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Chapter 1

Introduction

These lecture notes consider the governing partial differential equation (PDE) and
boundary conditions (BC’s) for linear waves propagating in areas, where the varia-
tion of the water depth is small. On the other hand, no restrictions are set up with
respect to the horizontal geometry of the area, and in general the wave fronts are
curved. It is therefore possible at the same time to handle problems with diffraction
and refraction. The local distance between two succeeding wave fronts is denoted
L and the local propagation velocity of the front is denoted c, but notice that both
quantities normally vary in the horizontal plane (x, y), see Figure 1.1.

SWL

z

x
y

h(x,y)

L(x,y)

n

c(x,y)

Figure 1.1: Definition sketch

In chapter 2 and 3 the governing PDE is integrated in the vertical direction. This
removes the z-coordinate from the PDE, and the problem is reduced from 3D to
2D. The new PDE in two dimensions is rather easy to solve numerically. However,
in order to integrate in vertical direction, it is necessary to assume an approximate
vertical variation of the variables. This assumption limits the new PDE to be valid
for mild bottom slopes only.
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1.1 Governing differential equation and boundary

conditions

It is assumed that we have ideal fluid and potential flow. Therefore the equation for
particle velocity, ~v = (u, v, w) reads:

~v = gradϕ (1.1)

where ϕ is the velocity potential and

grad =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

Substitution of equation (1.1) into the continuity equation

div~v = 0 (1.2)

yields the Laplace equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0 (1.3)

At the free surface the dynamic BC reads p = 0. Substitution into the linearized
Bernoulli equation yields:

η = −
1

g

∂ϕ

∂t
for z = 0 (1.4)

The kinematic BC corresponding to a particle on the free surface stays there reads:

∂ϕ

∂z
=
∂η

∂t
+
∂η

∂x

∂ϕ

∂x
+
∂η

∂y

∂ϕ

∂y
for z = η (1.5)

After linearization we have the same BC as we had for linear waves with straight
fronts:

∂η

∂t
=
∂ϕ

∂z
for z = 0 (1.6)

If equation (1.4) is derived with respect to t and equation (1.6) is substituted, we
find:

∂ϕ

∂z
+
1

g

∂2ϕ

∂t2
= 0 for z = 0 (1.7)
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At the bottom the BC reads

∂ϕ

∂n
= 0 for z = −h (x, y) (1.8)

or

gradϕ ∙ ~n = 0 for z = −h (x, y) (1.9)

after use of the expression ∂( )/∂n = grad ( ) ∙ ~n/n where ~n is the normal to the
bottom.

Mathematics tells us that a surface in space may be described by the equation

G(x, y, z) = 0

In this case the function G(x, y, z) is easy to determine, because the bottom is
situated at z = −h(x, y). Therefore the equation for G(x, y, z) reads

G(x, y, z) = z + h(x, y)

As gradG is perpendicular to a surface, where G is a constant, the normal at the
bottom is gradG, or

~n =

(
∂h

∂x
,
∂h

∂y
, 1

)

(1.10)

Now equation (1.9) is rewritten to

∂ϕ

∂x

∂h

∂x
+
∂ϕ

∂y

∂h

∂y
+
∂ϕ

∂z
= 0 for z = −h(x, y) (1.11)

At vertical walls we assume full refection, yielding the BC

∂ϕ

∂n
= 0 (1.12)
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Chapter 2

Regular Waves

2.1 Constant water depth

In case of constant water depth it is possible to find the correct vertical variation
of the variables and to rewrite the 3D Laplace equation to a 2D Helmholz equation
by means of the Method of Separation. In this way we can express the velocity
potential for regular (=harmonic) waves as

ϕ(x, y, z, t) = φ(x, y, t) ∙ f(z)

= φ∗(x, y) ∙ sin (ωt+ δ(x, y)) ∙ f(z)

= φ∗(x, y) ∙ cos δ(x, y) ∙ sinωt ∙ f(z)

+φ∗(x, y) ∙ sin δ(x, y) ∙ cosωt ∙ f(z)

= φ∗1(x, y) ∙ sinωt ∙ f(z) + φ
∗
2(x, y) ∙ cosωt ∙ f(z) (2.1)

where

ω =
2π

T
sin(a+ b) = sin a ∙ cos b+ cos a ∙ sin b

φ∗1 = φ∗ ∙ cos δ

φ∗2 = φ∗ ∙ sin δ

At a given point (x, y, z) the potential is thus a harmonic function with amplitude
φ∗(x, y) ∙ f(z) and phase angle δ(x, y).

