of the ground is defined byx3 = 0 (see Fig. 1). In the time domain,
and in terms of Cartesian coordinates, the components of thesurface displacement
and traction are denotedui(x1, x2, t) andpi(x1, x2, t), respectively, wherei = 1, 2, 3.
Further,gij represents the Green’s function providing the displacement in directioni
at the observation point(x1, x2, 0) and timet due to a unit force applied in direction
j at the source point(y1, y2, 0) and timeτ . The total displacement at the observation
point then becomes

ui(x1, x2, t) =

∫ t

−∞

∫ ∞

−∞

∫ ∞

−∞

gij(x1 − y1, x2 − y2, t− τ)pj(y1, y2, τ) dy1dy2dτ, (2)

where summation is applied over repeated indices. In Eq. (2)it has been utilised
that the response is linear and that all interfaces are horizontal. This involves that
the Green’s function is invariant to spatial and temporal translation and, in addition
to this, a triple Fourier transformation may be carried out with regard to time and
the two horizontal coordinates. This reduces the convolution (2) to a set of algebraic
equations,

Ūi(k1, k2, ω) = Ḡij(k1, k2, ω)P̄j(k1, k2, ω), (3)
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which must be solved for each combination of the circular frequencyω and the hori-
zontal wavenumbersk1 andk2. Whereas the Green’s functiongij cannot be established
analytically for the stratified half-space, a closed-form solution for its triple Fourier
transformḠij(k1, k2, ω) has been presented by, for example, Sheng et al. [14].

The surface displacementsUi(x1, x2, ω) in the frequency domain and spatial coor-
dinates is established by inverse Fourier transformation of Ūi(k1, k2, ω) with respect
to the horizontal wavenumbers. This operation becomes particularly simple when
performed in polar coordinates [15], which requires the traction Pj(x1, x2, ω) to be
symmetric around thex3-axis. However, the surface displacements due to any distri-
bution of the surface traction can be obtained, for example,by the mesh-free method
proposed by Andersen and Clausen [16]. This is further discussed in Subsection 2.2.

2.1 Impedance of rigid foundations

A rigid footing has three translational and three rotational degrees of freedom as illus-
trated in Fig. 2. In the frequency domain, these are related to the complex amplitudes
of the corresponding forces and moments as

C(ω)Z(ω) = F(ω), (4a)

Z(ω) =
[

V1 V2 V3 Θ1 Θ2 Θ3

]T
, (4b)

F(ω) =
[

Q1 Q2 Q3 M1 M2 M3

]T
. (4c)

In the general case, the impedance matrixC(ω) is fully populated, i.e. all the rigid-
body motions of the footing are interrelated. However, in the present case the foot-
ing is doubly-symmetric and rests on the surface of a horizontally layered stratum.
Further, assuming that the stress resultants act at the centre of the soil–foundation in-
terface, the torsional and vertical displacements are completely decoupled from the
remaining degrees of freedom and the coupling between sliding in thex1-direction

x1 x1

x2x2

x3x3

Θ1

Θ2 Θ3

V1

V2 V3

M1

M2 M3

Q1

Q2 Q3

(a) (b)

Figure 2: Degrees of freedom for a rigid surface footing: (a)displacements and rota-
tions, and (b) forces and moments.
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and rocking in thex2-direction (and vice versa) vanishes, i.e.

C(ω) =

















C11 0 0 0 −C24 0
0 C22 0 C24 0 0
0 0 C33 0 0 0
0 C24 0 C44 0 0

−C24 0 0 0 C55 0
0 0 0 0 0 C66

















. (5)

The resultsC11 = C22, C44 = C55 andC15 = −C24 follow from the fact that the geo-
metrical moment of inertia,I0, of the hexagonal footing is the same for all horizontal
axes through the centre of the soil–foundation interface.

2.2 Numerical procedure

The evaluation of the dynamic stiffness given by Eq. (5) has the following steps:

1. The displacement corresponding to each rigid-body mode is prescribed atL
points distributed uniformly at the soil–foundation interface, cf. Fig. 3.

2. The Green’s function matrix is evaluated in the wavenumber domain along the
k2-axis andḠij(k1, k2, ω) is evaluated by a simple coordinate transformation.

