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Do lumped-parameter models provide
the correct geometrical damping?

L. Andersen'

"Department of Civil Engineering, Aalborg University, Aalborg, Denmark

Abstract

This paper concerns the formulation of lumped-parametetatsofor rigid footings
on homogenous or stratified soil. Such models only contagwediegrees of freedom,
which makes them ideal for inclusion in aero-elastic codesvind turbines and other
models applied to fast evaluation of structural respongkariime domain. However,
the order of a lumped-parameter model must be sufficiengi ko provide the cor-
rect dynamic stiffness of the ground. The aim of the preseatyais is to examine
the quality of low-order lumped-parameter models with egsgo the prediction of
the maximum response during excitation and the geometiaraping related to free
vibrations of a hexagonal footing. The optimal order of a pa&u-parameter model is
determined for each degree of freedom, i.e. horizontal @&ntical translation as well
as torsion and rocking. In particular, the necessity of tiogpbetween horizontal
sliding and rocking is discussed.

Keywords: Foundations, soil dynamics, wave propagation, structubation.

1 Introduction

The dynamic response of engineering structures is highggun@ent on the impedance
of the foundation. The dynamic response of footings has Is¢edied by several
researchers. Torsional vibrations of a rigid circular flegtwere considered by Luco
and Westmann [1], Veletsos and Nair [2], Novak and Sachsr{8]Aviles and Pérez-
Rocha [4]. The vertical impedance of a flexible circular fdation on a homogeneous
ground was examined by Krenk and Schmidt [5], while Yong ef@lconsidered a
layered soil. Rocking and horizontal sliding of circulaofimgs were considered by
Veletsos and Wei [7], and by Luco [8]. Later, Wong and Luco ¢@je a solution
to the impedance of rigid massless square foundationsigesti layered viscoelastic
soil, and Vrettos [10] studied the impedance of a rigid negtdar footing on a half-
space with continuously increasing shear stiffness ovethdeA further summary of
the work concerning rocking and sliding of foundations wizeig by Bu and Lin [11].



Unfortunately, advanced numerical or analytical modelscdbing the structure
and the subsoil may be computationally inefficient—esplgcia the case of time-
domain analyses. Alternatively, soil-structure intei@cinay be accounted for by fit-
ting a lumped-parameter model (LPM) to the results of, f@regle, a finite-element
(FE) model of the ground. In contrast to the original FE motte¢ LPM introduces
few degrees of freedom in addition to those of the structimes leading to a signifi-
cant reduction in the size of the global system of equati®hss is particularly useful
in parametric studies and lifetime analysis of structures.

The present paper concerns the calibration of consistergéd-parameter models
for rigid footings on a homogeneous or layered half-spadé emphasis on three
characteristics of the approximate solution: Firstly,abdity of an LPM to reproduce
the maximum response of a structure subject to a transiadiscexamined; secondly,
the damping of free vibrations is considered. Here, geaoattdissipation due to
wave propagation into the subsoil accounts for the majdrqiahe energy loss in the
structure. Thirdly, the influence of coupling between honial sliding and rocking is
examined, since the number of internal degrees of freed@mn iPM may be reduced
significantly if such coupling may be disregarded.

Numerical studies show that the maximum response of thetasteimay be deter-
mined correctly by the application of an LPM with a few intakdegrees of freedom,
indicating that the dynamic stiffness of the footing is preed. However, an accurate
prediction of free vibrations cannot be achieved with lowley models, suggesting
that geometrical dissipation is not well-represented sTéads to the conclusion that
an LPM with several parameters is necessary to correctljigirthe fatigue lifetime
of structures subject to repeated transient loads. Finallye case of a footing on a
homogeneous half-space, sliding—rocking coupling mayisregarded with little loss
of accuracy. However, a correct prediction of the geomatdamping in stratified soill
may only be achieved when the coupling is taken into conataer.

2 Model of the ground and footing

The foundation is modelled as a regular hexagonal rigidifigotvith the side length
ro, heighthy and mass density,. This geometry is typical for offshore wind turbine
foundations. As illustrated in Fig. 1, the centre of the-slmlindation interface coin-
cides with the origin of the Cartesian coordinate systene fmiass of the foundation
and the corresponding mass moments of inertia with respetietthree coordinate
axes then become:

1 .
My = pohoAo, T = T2 = pohoZo + gﬂothm J3 = 2pohoZo, (1a)

where Ay is the area of the horizontal cross-section d@nd the corresponding geo-
metrical moment of inertia,

AO = —T, IQ = —T)- (1b)
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Figure 1. Hexagonal footing on a stratum with three layeer ahalf-space.

It is noted thatZ, is invariant to rotation of the foundation around thgaxis. This
property also applies to circular or quadratic foundations

The ground consists of horizontal layers over a homogeneous half-space (see
Fig. 1). The soil in each layer and the underlying half-spadeealised as a linear
viscoelastic, homogeneous and isotropic material defiyetidomass density’, the
P-wave veIOC|tyc7 and the S-wave veIouty’S, j=12,...,J 4+ 1 (material J +

1 refers to the half-space). Hysteretic damping W|th the I‘asﬂornj Is assumed,
knowing well that this provides a non-causal response ofjtbend. However, for
small values of)’, the error is acceptable [12, 13]. The material damping rhisde
further discussed below. All interfaces, including thel-doundation interface, are
rough, i.e. welded contact is assumed.