In order to find the potential along a vertical we must therefore determine the 2
variables depending x and y, i.e. φ∗(x, y) and δ(x, y) (or φ∗1(x, y) and φ

∗
2(x, y))

together with the function describing the vertical variation, f(z).

The surface elevation is found by means of equation (1.4), and in principle the
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expression for η can be written:

η(x, y, t) = a(x, y) ∙ sin (ωt+ δη(x, y)) (2.2)

where a(x, y) is the amplitude and δη(x, y) is the phase angle. As shown above
equation (2.2) may be rewritten to

η(x, y, t) = a(x, y) ∙ cos δη(x, y) ∙ sinωt+ a(x, y) ∙ sin δη(x, y) ∙ cosωt

= a1(x, y) ∙ sinωt+ a2(x, y) ∙ cosωt (2.3)

It is seen that the surface elevation is determined when either a(x, y) and δη(x, y)
or a1(x, y) and a2(x, y) are determined.

The expression for the velocity potential

ϕ = φ(x, y, t) ∙ f(z) (2.4)

is substituted into equation (1.3) rewritten to

∇2ϕ+
∂2ϕ

∂z2
= 0 , where ~∇ =

(
∂

∂x
,
∂

∂y

)

This yields

∇2φ f + f ′′ φ = 0

which after division by φ f reads:

−
∇2φ
φ
=
f ′′

f
= K (2.5)

This equation can only be satisfied for all values of (x, y, z), if K = constant. This
yields:

f ′′(z)−K f(z) = 0 (2.6)

and

∇2φ+K φ = 0 (2.7)

A negative value of K corresponds to a periodic variation f with z (sine or cosine).
That option must be rejected, beacuse all particle motions created by traveling
waves are decreasing downwards.

A positive value, K = λ2 > 0, yields:

f(z) = B cosh λz + C sinh λz
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where B and C are constants.

The bottom BC may be written f ′(−h) = 0 due to constant water depth giving:

B = C
coshλh

sinhλh

If this expression is substituted into the expression for f(z) one finds

f(z) = C
cosh λ(z + h)

sinh λh
(2.8)

where the identity

coshλ (z + h) = cosh λh ∙ coshλ z + sinhλh ∙ sinhλ z

has been applied. Now equation (2.8) is rewritten to

f(z) =
C

tanh λh

cosh λ(z + h)

cosh λh

= C1
cosh λ(z + h)

cosh λh

where C1 = C/ tanh λh. This leads to this expression for the potential:

ϕ =
cosh λ(z + h)

cosh λh
C1 ∙ φ

∗(x, y) sin (ωt+ δ(x, y)) (2.9)

Because φ∗(x, y) still is undetermined, no loss of information occurs by choosing
C1 = 1, and the expression for the vertical variation of the potential reads:

f(z) =
cosh λ(z + h)

cosh λh
(2.10)

Notice that this expression is valid for both straight and curved wave fronts. The
only thing left is the determination of the coefficient λ.

Equation (2.9) is substituted into the surface condition

∂ϕ

∂z
+
1

g

∂2ϕ

∂t2
= 0 for z = 0

yielding

φ∗ ∙ λ
sinh λh

cosh λh
∙ sin(ωt+ δ) +

1

g
φ∗ ∙
cosh λh

cosh λh
(−ω2) sin(ωt+ δ) = 0

6



and consequently

ω2 = gλ tanh λh (2.11)

The constant λ can be found from this equation, when ω = (2 π)/T is given. The
equation is named the dispersion equation for linear waves with curved fronts.

Equation (2.11) is now compared to the dispersion equation for 1. order waves with
straight fronts, i.e.

ω2 = gk tanh kh (2.12)

where k is the ordinary wave number defined as

k =
2π

L
(2.13)

and L is the wave length for waves with straight fronts.

For given values of water depth and wave period, the two dispersion equations are
identical and their solutions has to be equal, i.e.

λ = k (2.14)

Consequently the vertical variation of the potential does not depend of the curvature
of the wave fronts, and the coefficient λ is equal to the ordinary wave number for
waves with straight fronts.