3. The wavenumber spectrum for a simple distributed load with unit magnitude
and rotational symmetry around a point on the ground surfaceis computed.

4. The response at pointl to a load centred at pointm is calculated for all combi-
nations ofl, m = 1, 2, ..., L. This provides a flexibility matrix for the footing.

5. The unknown magnitudes of the loads applied at each of the points are com-
puted. Integration of the stresses over the contact area provides the impedance.

As suggested by Andersen and Clausen [16], a “bell-shaped” load based on a double
Gaussian distribution centred at the source point,m, is applied. The standard deviation
in both horizontal coordinate directions is chosen asr = r0/

√
4L.

x1

x2

x3

m

1
2

3

Pm
3

Figure 3: Discretization of the hexagonal footing. The vertical component of the
“bell-shaped” load at pointm is illustrated.
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3 Lumped-parameter model of the footing

The components of the impedance matrix may be expressed asCij(a0) = KijSij(a0)
(no sum oni, j). Here,Kij = Cij(0) denotes the static stiffness related to the inter-
action of the two degrees of freedomi andj, anda0 = ωr0/c0 is a non-dimensional
frequency withr0 andc0 denoting the side length of the footing and a representative
wave velocity in the ground, respectively.

For simplicity, the subscriptsi andj are omitted in the following, e.g.C(a0) ∼
Cij(a0). Then, as suggested by Wolf [17], the frequency-dependent stiffness coeffi-
cientS(a0) for component(i, j) of the impedance matrix is decomposed into a singu-
lar part,Ss(a0), and a regular part,Sr(a0),

C(a0) = KS(a0), S(a0) = Ss(a0) + Sr(a0). (6)

Here,K is the static stiffness component, and the singular part of the stiffness coeffi-
cient has the form

Ss(a0) = k∞ + ia0c
∞. (7)

The two real constantsk∞ andc∞ are selected so thatKSs(a0) provides the entire
stiffness in the high-frequency limita0 → ∞. For the rigid surface footing the term
Kk∞ vanishes, i.e.k∞ = 0, and the complex stiffness in the high-frequency range
becomes a pure mechanical impedance with

c∞11 = c∞22 =
ρcSA0

K
, c∞33 =

ρcP A0

K
, c∞44 = c∞55 =

ρcPI0

K
, c∞66 =

2ρcSI0

K
, (8)

whereA0 andI0 are given by Eq. (1b). The coupling termsC15 = −C24 vanish in the
high-frequency limit, i.e. there is no interaction betweenrocking and sliding.

The regular partSr(a0) accounts for the remaining part of the dynamic stiffness
and is obtained by fitting a rational filter to the resultsSr(a0) = C(a0)/K − Ss(a0)
obtained by the domain-transformation method, i.e.

Sr(a0) ≈ Ŝr(ia0) =
P (ia0)

Q(ia0)
, (9a)

where the numerator and denominator polynomials are given by

P (ia0) = 1 − k∞ + p1(ia0) + p2(ia0)
2 + . . . + pM−1(ia0)

M−1, (9b)

Q(ia0) = 1 + q1(ia0) + q2(ia0)
2 + . . . + qM (ia0)

M . (9c)

The order of the filter,M , must be sufficiently high to ensure a reasonable fit to the
“exact” solution provided by the domain-transformation method. However, to avoid
wiggling of the approximation outside the fitted range of frequencies,M should not be
too high. In this regard visual inspection of the rational approximation is useful. The
coefficients,pn (n = 1, 2, . . . , M−1) andqm (m = 1, 2, . . . , M), of the numerator and
denominator polynomialsP (ia0) andQ(ia0) must all be real. Otherwise, the rational
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filter cannot be interpreted in terms of temporal derivatives in the time domain and the
solution is not physically sound.

The total approximation ofS(a0) is found by an addition of Eqs. (7) and (9) as
stated in Eq. (6). The approximation ofS(a0) has two important characteristics:

• It is exact in the static limit, sinceS(a0) ≈ Ss(a0) + Ŝr(ia0) → 1 for a0 → 0.

• It is exact in the high-frequency limit. Here,S(a0) → Ss(a0) for a0 → ∞,
becausêSr(ia0) → 0 for a0 → ∞.