The surface of the ground is defined by = 0 (see Fig. 1). In the time domain,
and in terms of Cartesian coordinates, the components ofutace displacement
and traction are denoted(x1, z2, t) andp;(z1, x9, t), respectively, where = 1,2, 3.
Further,g;; represents the Green’s function providing the displacenmegirection:
at the observation poirits;, x2, 0) and timet due to a unit force applied in direction
j at the source pointy,, y2,0) and timer. The total displacement at the observation
point then becomes

$1>$2> / / / gU T1— Y1, T2 — Yo, )pj(y1,y2>7')dy1dy2d7'> (2)

where summation is applied over repeated indices. In Eqit (2ds been utilised
that the response is linear and that all interfaces are dwaiat. This involves that
the Green’s function is invariant to spatial and temporahstation and, in addition
to this, a triple Fourier transformation may be carried oithwegard to time and
the two horizontal coordinates. This reduces the convatui?) to a set of algebraic
equations,

Ui(kl,kQ,W) = Gij(kl,kz,w>Pj(k1,k2,W), (3)



which must be solved for each combination of the circulagdiencyw and the hori-
zontal wavenumbers; andk,. Whereas the Green’s functigp cannot be established
analytically for the stratified half-space, a closed-formiusion for its triple Fourier
transformG;(k1, k2, w) has been presented by, for example, Sheng et al. [14].

The surface displacemertts(z, x2, w) in the frequency domain and spatial coor-
dinates is established by inverse Fourier transformatfcﬂ?iiﬁcl, k2, w) with respect
to the horizontal wavenumbers. This operation becomescphatly simple when
performed in polar coordinates [15], which requires thettoa P;(x;, 22, w) to be
symmetric around thes-axis. However, the surface displacements due to any-distri
bution of the surface traction can be obtained, for exanipiehe mesh-free method
proposed by Andersen and Clausen [16]. This is further dsediin Subsection 2.2.

2.1 Impedance of rigid foundations

A rigid footing has three translational and three rotatlalegrees of freedom as illus-
trated in Fig. 2. In the frequency domain, these are relatelde complex amplitudes
of the corresponding forces and moments as

Cw)Z(w) = F(w), (4a)
Zw) =[Vi V» Vi ©, 6, 5], (4b)
Flw)=[Q1 Q Qs My M, Ma]T- (4c)

In the general case, the impedance mafix) is fully populated, i.e. all the rigid-

body motions of the footing are interrelated. However, i@ tinesent case the foot-
ing is doubly-symmetric and rests on the surface of a hotabnlayered stratum.

Further, assuming that the stress resultants act at theeagfrthe soil-foundation in-

terface, the torsional and vertical displacements are tetelp decoupled from the

remaining degrees of freedom and the coupling betweemgliti the z;-direction

o,

- = T - L |
V1 \A Ql K“
V2 V3 o1 Q2 yQs My
Ty O2 O ry M2 p

€3 T3

(@) (b)

Figure 2: Degrees of freedom for a rigid surface footing:diaplacements and rota-
tions, and (b) forces and moments.



and rocking in thex,-direction (and vice versa) vanishes, i.e.

Ciy 0 0 0 —Cy 0
0 Cy 0 Cy 0 0
0 0 Css 0 0 0 (5)
0 Cy 0 Cu 0 0
—Cyy 0 0 0 Css 0

0 0 0 0 0 Ces

The results’}; = Cy,, Cyy = C55 andC5 = —Cyy follow from the fact that the geo-
metrical moment of inertid,, of the hexagonal footing is the same for all horizontal
axes through the centre of the soil-foundation interface.

2.2 Numerical procedure

The evaluation of the dynamic stiffness given by Eq. (5) hasollowing steps:

1. The displacement corresponding to each rigid-body medaescribed af.
points distributed uniformly at the soil-foundation iritere, cf. Fig. 3.

2. The Green'’s function matrix is evaluated in the wavenundoenain along the
ko-axis andG (k1 ko, w) is evaluated by a simple coordinate transformation.

3. The wavenumber spectrum for a simple distributed load witit magnitude
and rotational symmetry around a point on the ground suriacemputed.

4. The response at poihto a load centred at poimt is calculated for all combi-
nations ofl, m = 1,2, ..., L. This provides a flexibility matrix for the footing.

5. The unknown magnitudes of the loads applied at each of direpare com-
puted. Integration of the stresses over the contact areddeothe impedance.

As suggested by Andersen and Clausen [16], a “bell-shaped! based on a double
Gaussian distribution centred at the source painis applied. The standard deviation
in both horizontal coordinate directions is chosem asry/v/4L.

Figure 3: Discretization of the hexagonal footing. The iattcomponent of the
“bell-shaped” load at point: is illustrated.



3 Lumped-parameter model of the footing

The components of the impedance matrix may be expresseg @s) = £;;5;;(ao)

(no sum on, j). Here,K;; = C;;(0) denotes the static stiffness related to the inter-
action of the two degrees of freedomandj, andag = wry/co is @ non-dimensional
frequency withrq andc, denoting the side length of the footing and a representative
wave velocity in the ground, respectively.