After the determination of the vertical variation of the potential, the horizontal
variation is found from equation (2.7). Substitution of λ = k yields:

∂2φ

∂x2
+
∂2φ

∂y2
+ k2 φ = 0 (2.15)

or

∇2φ+ k2 φ = 0 (2.16)

Equation (2.16) is named the Helmholz equation. It is necessary to determine 2
unknown variables at all points because

φ(x, y, t) = φ∗1(x, y) sinωt+ φ
∗
2(x, y) cosωt
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If equation (2.16) is applied at two different moments, e.g. t = 0 and t = T/4, this
yields these two Helmholz equations:

∇2φ∗2 + k
2 φ∗2 = 0 (2.17)

∇2φ∗1 + k
2 φ∗1 = 0 (2.18)

With proper BC’s, the solution of the two equations provides φ∗1 and φ
∗
2.

Only very few analytical solutions exists. The most well-known is Sommerfelds
solution for an infinitely long, straight breakwater exposed to regular waves with
straight fronts far away from the breakwater, see Figure 2.1.

-4

-2

0

2

4

-4-3-2-101234

-4

-3

-2

-1

0

1

2

3

4

y/Lx/L

Figure 2.1: Elevations around a fully absorbing breakwater parallel to the incoming
fronts

It is seen that waves are able to propagate around corners, a phenomenon called
diffraction. The wave height behind the breakwater is reduced, which is quantified
by the diffraction coefficient Kd. The definition reads

Kd =
H

Hi
(2.19)

where H is the local wave height, and Hi is the wave height if the incoming waves.
Figure 2.2 shows the placement of wave fronts and iso-diffraction curves. The lat-
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Figure 2.2: Diffraction diagram. Fully absorbing breakwater

ter are curves, where Kd has a constant value. Notice that for a fully absorbing
breakwater only the position of the diffraction point matters. The plan form can be
arbitrary ”below” the lee line. Notice also that the curved parts of the fronts are
propagating a bit faster than the straight parts. This is easiest to see near the tip
of the breakwater.

Normally equation (2.17) and (2.18) have to be solved numerically. As the Helmholz
equation is a so-called elliptic PDE, the solution demands considerable computa-
tional efforts. In practice other formulations of the problems are applied as shown
below.

After φ(x, y, t) is determined (i.e. φ∗1 plus φ
∗
2 or φ plus δ are calculated), the particle

9



velocities are determined by

~v = gradϕ

and elevations of the free surface are determined by use of the dynamic BC that
reads:

η = −
1

g

∂ϕ

∂t
for z = 0

Substitution of equation (2.9) with λ = k yields:

η = −
1

g
φ∗
cosh kh

cosh kh
ω cos(ωt+ δ) (2.20)

and thus the expression for elevation reads

η = −
φ∗

g
ω cos(ωt+ δ) (2.21)

If we define p+ as the deviation in pressure from hydrostatic pressure, the linearized
Bernoulli equation may be rewritten to

p+ = −ρ
∂ϕ

∂t
(2.22)

Substitution of equation (2.9) yields:

p+ = −ρ φ∗
cosh k(z + h)

cosh kh
ω cos(ωt+ δ)

Use of equation (2.21) finally yields:

p+ = ρgη ∙
cosh k(z + h)

cosh kh
(2.23)

Notice that exactly the same relation between p+ and η was found for waves with
straight fronts!
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2.2 Slowly varying water depth (mild bottom slopes)

We would like to express the velocity potential as

ϕ = φ(x, y, t) ∙ f(z) (2.24)

i.e. as we did in case of constant water depth. Because we only consider mild bottom
slopes, it seems natural to approximate the vertical variation of the potential by

f ≈
cosh k(z + h)

cosh kh
(2.25)

This corresponds to assume a locally constant water depth. If we also assume the
dispersion equation (2.11) to be valid for waves on mild bottom slopes, we find
λ = k = k(x, y), as h = h(x, y). Consequently the f -function indirectly depends on
x og y, but hopefully only weakly!