Hence, the approximation is double-asymptotic. At intermediate frequencies, the
quality of the fit depends on the order of the rational filter, and the overall accuracy
depends on the discretization of the contact stresses at thesoil–foundation interface.

3.1 Physical interpretation of a rational filter

The polynomial-fraction form (9) of the rational approximation is recast into partial-
fraction form,

Ŝr(ia0) =
M

∑

m=1

Am

ia0 − sm

, (10)

wheresm, m = 1, 2, . . . , M , are the poles of̂Sr(ia0), i.e. the roots ofQ(ia0), and
Am are the corresponding residues. These are generally complex, but as discussed
above the coefficientsqm must all be real. Hence, any complex poles,sm, and the
corresponding residues,Am, must appear as conjugate pairs. When two such terms
are added together, a second-order term with real coefficients appears. Thus, withN
complex conjugate pairs, the total approximation of the dynamic stiffness coefficient
S(a0) can be written as

Ŝ(ia0) = k∞ + ia0c
∞ +

N
∑

n=1

β0n + β1nia0

α0n + α1nia0 + (ia0)2
+

M−N
∑

n=N+1

An

ia0 − sn

, (11)

where2N ≤ M . The real coefficientsα0n, α1n, β0n, andβ1n, appearing in the second-
order terms, are given by

α0n = {sℜn}2 + {sℑn}2, α1n = −2sℜn , (12a)

β0n = −2Aℜ
nsℜn + 2Aℑ

nsℑn , β1n = 2Aℜ
n , (12b)

wheresℜn = ℜ(sn) andsℑn = ℑ(sn) are the real and imaginary parts of the complex
conjugate poles, respectively. Similarly, the real and imaginary parts of the complex
conjugate residues are denoted byAℜ

n = ℜ(An) andAℑ
n = ℑ(An).

The total approximation of the dynamic stiffness given by Eq. (11) consists of three
characteristic types of terms, namely a constant/linear term,M −2N first-order terms
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Figure 4: Discrete-element models: (a) Constant/linear term, (b) standard first-order
term, (c) alternative first-order term (“monkey tail”), (d)standard second-order term
(two internal degrees of freedom), and (e) alternative second-order term (one internal
degree of freedom).

andN second-order terms. These are given as:

• Constant/linear term: k∞ + ia0c
∞, (13a)

• First-order term:
An

ia0 − s
, (13b)

• Second-order term:
β0n + β1nia0

α0n + α1nia0 + (ia0)2
. (13c)

Each of these expressions may be interpreted as the frequency-response function for
a so-called discrete-element model as illustrated in Fig. 4. The spring and damping
coefficients as well as the point masses in these models are uniquely defined in terms
of the coefficients in Eq. (13). A detailed explanation may befound, for example, in
the work by Wolf [17] or Liingaard [18]. Here, it shall only benoted that the opti-
mal solution includes as many complex conjugate pairs as possible modelled by the
alternative second-order system, cf. Fig. 4e, since this reduces the number of internal
degrees of freedom in the resulting lumped-parameter model(LPM) to a minimum for
a given order,M , of the rational approximation.

3.2 Some comments on the fitting of a rational filter

The rational approximation is obtained by curve-fitting ofŜr(ia0) to the regular part of
the dynamic stiffness,Sr(a0), by a weighted least-squares technique. In this process,
a number of requirements must be met:
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1. The response must be accurately described by the lumped-parameter model in
the frequency range relevant for the physical problem beinginvestigated.

2. The “exact” values ofSr(a0) are only computed (or measured) over a finite
range of frequencies,a0 ∈ [0; a0max]. Beyond this frequency range, the singular
part of the dynamic stiffness,Ss(a0), should govern the response. Further, the
values ofSr(a0) are typically only known at a number of discrete frequencies.
The order of the filter should be sufficiently low to avoid wiggling with regard to
both interpolation and extrapolation of the frequency response. In other words,
no spikes are allowed in̂S(ia0) between two frequencies at whichSr(a0) has
been determined, and no tips and dips should appear beyonda0 = a0max.