For simplicity, the subscripts and j are omitted in the following, e.d(ag) ~
Ci;(ap). Then, as suggested by Wolf [17], the frequency-depend#intess coeffi-
cientS(aq) for component, j) of the impedance matrix is decomposed into a singu-
lar part,Ss(ag), and a regular parg, (ao),

C(ap) = KS(ap), S(ag) = Ss(ap) + Sr(ap)- (6)

Here, K is the static stiffness component, and the singular pahestiffness coeffi-
cient has the form
Ss(ag) = k= + iape™. (7)

The two real constants> andc> are selected so thdt S,(ag) provides the entire
stiffness in the high-frequency limit, — oo. For the rigid surface footing the term
KE* vanishes, i.ek>* = 0, and the complex stiffness in the high-frequency range
becomes a pure mechanical impedance with

oo so_ PesAo o perAo o perlo o 2pcsTy
0112022277 633277 0442055277 Ce6 — K (8)

whereA, andZ, are given by Eq. (1b). The coupling terig; = —C4 vanish in the
high-frequency limit, i.e. there is no interaction betweecking and sliding.

The regular parfS, (ay) accounts for the remaining part of the dynamic stiffness
and is obtained by fitting a rational filter to the resultgay) = C(ag)/K — Ss(ap)
obtained by the domain-transformation method, i.e.

A P(lao)
Sy(ag) = S,(iag) = ——, 9a
(00) 2 500) = fiag) o)
where the numerator and denominator polynomials are giyen b
P(iao) =1-—-k* +p1(i&0) + pg(i&0)2 + ...+ pM_l(iCLQ)M_l, (gb)
Q(iao) = 1+ qi(iag) + q2(ia0)® + . . . + qar(iag) ™. (9¢)

The order of the filterp/, must be sufficiently high to ensure a reasonable fit to the
“exact” solution provided by the domain-transformationthoel. However, to avoid
wiggling of the approximation outside the fitted range ofifrencies)/ should not be
too high. In this regard visual inspection of the rationgb@ximation is useful. The
coefficientsp, (n =1,2,..., M—1) andg,, (m = 1,2,..., M), of the numerator and
denominator polynomial®(iag) and@(iag) must all be real. Otherwise, the rational



filter cannot be interpreted in terms of temporal derivaivethe time domain and the
solution is not physically sound.

The total approximation of(ay) is found by an addition of Egs. (7) and (9) as
stated in Eq. (6). The approximation §fa,) has two important characteristics:

e Itis exact in the static limit, sincé(ay) ~ S,(ao) + S, (iag) — 1 for ag — 0.

e It is exact in the high-frequency limit. Her&(ag) — Ss(ao) for ap — oo,
becausé, (iag) — 0 for ag — oo.

Hence, the approximation is double-asymptotic. At intetrage frequencies, the
guality of the fit depends on the order of the rational filterd ahe overall accuracy
depends on the discretization of the contact stresses abtkhéoundation interface.

3.1 Physical interpretation of a rational filter

The polynomial-fraction form (9) of the rational approxitioa is recast into partial-
fraction form,

+(1ag) Z A (10)

— iag — sm
wheres,,, m = 1,2,..., M, are the poles of,(ia), i.e. the roots of)(ia), and

A, are the corresponding residues. These are generally conipleas discussed
above the coefficientg,, must all be real. Hence, any complex poles, and the
corresponding residuesl,,,, must appear as conjugate pairs. When two such terms
are added together, a second-order term with real coefficagpears. Thus, withy
complex conjugate pairs, the total approximation of theasyit stiffness coefficient
S(ap) can be written as

: M-N
ﬁOn + ﬁlnlao An
S =k~ + ) 11
(iag) = k> +iapc™ + Z Qo + aipiag + (iag)? n;ﬂ iag — sy, (11)

where2 N < M. The real coefficientsy,,, a1, Bo., ands;,, appearing in the second-
order terms, are given by
= {3%}2 + {57}, pp = —280 (12a)

ﬁ —2ART 4 24353, Bin = 2A%, (12b)
wheres” = R(s,,) ands; = 3(s,,) are the real and imaginary parts of the complex
conjugate poles, respectively. Similarly, the real andgmary parts of the complex
conjugate residues are denotedAly = R(A,) and A7 = (4,,).

The total approximation of the dynamic stiffness given by @4) consists of three
characteristic types of terms, namely a constant/linear,t& — 2N first-order terms
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Figure 4: Discrete-element models: (a) Constant/linean t¢b) standard first-order
term, (c) alternative first-order term (“monkey tail”), (dandard second-order term
(two internal degrees of freedom), and (e) alternative sgarder term (one internal
degree of freedom).

and N second-order terms. These are given as:

e Constant/linear term: £k + iayc™, (13a)
: A,
e First-order term: - , (13b)
1ag — S
e Second-order term: Fon + Prnido (13c)

Qop, + alniao + (ia0>2 .

Each of these expressions may be interpreted as the freguesmonse function for
a so-called discrete-element model as illustrated in Figl'ide spring and damping
coefficients as well as the point masses in these models ayealydefined in terms
of the coefficients in Eq. (13). A detailed explanation maydaend, for example, in
the work by Wolf [17] or Liingaard [18]. Here, it shall only beoted that the opti-
mal solution includes as many complex conjugate pairs asilpesmodelled by the
alternative second-order system, cf. Fig. 4e, since tlisaes the number of internal
degrees of freedom in the resulting lumped-parameter n{@&al) to a minimum for
a given order)/, of the rational approximation.

3.2 Some comments on the fitting of a rational filter

The rational approximation is obtained by curve-fitting@p@iao) to the regular part of
the dynamic stiffnesss, (aq), by a weighted least-squares technique. In this process,
a number of requirements must be met:

10



1. The response must be accurately described by the lumgraghpter model in
the frequency range relevant for the physical problem beiwvegstigated.