Notice that due to clarity an index x, y, z or t in the following means the partial
derivative with respect to x, y, z or t. Derivation with respect to x of

ϕ = φ(x, y, t) ∙ f (2.26)

where

φ(x, y, t) = φ∗1(x, y) sinωt+ φ
∗
2(x, y) cos(ωt) (2.27)

yields:

ϕx = φx f + φ fx

where

fx = fh hx + fk kh hx

Notice that fx = 0 for constant water depth. Differentiation one more time gives:

ϕxx = φxx f + φx fx + φx fx + φ fxx

= φxx f + 2φx fx + φ fxx

= φxx f + f1(x, y, z)

where

f1(x, y, z) = 2φx fx + φ fxx

As f = f(h(x, y), k(x, y), z ) we find f1 = f1(x, y, z), but we have f1(x, y, z) = 0 for
constant water depth.
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Similarly one finds

ϕyy = φyy f + f2(x, y, z)

where

f2(x, y, z) = 2φy fy + φ fyy

and f2(x, y, z) = 0 for constant water depth. Finally we find

ϕzz = φ fzz = φ k
2 f

Substitution of the expressions for ϕxx, ϕyy and ϕzz into the Laplaces equation
yields:

∇2φ f + k2 φ f + f3(x, y, z) = 0

where f3 is a known function. Division by f gives:

∇2φ+ k2 φ+ f4(x, y, z) = 0 (2.28)

where f4 = f3/f is a known function, and we know that f4 = 0 for constant water
depth.

From the PDE, equation (2.28), it is clearly seen that φ must depend on z, i.e.
φ = φ(x, y, z, t). Along a vertical φ = φ(x, y, z, t) will vary due to the dependence
of z, but hopefully the dependence is weak.

Anyway, this dependence is in contradiction to the original definition of φ = φ(x, y, t)
in equation (2.24). We must therefore conclude that in principle the assumption of
locally constant water depth or

f =
cosh h(z + h)

cosh kh

makes it impossible to find a unique function φ = φ(x, y, t).

Therefore we will adopt an approximating function, φ = φ(x, y, t), which ”in aver-
age” fulfills the Laplace equation over the vertical. In general this potential yields:

Δϕ = Δ(φ ∙ f) =
∂2(φ ∙ f)
∂x2

+
∂2(φ ∙ f)
∂y2

+
∂2(φ ∙ f)
∂z2

6= 0

but it fulfills the equation

∫ 0

−h
Δϕdz = 0 (2.29)
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At some places along the vertical we have Δϕ < 0, but this is compensated for at
the places, where Δϕ > 0.

One could instead try to achieve Δϕ ' 0 along the parts of the vertical where the
wave motion is greatest, i.e. near the surface. Berkhoff (1972) chose the weight
factor:

w(z) = cosh k(z + h) (2.30)

which weights all points equal in case of shallow water waves and weights the upper
points most in case of deep water waves. He solved the equation

∫ 0

−h
Δϕ ∙ w(z) dz = 0 (2.31)

and after having discarded small terms, the result was this PDE for φ:

~∇ ∙
(
A(x, y)~∇φ(x,y)

)
+ k2A(x, y)φ(x, y) = 0 (2.32)

where

~∇ =

(
∂

∂x
,
∂

∂y

)

(2.33)

and

A(x, y) =
1

g
(
ω

k
)2 ∙
1

2

(

1 +
2kh

sinh 2kh

)

(2.34)

By means of the dispersion equation (2.11) the expression for A(x, y) is rewritten
to:

A(x, y) =
1

2k
tanh(kh)

(

1 +
2kh

sinh 2kh

)

(2.35)

Substitution of the expressions for propagation velocity c and group velocity cg for
linear waves with straight fronts, i.e.

c =
L

T
=
ω

k
(2.36)

cg = c ∙
1

2

(

1 +
2kh

sinh 2kh

)

(2.37)

leads to the expressions

A(x, y) =
c cg

g
(2.38)
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and

k2A(x, y) =
1

g
ω2
cg

c
(2.39)

After substitution of these expressions equation (2.32) reads

~∇ ∙

(

c cg

(
∂φ

∂x
,
∂φ

∂y

))

+ ω2
cg

c
φ = 0

or

∂

∂x

(

c cg
∂φ

∂x

)

+
∂

∂y

(

c cg
∂φ

∂y

)

+ ω2
cg

c
φ = 0 (2.40)

This equation is named The Mild Slope Equation on elliptic form, because the type
of the PDE is elliptic. The solution of this type of PDE includes a numerical solution
of very large systems of equations. Furthermore, φ(x, y, t) must be found at two
different moments in order to determine φ∗1(x, y) and φ

∗
2(x, y) and thereby φ

∗(x, y)
and δ(x, y). The elliptic version of The Mild Slope Equation is therefore normally
avoided, and instead solutions are based on the equations (3.32) and (3.33).
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Chapter 3

Irregular waves

Hamilton’s principle, see Dingemans (1997) or Yourgran (1979), is applied to derive
an equation, which can describe the propagation of linear, irregular waves in an area
with arbitrary geometry in the horizontal plane.