3. In order to get a stable solution in the time domain, the poles ofŜr(ia0) should
all reside in the second and third quadrant of the complex plane, i.e. the real
parts of the poles must all be negative. In iterative optimisation algorithms
with a finite precision, this requirement should be adjustedto sm < −ε, m =
1, 2, . . . , M , whereε is a small number, e.g.0.01.

To meet the two first requirements, experience shows that theorder of the rational
approximation is advantageously set toM = 4 ∼ 6 for a footing on a homogeneous
half-space andM = 6 ∼ 12 for a footing over a stratified ground. Higher-order
filters are not easily fitted, and lower-order approximations provide a poor match to
the “exact” results. Further, in order to ensure a good fit ofŜr(ia0) to Sr(a0) in the
the low-frequency rangea0 < 0.2 ∼ 2, a higher weight on the squared errors should
be employed in the low-frequency range compared with the weights in the medium-
to-high-frequency range.

Wolf [17] simply suggested to employ the weightw = 103 ∼ 105 at low frequen-
cies and unit weight at higher frequencies. This should leadto a good approximation
in most cases. However, numerical experiments indicate that the fitting ability of the
rational filter is highly sensitive to the choice of the weight functionw = w(a0), and
the guidelines provided by Wolf [17] are not useful in all situations. Hence, as an
alternative, the following fairly general weight functionis proposed:

w(a0) =
1

(1 + (ς1a0)
ς2)

ς3 . (14)

The coefficientsς1, ς2 andς3 are heuristic parameters. Experience shows that values
of aboutς1 = ς2 = ς3 = 2 provide an adequate solution for most foundations in the
low-frequency rangea0 ∈ [0; 2]. This recommendation is justified by the examples
given in the following sections. For analyses involving high-frequency excitation,
lower values ofς1, ς2 andς3 may have to be employed.

To meet the third requirement listed above, i.e. that all poles reside in the second
and third quadrant of the complex plane, the representationof the rational approxima-
tion provided by Eq. (9) is inefficient with regard to the optimisation, or curve-fitting,
process. Specifically, the choice of the polynomial coefficientsqj, j = 1, 2, . . . , m, as
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the optimisation variables is unsuitable, since the constraint that all poles of̂Sr(ia0)
must have negative real parts is not easily incorporated in the optimisation problem.
Therefore, instead of the form (9c), the denominator polynomial in the rational ap-
proximation is written as

Q(ia0) =
N
∏

n=1

(ia0 − sn) (ia0 − s∗n) ·
M−N
∏

n=N+1

(ia0 − sn) . (15)

In this representation,sn, n = 1, 2, . . . , N , areN complex roots ofQ(ia0) ands∗n, n =
1, 2, . . . , N , are their complex conjugates, whereassn, n = N +1, N +2, . . . , M −N
areM − 2N real roots ofQ(ia0).

Thus, in addition to the coefficients of the numerator polynomial P (ia0), the vari-
ables in the optimisation problem are the real and imaginarypartssℜn = ℜ(sn) and
sℑn = ℑ(sn) of the complex polessn, n = 1, 2, . . . , N , and the real polessn, n =
N + 1, N + 2, . . . , M − N . The great advantage of the representation (15) is that the
constraints on the poles are defined directly on each individual variable, whereas in
the formulation withQ(ia0) defined by Eq. (9c), the constraints are given on function-
als of the variables. Hence, the solution is much more efficient and straightforward.
However, Eq. (15) has two disadvantages when compared with Eq. (9c):

• The number of complex conjugate pairs has to be estimated. However, expe-
rience shows that as many of the roots as possible should appear as complex
conjugates—e.g.2N = M should be used ifM is even. This provides a good
fit in most situations and may, at the same time, generate the lumped-parameter
model with fewest possible internal degrees of freedom given that the second-
order discrete-element model shown in Fig. 4(e) is utilised.

• In the representation provided by Eq. (9c), the correct asymptotic behaviour is
automatically ensured in the limitia0 → 0, i.e. the static case, sinceq0 = 1. Un-
fortunately, in the representation given by Eq. (15), an additional equality con-
straint has to be implemented to ensure this behaviour. However, this condition
is much easier implemented into an optimisation algorithm than the constraints
which are necessary in the case of Eq. (9c) in order to preventthe real parts of
the roots from being positive.