2. The “exact” values of5,(aq) are only computed (or measured) over a finite
range of frequencies, € [0; aomax]. Beyond this frequency range, the singular
part of the dynamic stiffness;(ag), should govern the response. Further, the
values ofS,.(ag) are typically only known at a number of discrete frequencies
The order of the filter should be sufficiently low to avoid wiigg with regard to
both interpolation and extrapolation of the frequency oese. In other words,
no spikes are allowed if(ia,) between two frequencies at whidh(a,) has
been determined, and no tips and dips should appear beyoadi ..

3. In order to get a stable solution in the time domain, thepok S, (ia,) should
all reside in the second and third quadrant of the complerelae. the real
parts of the poles must all be negative. In iterative optatias algorithms
with a finite precision, this requirement should be adjusted,, < —s, m =
1,2,..., M, wheres is a small number, e.g.01.

To meet the two first requirements, experience shows thairtter of the rational
approximation is advantageously setltb= 4 ~ 6 for a footing on a homogeneous
half-space and// = 6 ~ 12 for a footing over a stratified ground. Higher-order
filters are not easily fitted, and lower-order approximagipnovide a poor match to
the “exact” results. Further, in order to ensure a good fiﬁoﬁao) to S, (ap) in the
the low-frequency range, < 0.2 ~ 2, a higher weight on the squared errors should
be employed in the low-frequency range compared with thghtsiin the medium-
to-high-frequency range.

Wolf [17] simply suggested to employ the weight= 10? ~ 10° at low frequen-
cies and unit weight at higher frequencies. This should teaxlgood approximation
in most cases. However, numerical experiments indicatelleditting ability of the
rational filter is highly sensitive to the choice of the weifimctionw = w(ao), and
the guidelines provided by Wolf [17] are not useful in allusitions. Hence, as an
alternative, the following fairly general weight functissproposed:

1

1+ (§1a0)§2)§3 : (14)

w(ao) = (

The coefficients, ¢; andc¢; are heuristic parameters. Experience shows that values
of abouts; = ¢; = ¢3 = 2 provide an adequate solution for most foundations in the
low-frequency range, € [0;2]. This recommendation is justified by the examples
given in the following sections. For analyses involving ligequency excitation,
lower values ot;, ¢; and¢z may have to be employed.

To meet the third requirement listed above, i.e. that alepakside in the second
and third quadrant of the complex plane, the representafitive rational approxima-
tion provided by Eg. (9) is inefficient with regard to the aopigation, or curve-fitting,
process. Specifically, the choice of the polynomial coedfitsg;, j = 1,2,...,m, as

11



the optimisation variables is unsuitable, since the cairgtthat all poles o5, (ia)
must have negative real parts is not easily incorporatedaroptimisation problem.
Therefore, instead of the form (9c), the denominator patyiabin the rational ap-
proximation is written as

N M—N
Q(iao) = [ [ (a0 — sn) (iao — s3) - [ (lao — sn)- (15)
n=1 n=N+1
In this representation,,,n = 1,2,..., N, areN complex roots of)(ia) ands}, n =

1,2,..., N, are their complex conjugates, whereasn = N+1, N+2,..., M — N
areM — 2N real roots of)(iay).

Thus, in addition to the coefficients of the numerator potyia P(iay), the vari-
ables in the optimisation problem are the real and imagiparyss”® = R(s,) and
s3 = 3(s,) of the complex poles,, n = 1,2,..., N, and the real poles,, n =
N+1,N+2 ...,M— N. The great advantage of the representation (15) is that the
constraints on the poles are defined directly on each indalidariable, whereas in
the formulation withQ)(ia,) defined by Eq. (9¢), the constraints are given on function-
als of the variables. Hence, the solution is much more efficged straightforward.
However, Eq. (15) has two disadvantages when compared it(OE):

e The number of complex conjugate pairs has to be estimatetiettr, expe-
rience shows that as many of the roots as possible shoulcdaappecomplex
conjugates—e.®@2N = M should be used i/ is even. This provides a good
fit in most situations and may, at the same time, generateithpdd-parameter
model with fewest possible internal degrees of freedomrmgthat the second-
order discrete-element model shown in Fig. 4(e) is utilised

¢ In the representation provided by Eq. (9¢), the correct gggtic behaviour is
automatically ensured in the limii, — 0, i.e. the static case, singg= 1. Un-
fortunately, in the representation given by Eq. (15), antamithl equality con-
straint has to be implemented to ensure this behaviour. Menvthis condition
is much easier implemented into an optimisation algorithemtthe constraints
which are necessary in the case of Eq. (9¢) in order to prékental parts of
the roots from being positive.

Finally, additional constraints are suggested which pretlee imaginary parts of
the complex poles to become much (e.g. 10 times) greatertkieareal parts. If the
real part of the complex pole,, vanishes, i.es® = 0, this results in a second order
pole, {s> }2, which is real and positive. Evidently, this will lead to fability in the
time domain. Since computer precision is finite, a real pbat @ertain size relatively
to the imaginary part of the pole is necessary to ensure dessaftution. All the
above-mentioned constraints have been implemented inboteaR code based on the
NLPQL optimisation algorithm [19].