3.1 Hamilton’s principle

If the kinetic energy of a system is denoted Ekin and the potential energy denoted
Epot, the Lagrangian (or Lagrange’s function), F , is defined as

F = Ekin − Epot (3.1)

Under the motion from one position to another during the interval Δt, Hamilton’s
principle states that the motion will takes in such a way that the integral

∫ Δt

0
F dt (3.2)

is stationary (or insensitive) to small variations of the motion between the two
positions. Within the theory of Calculus of Variations, see e.g. Hansen (1969), this
is normally expressed as:

δ
∫ Δt

0
F dt = 0 (3.3)

If a wave motion is considered the Lagrangian is found by integration of kinetic
and potential energy of the actual volume of water. The potential energy over the
volume with the horizontal cross section area A∗ reads:

Epot =
∫

A∗

(∫ η

−h
ρ g z dz

)

dA∗ −
∫

A∗

(∫ 0

−h
ρ g z dz

)

dA∗

=
∫

A∗

(∫ η

0
ρ g z dz

)

dA∗

15



or

Epot =
∫

A∗

1

2
ρ g η2dA∗ (3.4)

The kinetic energy reads:

Ekin =
∫

A∗

(∫ η

−h

1

2
ρ g v2 dz

)

dA∗ (3.5)

Notice that these expressions in principle are valid for both linear and non-linear
waves.
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3.2 Slowly varying water depth (mild bottom slopes)

Due to the assumptions of potential flow, the the expression for local velocity v
reads:

v2 = ϕ2x + ϕ
2
y + ϕ

2
z (3.6)

where ϕ = ϕ(x, y, z, t) is the velocity potential.

To simplify the calculations it is assumed that the vertical variation of ϕ can be
approximated by the variation corresponding to linear waves on constant water
depth. Therefore the expression for ϕ reads:

ϕ(x, y, z, t) ≈ f ∙ φ(x, y, t) (3.7)

where

f = f(z, h, k) =
cosh k(z + h)

cosh kh
(3.8)

and the ’wave number’ k is calculated by the dispersion equation (2.12),

ω2 = gk tanh kh (3.9)

It is seen directly that φ is the velocity potential at z = 0, named the Still Water
Level (SWL), because

f(0, h, k) = 1 (3.10)

Application of the horizontal gradient operator ~∇,

~∇ =

(
∂

∂x
,
∂

∂y

)

(3.11)

gives that the expression for v2 reads:

v2 = ~∇ϕ ∙ ~∇ϕ+ (ϕz)
2 = |~∇ϕ|2 + (ϕz)

2 (3.12)

= |f ~∇φ+ φ ~∇f |2 + (φ fz)
2 (3.13)

= f 2 |~∇φ|2 + φ2 |~∇f |2 + 2 f φ ~∇φ ∙ ~∇f + φ2 (fz)
2 (3.14)

This expression is substituted into the expression for Ekin, equation (3.5). However,
we are not able to solve the integral with respect to z directly, because the actual
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placement of the free surface is unknown. An approximate expression of Ekin can
be derived under the assumptions mild bottom slopes and small wave heights, i.e.

h

L∗
� 1 og

H

h
� 1 (3.15)

where L∗ is a characteristic length of the variations of the bathymetry. Dingemans
(1997) shows that these assumptions, after a vertical integration where small terms
are discarded, yields:

Ekin =
∫

A∗

1

2
ρ
(
|~∇φ|2A(x, y) + φ2B(x, y)

)
dA∗ (3.16)

where the coefficients A(x, y) and B(x, y) are given by

A(x, y) =
∫ 0

−h
f 2 dz =

1

2k
tanh(kh)

[

1 +
2kh

sinh 2kh

]

(3.17)

B(x, y) =
∫ 0

−h
f 2z dz =

k

2
tanh(kh)

[

1−
2kh

sinh 2kh

]

(3.18)

It is seen that A(x, y) is the same coefficient appearing in the Mild Slope equations
for regular waves.