Finally, additional constraints are suggested which prevent the imaginary parts of
the complex poles to become much (e.g. 10 times) greater thanthe real parts. If the
real part of the complex polesm vanishes, i.e.sℜm = 0, this results in a second order
pole,{sℑm}2, which is real and positive. Evidently, this will lead to instability in the
time domain. Since computer precision is finite, a real part of a certain size relatively
to the imaginary part of the pole is necessary to ensure a stable solution. All the
above-mentioned constraints have been implemented into a Fortran code based on the
NLPQL optimisation algorithm [19].
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4 A footing on a homogeneous half-space

Firstly, we consider a hexagonal footing on a homogeneous visco-elastic half-space.
The footing has the side lengthr0 = 10 m, the heighth0 = 10 m and the mass
densityρ0 = 2000 kg/m3, and the mass and mass moments of inertia are computed by
Eq. (1). The properties of the soil areρ1 = 2000 kg/m3, E1 = 104 kPa,ν1 = 0.25 and
η1 = 0.03. However, in the static limit, i.e. forω → 0, the hysteretic damping model
leads to a complex impedance in the frequency domain. By contrast, the lumped-
parameter model provides a real impedance, since it is basedon viscous dashpots. This
discrepancy leads to numerical difficulties in the fitting procedure and to overcome
this, the hysteretic damping model for the soil is replaced by a linear viscous model at
low frequencies, in this case below 1 Hz.

In principle, the time-domain solution for the displacements and rotations of the
rigid footing is found by inverse Fourier transformation, i.e.

vi(t) =
1

2π

∫ ∞

−∞

Vi(ω)eiωtdω, θi(t) =
1

2π

∫ ∞

−∞

Θi(ω)eiωtdω, i = 1, 2, 3. (16)

In the numerical computations, the frequency response spectrum is discretized and
accordingly, the time-domain solution is found by a Fourierseries.

4.1 Vertical and torsional motion

According to Eq. 5, the vertical motionv3(t) as well as the torsional motionθ3(t)
(see Fig. 2) are decoupled from the remaining degrees of freedom of the hexagonal
footing. Thus,v3(t) andθ3(t) may be fitted by independent lumped-parameter models.
In the following, the quality of lumped-parameter models based on rational filters of
different orders are tested for vertical and torsional excitation.

For the footing on the homogeneous half-space, rational filters of the order 2–6 are
tested. Firstly, the impedance components are determined in the frequency-domain
by the domain-transformation method presented in Section 2. The lumped-parameter
models are then fitted by application of the procedure described in Section 3.2. The
two components of the normalised impedance,S33 andS66, are shown in Figs. 5 and
6 as functions of the physical frequency,f . It is noted that all the lumped-parameter
models are based on second-order discrete-element models including a point mass, see
Fig. 4(e). Hence, the LPM for each individual component of the impedance matrix,
C(ω), has 1, 2 or 3 internal degrees of freedom.

With reference to Fig. 5, a poor fit of the vertical impedance is obtained withM = 2
regarding the absolute value ofS33 as well as the phase angle. A lumped-parameter
model withM = 4 provides a much better fit in the low-frequency range. However, a
sixth-order lumped-parameter model is required to obtain an accurate solution in the
medium-frequency range, i.e. for frequencies between approximately 1.5 and 4 Hz. As
expected, further analyses show that a slightly better match in the medium-frequency
range is obtained with the weight-function coefficientsς1 = 2 and ς2 = ς3 = 1.
However, this comes at the cost of a poorer match in the low-frequency range. Finally,
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Figure 5: Dynamic stiffness coefficient,S33, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 4
( ), andM = 6 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS33.
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Figure 6: Dynamic stiffness coefficient,S66, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 4
( ), andM = 6 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS66.

14



−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7
−2

−1

0

1

2
−9×10

Time,t [s]

D
is

p
la

ce
m

en
t,v

3
(t

)
[m

]

L
o

ad
,q

3
(t

)
[N

]Order:M = 2

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7
−2

−1

0

1

2
−9×10

Time,t [s]

D
is

p
la

ce
m

en
t,v

3
(t

)
[m

]

L
o

ad
,q

3
(t

)
[N

]Order:M = 4

Figure 7: Responsev3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Figure 8: Responseθ3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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it has been found that no improvement is achieved if first-order terms, e.g. the “mon-
key tail” illustrated in Fig. 4(c), are allowed in the rational-filter approximation.