12



4 A footing on a homogeneous half-space

Firstly, we consider a hexagonal footing on a homogeneamomelastic half-space.
The footing has the side lengtfy = 10 m, the heighth, = 10 m and the mass
densityp, = 2000 kg/m?, and the mass and mass moments of inertia are computed by
Eqg. (1). The properties of the soil agé = 2000 kg/m?, £ = 10* kPa,»' = 0.25 and

n' = 0.03. However, in the static limit, i.e. far — 0, the hysteretic damping model
leads to a complex impedance in the frequency domain. Byrasmtthe lumped-
parameter model provides a real impedance, since it is lmasadcous dashpots. This
discrepancy leads to numerical difficulties in the fittinggadure and to overcome
this, the hysteretic damping model for the soil is replacgd bnear viscous model at

low frequencies, in this case below 1 Hz.

In principle, the time-domain solution for the displacenseand rotations of the
rigid footing is found by inverse Fourier transformatiom, i

1 [ . 1 [ -
vi(t) = %/ Vi(w)e“ dw, 6;(t) = %/ 0;(w)e“'dw, i=1,2,3. (16)

In the numerical computations, the frequency responsetrseds discretized and
accordingly, the time-domain solution is found by a Fousieries.

—0o0 oo

4.1 Vertical and torsional motion

According to Eqg. 5, the vertical motiom;(t) as well as the torsional motiofy(t)
(see Fig. 2) are decoupled from the remaining degrees afdraeof the hexagonal
footing. Thusys(t) andd;(t) may be fitted by independent lumped-parameter models.
In the following, the quality of lumped-parameter modelsdxhon rational filters of
different orders are tested for vertical and torsional tticn.

For the footing on the homogeneous half-space, rationaidityf the order 2—6 are
tested. Firstly, the impedance components are determméukifrequency-domain
by the domain-transformation method presented in Sectidh2 lumped-parameter
models are then fitted by application of the procedure desdrin Section 3.2. The
two components of the normalised impedartgg,and Sgs, are shown in Figs. 5 and
6 as functions of the physical frequendgy, It is noted that all the lumped-parameter
models are based on second-order discrete-element mondielding a point mass, see
Fig. 4(e). Hence, the LPM for each individual component &f itnpedance matrix,
C(w), has 1, 2 or 3 internal degrees of freedom.

With reference to Fig. 5, a poor fit of the vertical impedarsoehtained with\/ = 2
regarding the absolute value 6f; as well as the phase angle. A lumped-parameter
model withM = 4 provides a much better fit in the low-frequency range. Howeve
sixth-order lumped-parameter model is required to obtaia@urate solution in the
medium-frequency range, i.e. for frequencies betweerpately 1.5 and 4 Hz. As
expected, further analyses show that a slightly better imatthe medium-frequency
range is obtained with the weight-function coefficients= 2 and¢;, = ¢ = 1.
However, this comes at the cost of a poorer match in the legtfency range. Finally,
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al"g(533) [rad]

Frequencyy [Hz]

Figure 5: Dynamic stiffness coefficienty;, obtained by the domain-transformation
model (the large dots) and lumped-parameter models Wwith=- 2 (-~ ), M = 4
(- - ),andM = 6 (—). The thin dotted line (- ) indicates the weight func-
tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency

solution, i.e. the singular part of;.

|S66] [-]

arg(SGG) [rad]

Frequencyf [Hz]

Figure 6: Dynamic stiffness coefficieriss, obtained by the domain-transformation
model (the large dots) and lumped-parameter models Wwith=- 2 (- —), M = 4
(- -),andM = 6 (—). The thin dotted line (- ) indicates the weight func-
tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency

solution, i.e. the singular part &kg.
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it has been found that no improvement is achieved if firseotdrms, e.g. the “mon-
key tail” illustrated in Fig. 4(c), are allowed in the ratalrfilter approximation.

Figure 6 shows the rational-filter approximationssg§, i.e. the non-dimensional
torsional impedance. Compared with the results for thecadimpedance, the overall
quality of the fit is relatively poor. In particular the LPM thi M/ = 2 provides a
phase angle which is negative in the low frequency rangeualgt this means that
the geometrical damping provided by the second-order LPbbines negative for
low-frequency excitation. Furthermore, the stiffnessaagyally under-predicted and
as a consequence of this an LPM with = 2 cannot be used for torsional vibrations
of the surface footing. A significant improvement is achaewath M = 4, but even
with M = 6 some discrepancies are observed between the results @toyttie LPM
and the rigorous model. Unfortunately, additional studielcate that an LPM with
M = 8 does not increase the accuracy beyond that of the sixth-orddel.

Next, the dynamic soil-foundation interaction is studiedhe time domain. In
order to examine the transient response, a pulse load igedpplthe formp(t) =
sin(27 f.t) sin(0.57 f.t) for 0 <t < 2/f. and p(t) = 0 otherwise In this
analysis,f. = 2 Hz is utilised, and the responses obtained with the lumedmeter
models of different orders are computed by application ef Newmarks-scheme
[20]. Figure 7 shows the results of the analysis witft) = p(¢), whereas the results
for M;(t) = p(t) are given in Fig. 8.

In the case of vertical excitation, Fig. 7 shows that evenliB® with M = 2
provides an acceptable match to the “exact” results actiibyenverse Fourier trans-
formation of the frequency-domain solution. In particuldre maximum response
occurring during the excitation is well described. Howew®esignificant improvement
in the description of the damping is obtained with = 4. For torsional motion, the
second-order LPM is invalid since it provides negative damgpHence, the models
with M = 4 and M = 6 are compared in Fig. 8. It is clearly demonstrated that the
fourth-order LPM provides a poor representation of theibora impedance, whereas
an accurate prediction of the transient response is aahigik the sixth-order model.