Substitution of the dynamic BC:

η = −
1

g
ϕt = −

1

g
φt for z = 0 (3.19)

into the expression for Epot gives

Epot =
∫

A∗

1

2
ρ
1

g
φ2t dA

∗ (3.20)

We can now rewrite Hamilton’s principle to

δ
∫ Δt

0

∫

A∗

(
1

2
ρ [A |~∇φ|2 +B φ2]−

1

2
ρ
1

g
φ2t

)

dA∗ dt = 0 (3.21)

As this equation must be fulfilled for an arbitrary choice of the area A∗, Hamilton’s
principle may therefore also written as:

δ
∫ Δt

0

(

A |~∇φ|2 +B φ2 −
1

g
φ2t

)

dt = 0 (3.22)
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The integrand, named the modified Lagrange’s function, reads:

G = A |~∇φ|2 +B φ2 −
1

g
φ2t (3.23)

and it is seen that G depends only on φ and derivatives of φ. From Calculus of
Variations, see e.g. Hansen (1969), is known that equation (3.22) is fulfilled, if G is
the solution of the so called Euler equation, which in this case reads:

Gφ − (Gφx)x − (Gφy)y − (Gφt)t = 0 (3.24)

Substitution of the expression for G yields:

2B φ− (A 2φx)x − (A 2φy)y − (−
2

g
φt)t = 0 (3.25)

or

B φ− (Aφx)x − (Aφy)y +
1

g
φtt = 0 (3.26)

If equation (3.26) is derived with respect to t, we get

B φt − (Aφtx)x − (Aφty)y +
1

g
φttt = 0 (3.27)

Substitution of the dynamic surface BC, equation (3.19), rewritten to

φt = −g η (3.28)

yields

B (−g η)− (A (−g η)x)x − (A (−g η)y)y +
1

g
(−g ηtt) = 0 (3.29)

or

B η − (Aηx)x − (Aηy)y +
1

g
ηtt = 0 (3.30)

Equation (3.26) and equation (3.30) are often named the time dependent Mild Slope
equation for φ and η, respectively.

Notice that both equations are derived without a direct assumption about regular
waves. Only the adopted variation of ϕ in vertical direction corresponds to the
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variation in regular waves, but in principle we could have adopted any other f(z)-
function. The time dependent Mild Slope equation may therefore be applied to
calculate the propagation of irregular waves.

However, the vertical variation of the potential, f(z, h, k), depends on the frequency
of the waves. In irregular waves many frequencies are present, but we are forced to
use only one variation of f , when A and B are calculated.

One might e.g. use f(z, h, k) corresponding to the peak frequency of the variance
spectrum, ωp, dvs.

f(z, h, kp) =
cosh kp(z + h)

cosh kph
(3.31)

where kp is the wave number corresponding to ωp. However, it is clear that errors
will be present, when this variation is used for a frequency ω 6= ωp.

Reliable results are normally obtained if we have a ”narrow” variance spectrum as
e.q. a JONSWAP spectrum truncated at the upper frequency f = 2 fp.

In practice we do not use equation (3.30) to obtain a numerical solution of the wave
field. In order to make an effective generation of the incoming waves, experience has
shown that it is more effective to use equation (3.26) in combination with equation
(3.19). The latter equation is used to rewrite φtt in equation (3.26) and this gives
the following coupled PDE’s:

η = −
1

g
φt (3.32)

and

ηt + (Aφx)x + (Aφy)y − B φ = 0 (3.33)

where the coefficients A and B corresponds to kp, i.e.

A =
1

2kp
tanh(kph)

[

1 +
2kph

sinh 2kph

]

(3.34)

and

B =
kp

2
tanh(kph)

[

1−
2kph

sinh 2kph

]

(3.35)

These coupled PDE’s are easily solved numerically in the time domain by use of an
explicit finite difference method. See e.g. Brorsen and Helm-Petersen (1998).
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All types of Mild Slope equations in 2 dimensions are based on discarding of ”small
terms”, but the assessment of the order of magnitude of these terms is to some extent
based on intuition. The upper limit of the allowable bottom slopes is therefore found
by experiments, and Booij (1983) showed that in general reliable results are obtained
for bottom slopes less than 1 : 3.