Figure 6 shows the rational-filter approximations ofS66, i.e. the non-dimensional
torsional impedance. Compared with the results for the vertical impedance, the overall
quality of the fit is relatively poor. In particular the LPM with M = 2 provides a
phase angle which is negative in the low frequency range. Actually, this means that
the geometrical damping provided by the second-order LPM becomes negative for
low-frequency excitation. Furthermore, the stiffness is generally under-predicted and
as a consequence of this an LPM withM = 2 cannot be used for torsional vibrations
of the surface footing. A significant improvement is achieved with M = 4, but even
with M = 6 some discrepancies are observed between the results provide by the LPM
and the rigorous model. Unfortunately, additional studiesindicate that an LPM with
M = 8 does not increase the accuracy beyond that of the sixth-order model.

Next, the dynamic soil–foundation interaction is studied in the time domain. In
order to examine the transient response, a pulse load is applied in the formp(t) =
sin(2πfct) sin(0.5πfct) for 0 < t < 2/fc and p(t) = 0 otherwise. In this
analysis,fc = 2 Hz is utilised, and the responses obtained with the lumped-parameter
models of different orders are computed by application of the Newmarkβ-scheme
[20]. Figure 7 shows the results of the analysis withq3(t) = p(t), whereas the results
for M3(t) = p(t) are given in Fig. 8.

In the case of vertical excitation, Fig. 7 shows that even theLPM with M = 2
provides an acceptable match to the “exact” results achieved by inverse Fourier trans-
formation of the frequency-domain solution. In particular, the maximum response
occurring during the excitation is well described. However, a significant improvement
in the description of the damping is obtained withM = 4. For torsional motion, the
second-order LPM is invalid since it provides negative damping. Hence, the models
with M = 4 andM = 6 are compared in Fig. 8. It is clearly demonstrated that the
fourth-order LPM provides a poor representation of the torsional impedance, whereas
an accurate prediction of the transient response is achieved with the sixth-order model.

4.2 Horizontal sliding and rocking

The next part of the analysis concerns the fitting of lumped-parameter models for
the horizontal sliding and rocking motion of the surface footing, i.e.v2(t) andθ1(t)
(see Fig. 2). As indicated by Eqs. (4) and (5), these degrees of freedom are coupled
via the impedance componentC24. Hence, two analyses are carried out. Firstly, the
quality of lumped-parameter models based on rational filters of different orders are
tested for horizontal and moment excitation. Secondly, thesignificance of coupling is
investigated by a comparison of models with and without the coupling terms.

Similarly to the case for vertical and torsional motion, rational filters of the order
2–6 are tested. The three components of the normalised impedance,S22, S24 = S42

andS44, are shown in Figs. 9 to 11 as functions of the physical frequency,f . Again,
the lumped-parameter models are based on discrete-elementmodel shown in Fig. 4(e),

16



0 1 2 3 4 5 6 7 8
0

2

4

6

8

0 1 2 3 4 5 6 7 8
−1

0

1

2

Frequency,f [Hz]

Frequency,f [Hz]

|S
2
2
|[

-]
a
rg

(S
2
2
)

[r
ad

]

Figure 9: Dynamic stiffness coefficient,S22, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 4
( ), andM = 6 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS22.
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Figure 10: Dynamic stiffness coefficient,S24, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 4
( ), andM = 6 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS24.
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Figure 11: Dynamic stiffness coefficient,S44, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 4
( ), andM = 6 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS44.
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Figure 12: Responsev2(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Figure 13: Responseθ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Figure 14: Responseθ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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which reduces the number of internal degrees of freedom to a minimum. Clearly, the
lumped-parameter models withM = 2 provide a poor fit for all the componentsS22,
S24 andS44. However, Figs. 9 and 11 show that an accurate solution is obtained for
S22 andS44 when a fourth-order model is applied, and the inclusion of anadditional
internal degree of freedom, i.e. raising the order fromM = 4 to M = 6, does not
increase the accuracy significantly. On the other hand, forS24 an LPM withM = 6 is
much more accurate than an LPM withM = 4 for frequenciesf > 3 Hz, see Fig. 10.