4.2 Horizontal sliding and rocking

The next part of the analysis concerns the fitting of lumpadmeter models for
the horizontal sliding and rocking motion of the surfacetiiog, i.e.v,(t) andé, (t)
(see Fig. 2). As indicated by Egs. (4) and (5), these degregeeriom are coupled
via the impedance componefit,. Hence, two analyses are carried out. Firstly, the
quality of lumped-parameter models based on rational dileérdifferent orders are
tested for horizontal and moment excitation. Secondlystgeificance of coupling is
investigated by a comparison of models with and without thepting terms.

Similarly to the case for vertical and torsional motionjoaal filters of the order
2—6 are tested. The three components of the normalised ampecbs,, Soy = Sy
andSy,, are shown in Figs. 9 to 11 as functions of the physical fraquef. Again,
the lumped-parameter models are based on discrete-eleméet shown in Fig. 4(e),
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|522] [-]

arg(Sgg) [rad]

Frequencyy [Hz]

Figure 9: Dynamic stiffness coefficienty,, obtained by the domain-transformation

model (the large dots) and lumped-parameter models Wwith=- 2 (-~ ), M = 4
(- - ),andM = 6 (—). The thin dotted line (- ) indicates the weight func-

tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency
solution, i.e. the singular part &k,.

|S24] [-]

arg(524) [rad]

Frequencyf [Hz]

Figure 10: Dynamic stiffness coefficiertly,, obtained by the domain-transformation
model (the large dots) and lumped-parameter models Wwith=- 2 (- —), M = 4
(- -),andM = 6 (—). The thin dotted line (- ) indicates the weight func-
tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency

solution, i.e. the singular part 6k.
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arg(S44) [rad]

Frequencyf [Hz]

Figure 11: Dynamic stiffness coefficiertly,, obtained by the domain-transformation
model (the large dots) and lumped-parameter models With= 2 (- -), M = 4
(- —),andM = 6 (—). The thin dotted line (- ) indicates the weight func-
tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency
solution, i.e. the singular part 6f,,.
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which reduces the number of internal degrees of freedom tmamam. Clearly, the
lumped-parameter models wifif = 2 provide a poor fit for all the componenss,,

So4 and Sy. However, Figs. 9 and 11 show that an accurate solution esirodd for
Sy and Sy, when a fourth-order model is applied, and the inclusion oédditional
internal degree of freedom, i.e. raising the order from= 4 to M = 6, does not
increase the accuracy significantly. On the other handyfpan LPM withM = 6 is

much more accurate than an LPM with = 4 for frequenciesf > 3 Hz, see Fig. 10.

Subsequently, the transient response to the previousiyatefiulse load with cen-
tre frequencyf. = 2 Hz is studied. Figure 12 shows the results of the analysis wit
¢2(t) = p(t), and the results fob/, (t) = p(t) are given in Fig. 13. Further, the results
from an alternative analysis with no coupling of sliding andking are presented in
Fig. 14. In Fig. 12 it is observed that the LPM willdi = 2 provides a poor match to
the results of the rigorous model. The maximum responserooguduring the exci-
tation is well described by the low-order LPM. However thengiéng is significantly
underestimated by the LPM. Since the loss factor is smadl Jélads to the conclusion
that the geometrical damping is not predicted with adeqaeteiracy. On the other
hand, forM = 4 a good approximation is obtained with regard to both the maxn
response and the geometrical damping. As suggested by,FEm8st no further im-
provement is gained with/ = 6. For the rocking produced by a moment applied to
the rigid footing, the lumped-parameter model with= 2 is useless. Here, the geo-
metrical damping is apparently negative. However, therokde= 4 provides a fairly
accurate solution (see Fig. 13) and again little improvenseachieved by raising the
order toM = 6 (this result is not included in the figure).

Alternatively, Fig. 14 shows the result of the time-domamtusion for a lumped-
parameter model in which the coupling between sliding am#tiny is disregarded.
This model is interesting because the two coupling compisen and.S,, must be
described by separate lumped-parameter models. Thus,dbelmwith M = 4 in
Fig. 14 has four less internal degrees of freedom than thesponding model with
M = 4 in Fig. 13. However, the two results are almost identical, the coupling is
not pronounced for the footing on the homogeneous halfespeence, the sliding—
rocking coupling may be disregarded without significansloBaccuracy. Increasing
the order of the LPMs fof% and Sy, from 4 to 8 results in a model with the same
number of internal degrees of freedom as the fourth-ordedainwith coupling; but
as indicated by Fig. 14, this does not improve the overallgy. Finally, Fig. 10
suggests that the coupling is more pronounced when a loadfartexamplef. = 1.5
or 3.5 Hz is applied. However, further analyses, whose teané not presented in this
paper, indicate that this is not the case.

5 Afooting on a layered half-space

Next, a stratified ground is considered. The soil consistsoflayers over homoge-
neous half-space. Material properties and layer depthgiaea in Table 1. This may
correspond to sand over a layer of undrained clay restingnoastone or bedrock.
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Table 1. Material properties and layer depths for layerdfispace.

Layer no. h (m) E (MPa) v p (kg/m?) n

Layer 1 8 10 0.25 2000 0.03
Layer 2 16 5 0.49 2200 0.02
Half-space o0 100 0.25 2500 0.01

The geometry and density of the footing are unchanged franattalysis of the ho-
mogeneous half-space.

5.1 Vertical and torsional motion

The non-dimensional vertical and torsional impedance @rapts, i.eSs;3 and Seg,

are presented in Figs. 15 and 16 as functions of the physe@héncy,f. In addition

to the domain-transformation method results, the LPM axprations are shown for
M =2, M =6 andM = 10. Clearly, low-order lumped-parameter models are not
able to describe the local tips and dips in the frequencyoresp of a footing on a
layered ground. However, the LPM withf = 10 provides a good approximation
of the vertical and torsional impedances for frequengies 2 Hz. It is worthwhile

to note that the lumped-parameter models of the footing enapered ground are
actually more accurate than the models of the footing on tiredyeneous ground.
This follows by a comparison of Figs. 15 and 16 with Figs. 5 &nd

The time-domain solutions for an applied vertical forgg(t), or torsional mo-
ment, M;(t), are plotted in Fig. 17 and Fig. 18, respectively. Evideritig lumped-
parameter model witi/ = 6 provides an almost exact match to the solution ob-
tained by inverse Fourier transformation—in particulathia case of vertical motion.
However, in the case of torsional motion (see Fig. 18), thelehaith M = 10 is
significantly better at describing the free vibration aftex end of the excitation.

5.2 Horizontal sliding and rocking

The non-dimensional impedance compone$its So, = Sy and Sy, are shown in
Figs. 19 to 21 as functions of the physical frequernfcyAgain, the LPM approxima-
tions with M = 2, M = 6 and M = 10 are illustrated, and the low-order lumped-
parameter models are found to be unable to describe thevadakions in the fre-
guency response. The LPM witiW = 10 provides an acceptable approximation of
the sliding, the coupling and the rocking impedances fayudenciesf < 2 Hz, but
generally the match is not as good as in the case of verticalasional motion.

The transient response to a horizontal fokgét), or rocking moment)\/, (¢), are
shown in Figs. 22 and 23. Again, the LPM wifti = 6 provides an almost exact
match to the solution obtained by inverse Fourier trans&tion. However, the model
with M = 10 is significantly better at describing the free vibratioreathe end of the
excitation. This is the case for the sliding(t), as well as the rotatior; (¢).
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Figure 15: Dynamic stiffness coefficierl;;, obtained by the domain-transformation

model (the large dots) and lumped-parameter models With= 2 (— ), M = 6
(- —),andM = 10 (—). The thin dotted line (- -) indicates the weight func-

tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency
solution, i.e. the singular part of;.
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Figure 16: Dynamic stiffness coefficiertlss, obtained by the domain-transformation

model (the large dots) and lumped-parameter models With= 2 (- -), M = 6
(- —),andM = 10 (—). The thin dotted line ( - ) indicates the weight func-

tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency
solution, i.e. the singular part &kg.
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Figure 17: Response;(t) obtained by inverse Fourier transformation {) and

lumped-parameter modeH{—). The dots (- - ) indicate the load time history.
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Figure 19: Dynamic stiffness coefficierl;,, obtained by the domain-transformation

model (the large dots) and lumped-parameter models With= 2 (— ), M = 6
(- —),andM = 10 (—). The thin dotted line (- -) indicates the weight func-
tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency

solution, i.e. the singular part &k,.
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Figure 20: Dynamic stiffness coefficierly,, obtained by the domain-transformation
model (the large dots) and lumped-parameter models With= 2 (- -), M = 6
(- —-),andM = 10 (—). The thin dotted line (- ) indicates the weight func-
tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency

solution, i.e. the singular part 6k.
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Figure 21: Dynamic stiffness coefficiertly,, obtained by the domain-transformation
model (the large dots) and lumped-parameter models With= 2 (- -), M = 6
(- —),andM = 10 (—). The thin dotted line (- ) indicates the weight func-
tion w (not in radians), and the thick dotted line-(-) indicates the high-frequency
solution, i.e. the singular part 6f,,.
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Figure 22: Response;(t) obtained by inverse Fourier transformation {) and
lumped-parameter mode{—). The dots (- - ) indicate the load time history.
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Figure 23: Response (¢) obtained by inverse Fourier transformation {) and
lumped-parameter modeH{—). The dots (- - ) indicate the load time history.

-10

x10
= 2 1
= Order: M = 6 (no coupling) =
:’_:/ 105 =
=) —
5 == 1o =
- 7 ~
5 =
8 {-058
Z 3
(@) ) L o L I I L L L -1
0 1 2 3 4 5 6 7
Time, t [s]
%107

—_ 2 1
S .
= Order: M = 10 (no coupling) =
:’_:/ 105 =
=) —
5 -—=_ 1o =

- - 7 ~
5 =
8 {-058
Z 3
(@] -2 L o L I I L L L -1

0 1 2 3 4 5 6 7
Time,t [S]

Figure 24: Responsg (t) obtained by inverse Fourier transformation () and
lumped-parameter model{— ). The dots () indicate the load time history.
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Finally, in Fig. 24 the results are given for the alternativ®M, in which the cou-
pling between sliding and rocking has been neglected. liseosed that the maximum
response occurring during loading is predicted with alntlkstsame accuracy as by
the model in which the coupling is accounted for. Howeves, geometrical damp-
ing is badly described with regard to the decrease in magai&nd, in particular, the
phase of the response during the free vibration.

6 Conclusion

The paper presents a study of lumped-parameter modeledpplime-domain analy-
sis of hexagonal footings on homogeneous or layered sodtlysia short introduction
is given to the domain-transformation method that has bé&ésed for the construc-
tion of a frequency-domain solution. Secondly, an algoniik presented that brings
the solution to the time domain by fitting a lumped-parametedel (LPM) to the
impedance functions for the footing.