Subsequently, the transient response to the previously defined pulse load with cen-
tre frequencyfc = 2 Hz is studied. Figure 12 shows the results of the analysis with
q2(t) = p(t), and the results forM1(t) = p(t) are given in Fig. 13. Further, the results
from an alternative analysis with no coupling of sliding androcking are presented in
Fig. 14. In Fig. 12 it is observed that the LPM withM = 2 provides a poor match to
the results of the rigorous model. The maximum response occurring during the exci-
tation is well described by the low-order LPM. However the damping is significantly
underestimated by the LPM. Since the loss factor is small, this leads to the conclusion
that the geometrical damping is not predicted with adequateaccuracy. On the other
hand, forM = 4 a good approximation is obtained with regard to both the maximum
response and the geometrical damping. As suggested by Fig. 9, almost no further im-
provement is gained withM = 6. For the rocking produced by a moment applied to
the rigid footing, the lumped-parameter model withM = 2 is useless. Here, the geo-
metrical damping is apparently negative. However, the order M = 4 provides a fairly
accurate solution (see Fig. 13) and again little improvement is achieved by raising the
order toM = 6 (this result is not included in the figure).

Alternatively, Fig. 14 shows the result of the time-domain solution for a lumped-
parameter model in which the coupling between sliding and rocking is disregarded.
This model is interesting because the two coupling components S24 andS42 must be
described by separate lumped-parameter models. Thus, the model with M = 4 in
Fig. 14 has four less internal degrees of freedom than the corresponding model with
M = 4 in Fig. 13. However, the two results are almost identical, i.e. the coupling is
not pronounced for the footing on the homogeneous half-space. Hence, the sliding–
rocking coupling may be disregarded without significant loss of accuracy. Increasing
the order of the LPMs forS22 andS44 from 4 to 8 results in a model with the same
number of internal degrees of freedom as the fourth-order model with coupling; but
as indicated by Fig. 14, this does not improve the overall accuracy. Finally, Fig. 10
suggests that the coupling is more pronounced when a load with, for example,fc = 1.5
or 3.5 Hz is applied. However, further analyses, whose results are not presented in this
paper, indicate that this is not the case.

5 A footing on a layered half-space

Next, a stratified ground is considered. The soil consists oftwo layers over homoge-
neous half-space. Material properties and layer depths aregiven in Table 1. This may
correspond to sand over a layer of undrained clay resting on limestone or bedrock.
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Table 1: Material properties and layer depths for layered half-space.

Layer no. h (m) E (MPa) ν ρ (kg/m3) η

Layer 1 8 10 0.25 2000 0.03
Layer 2 16 5 0.49 2200 0.02
Half-space ∞ 100 0.25 2500 0.01

The geometry and density of the footing are unchanged from the analysis of the ho-
mogeneous half-space.

5.1 Vertical and torsional motion

The non-dimensional vertical and torsional impedance components, i.e.S33 andS66,
are presented in Figs. 15 and 16 as functions of the physical frequency,f . In addition
to the domain-transformation method results, the LPM approximations are shown for
M = 2, M = 6 andM = 10. Clearly, low-order lumped-parameter models are not
able to describe the local tips and dips in the frequency response of a footing on a
layered ground. However, the LPM withM = 10 provides a good approximation
of the vertical and torsional impedances for frequenciesf < 2 Hz. It is worthwhile
to note that the lumped-parameter models of the footing on the layered ground are
actually more accurate than the models of the footing on the homogeneous ground.
This follows by a comparison of Figs. 15 and 16 with Figs. 5 and6.

The time-domain solutions for an applied vertical force,q3(t), or torsional mo-
ment,M3(t), are plotted in Fig. 17 and Fig. 18, respectively. Evidently, the lumped-
parameter model withM = 6 provides an almost exact match to the solution ob-
tained by inverse Fourier transformation—in particular inthe case of vertical motion.
However, in the case of torsional motion (see Fig. 18), the model with M = 10 is
significantly better at describing the free vibration afterthe end of the excitation.