For the footing on the homogeneous soil it is found that an AN two internal
degrees of freedom for the vertical and each of the slidimyaoking degrees of free-
dom provides a model of great accuracy. This correspondasitthi-order rational ap-
proximations for each of the response spectra obtainedeogtamain-transformation
method. Little improvement is gained by including an adufisil internal degree of
freedom. Furthermore, it is concluded that little accureciost by neglecting the
coupling between the sliding and rocking motion. Howevesjxh-order model is
necessary in order to get an accurate representation afrsierial impedance.

Next, a footing on a stratified ground is analysed. Here tkparse cannot be
predicted with low order models, and an LPM with 3-5 inteategrees of freedom is
necessary for each nonzero term in the impedance matrixaiienal approximations
of the order 6-10 are required. In particular, it is noted tha@ impedance term
providing the coupling between sliding and rocking is natigditted by an LPM of
low order, i.e. orders below six. The maximum response i$ pveticted without the
coupling term; however, if the coupling is not accounted tloe geometrical damping
is poorly described. This may lead to erroneous conclusiegarding the fatigue
lifespan of structures exposed to multiple transient dyindoads, e.g. offshore wind
turbines.

References

[1] J.E. Luco and R.A. Westmann, “Dynamic Response of Cackbotings”, Journal of Engineer-
ing Mechanics, ASCE, 97(5), 1381-1395, 1971.

[2] A.S. Veletsos and V.V. Damodaran Nair, “Torsional Vitbom of Viscoelastic Foundations”,
Journal of Geotechnical Engineering Division, ASCE, 10t5-246, 1974.

[3] M. Novak and K. Sachs, “Torsional and Coupled VibratiohEmbedded Footings”, Earthquake
Engineering and Structural Dynamics, 2, 11-33, 1973.

27



(4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

J. Avilés and L.E. Pérez-Rocha, “A Simplified ProcedweTorsional Impedance Functions of
Embedded Foundations in a Soil Layer”, Computers and Ghoieg, 19(2), 97-115, 1996.

S. Krenk and H. Schmidt, “Vibration of an Elastic CircuRlate on an Elastic Half Space—A
Direct Approach”, Journal of Applied Mechanics, 48, 161818981.

Y. Yong, Ruichong Zhang and J. Yu, “Motion of Foundation a Layered Soil Medium—I.
Impedance Characteristics”, Soil Dynamics and Earthqiaigeneering, 16, 295-306, 1997.

A.S. Veletsos and Y.T. Wei, “Lateral and Rocking Vibatiof Footings”, Journal of Soil Me-
chanics and Foundation Engineering Division, ASCE, 97,734248, 1971.

J.E. Luco, “Vibrations of a Rigid Disk on a Layered Visdagtic Medium”, Nuclear Engineering
and Design, 36(3), 325—-240, 1976.

H.L. Wong and J.E. Luco, “Tables of Impedance FunctiarsSquare Foundations on Layered
Media”, Soil Dynamics and Earthquake Engineering, 4(2%;,84 1985.

C. Vrettos, “Vertical and Rocking Impedances for RigRdctangular Foundations on Soils with
Bounded Non-homogeneity”, Earthquake Engineering and:gtral Dynamics, 28, 1525-1540,
1999.

S. Bu and C.H. Lin, “Coupled Horizontal-Rocking Impeda Functions for Embedded Square
Foundations at High Frequency Factors”, Journal of EadkeglEngineering, 3(4), 561-587,
1999.

X. Sheng, “Ground Vibrations Generated from TraingfifPthesis, Institute of Sound and Vi-
bration Research, University of Southampton, United Kingg2001.

L. Andersen, “Wave Propagation in Inifinite Structusesl Media”, PhD thesis, Department of
Civil Engineering, Aalborg University, Denmark, 2002.

X. Sheng, C.J.C. Jones and M. Petyt, “Ground Vibrati@m&ated by a Harmonic Load Acting
on a Railway Track”, Journal of Sound and Vibration, 2258528, 1999.

L. Auersch, “Wave Propagation in Layered Soils: Théioe Solution in Wavenumber Domain
and Experimental Results of Hammer and Railway Traffic Eticin”, Journal of Sound and
Vibration, 173(2), 233-264, 1994.

L. Andersen and J. Clausen. “Impedance of Surface kRgston Layered Ground”, in “Proceed-
ings of The Tenth International Conference on Civil, Stawat and Environmental Engineering
Computing”, B.H.V. Topping (Editor), Stirling, United Kgdom, 2005, Civil-Comp Press, Paper
255.

J.P. Wolf, “Foundation Vibration Analysis Using SingpPhysical Models”, Prentice-Hall, En-
glewood Cliffs, NJ, 1994.

M. Liingaard, “DCE Thesis 3: Dynamic Behaviour of SustiCaissons”, PhD thesis, Depart-
ment of Civil Engineering, Aalborg University, Denmark,G8)

K. Schittkowski, “NLPQL: A Fortran Subroutine for Sahg Constrained Nonlinear Program-
ming Problems”, Annals of Operations Research, 5, 485-5886/86.

N.M. Newmark, “A Method of Computation for Structuralypamics”, ASCE Journal of the
Engineering Mechanics Division, 85(EM3), 67-94, 1959.

28






ISSN 1901-7278
DCE Technical Memorandum No. 5