5.2 Horizontal sliding and rocking

The non-dimensional impedance componentsS22, S24 = S42 andS44 are shown in
Figs. 19 to 21 as functions of the physical frequency,f . Again, the LPM approxima-
tions withM = 2, M = 6 andM = 10 are illustrated, and the low-order lumped-
parameter models are found to be unable to describe the localvariations in the fre-
quency response. The LPM withM = 10 provides an acceptable approximation of
the sliding, the coupling and the rocking impedances for frequenciesf < 2 Hz, but
generally the match is not as good as in the case of vertical and torsional motion.

The transient response to a horizontal force,q2(t), or rocking moment,M1(t), are
shown in Figs. 22 and 23. Again, the LPM withM = 6 provides an almost exact
match to the solution obtained by inverse Fourier transformation. However, the model
with M = 10 is significantly better at describing the free vibration after the end of the
excitation. This is the case for the sliding,v2(t), as well as the rotation,θ1(t).
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Figure 15: Dynamic stiffness coefficient,S33, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 6
( ), andM = 10 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS33.
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Figure 16: Dynamic stiffness coefficient,S66, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 6
( ), andM = 10 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS66.
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Figure 17: Responsev3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7

−1

0

1

2
−10×10

Time,t [s]

D
is

p
la

ce
m

en
t,θ

3
(t

)
[m

]

L
o

ad
,M

3
(t

)
[N

]Order:M = 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7

−1

0

1

2
−10×10

Time,t [s]

D
is

p
la

ce
m

en
t,θ

3
(t

)
[m

]

L
o

ad
,M

3
(t

)
[N

]Order:M = 10

Figure 18: Responseθ3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Figure 19: Dynamic stiffness coefficient,S22, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 6
( ), andM = 10 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS22.
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Figure 20: Dynamic stiffness coefficient,S24, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 6
( ), andM = 10 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS24.
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Figure 21: Dynamic stiffness coefficient,S44, obtained by the domain-transformation
model (the large dots) and lumped-parameter models withM = 2 ( ), M = 6
( ), andM = 10 ( ). The thin dotted line ( ) indicates the weight func-
tion w (not in radians), and the thick dotted line ( ) indicates the high-frequency
solution, i.e. the singular part ofS44.
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Figure 22: Responsev2(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Figure 23: Responseθ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Figure 24: Responseθ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Finally, in Fig. 24 the results are given for the alternativeLPM, in which the cou-
pling between sliding and rocking has been neglected. It is observed that the maximum
response occurring during loading is predicted with almostthe same accuracy as by
the model in which the coupling is accounted for. However, the geometrical damp-
ing is badly described with regard to the decrease in magnitude and, in particular, the
phase of the response during the free vibration.

6 Conclusion

The paper presents a study of lumped-parameter models applied to time-domain analy-
sis of hexagonal footings on homogeneous or layered soil. Firstly, a short introduction
is given to the domain-transformation method that has been utilised for the construc-
tion of a frequency-domain solution. Secondly, an algorithm is presented that brings
the solution to the time domain by fitting a lumped-parametermodel (LPM) to the
impedance functions for the footing.

For the footing on the homogeneous soil it is found that an LPMwith two internal
degrees of freedom for the vertical and each of the sliding and rocking degrees of free-
dom provides a model of great accuracy. This corresponds to fourth-order rational ap-
proximations for each of the response spectra obtained by the domain-transformation
method. Little improvement is gained by including an additional internal degree of
freedom. Furthermore, it is concluded that little accuracyis lost by neglecting the
coupling between the sliding and rocking motion. However, asixth-order model is
necessary in order to get an accurate representation of the torsional impedance.

Next, a footing on a stratified ground is analysed. Here the response cannot be
predicted with low order models, and an LPM with 3–5 internaldegrees of freedom is
necessary for each nonzero term in the impedance matrix, i.e. rational approximations
of the order 6–10 are required. In particular, it is noted that the impedance term
providing the coupling between sliding and rocking is not easily fitted by an LPM of
low order, i.e. orders below six. The maximum response is well predicted without the
coupling term; however, if the coupling is not accounted for, the geometrical damping
is poorly described. This may lead to erroneous conclusionsregarding the fatigue
lifespan of structures exposed to multiple transient dynamic loads, e.g. offshore wind
turbines.
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