3.3 Varying water depth (steep bottom slopes)

Suh et al. (1997) included terms having an order of magnitude (~∇h)2 = h2x+h
2
y and

~∇2h = hxx+hyy in the derivation of the PDE’s. The only effect is that B-coefficient
in equation (3.33) is modified to

B =
k

2
tanh(kh)

[

1−
2kh

sinh 2kh

]

+
ω2

g

(
R1 (~∇h)

2 +R2 ~∇
2h
)

(3.36)

where the expressions for the coefficients R1 = R1(k, h) and R2 = R2(k, h) are given
in Suh et al. (1997). The inclusion of these terms makes it possible in practice to
handle bottom slopes less than 1 : 1.
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3.4 Dissipation

Even though the Mild Slope equations are based on the assumption of ideal fluid
and potential flow, Dingemans (1997) showed that it is possible to include the effect
of dissipation in the boundary layer at the bottom and from wave breaking.

The general expression for dissipation (unit: Watt/m2) reads:

D = W E = W ρ g mo = W ρ g σ
2
η (3.37)

after substitution of

E = ρ g σ2η (3.38)

which is the average energy per m2 of the plane at still water level (unit: Joule/m2).
When D has been determined, W (unit: s−1) is calculated as

W =
D

E
(3.39)

Energy losses are included in the PDE’s by adding of the term -W η at the right
hand side of equation (3.33). The coupled PDE’s then reads:

η = −
1

g
φt (3.40)

and

ηt + (Aφx)x + (Aφy)y − B φ = −W η (3.41)

Normally dissipation due to wave breaking is much more important than dissipation
due to bottom friction.

3.4.1 Wave breaking

The expression for dissipation due to wave breaking reads:

Db = Wb E = Wb ρ g mo = Wb ρ g σ
2
η (3.42)

First Db is determined. Then Wb (unit: s
−1) is determined and finally substituted

into equation (3.41).
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For regular waves Battjes (1978) presented an expression based on arguments of
analogy between a breaking wave and an advancing hydraulic jump. This expression
reads:

Db =
α ρ g f

4

H3m
h

(3.43)

where α ≈ 1, f = 1/T is the wave frequency and Hm is the maximum wave height
possible at that place. Battjes (1978) uses the breaking criterion:

Hm =
0.88

k
tanh(

γ

0.88
kh) (3.44)

where γ ≈ 0.8.

For irregular waves expression for Db is modified to

Db =
α ρ g fp

4

H3m
h
Qb (3.45)

where fp is the peak frequency, and Qb is the probability of wave breaking at that
point. If the distribution of non-broken wave heights is assumed to be a Rayleigh
distribution, the expression for Qb reads:

Qb − 1
lnQb

=
8 σ2η
H2m

(3.46)

Notice that Battjes model only describes statistically how much energy is dissipated
by breaking. However, in practice this is often sufficient, when wave disturbance or
sediment transport has to be assessed.

For irregular waves the term describing dissipation due to wave breaking therefore
reads:

Wb =
Db

E
=
α fp H

3
m Qb

4 h σ2η
(3.47)

3.4.2 Bottom friction

The expression for dissipation due to bottom friction reads:

Df = Wf E = Wf ρ g mo = Wf ρ g σ
2
η (3.48)
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First Df and subsequently Wf (unit: s
−1) are determined. Hereafter Wf is substi-

tuted into equation (3.41).

The shear stress at the bottom is usually assessed by the expression

τo(t) = fw
1

2
ρ |uo(t)| uo(t) (3.49)

where uo(t) is the velocity of the potential flow just above the bottom boundary
layer. According to 1.order theory we have

uo(t) = au sinωt (3.50)

where

au =
π H

T

1

sinh kh
(3.51)

Nielsen (1992) put forward this expression for the friction factor fw:

ln fw = 5.5(
kN

a
)0.2 − 6.3 (3.52)

where a is the amplitude of the particle path at the bottom and kN is the Nikuradse
sand roughness or equivalent sand roughness, i.e. the diameter of grains of sand
causing the same shear stress. From 1. order theory we have

a =
au

ω
(3.53)

According to Dingemans (1997) the instantaneous value of the dissipation due to
bottom friction reads:

Df (t) = τo(t) uo(t) (3.54)

The average value over one wave period reads:

Df =
1

T

∫ T

0
τo(t) uo(t) dt = fw

1

2
ρ a3u

1

T

∫ T

0
| sinωt|3 dt (3.55)

As

1

T

∫ T

0
| sinωt|3 dt =

4

3 π
(3.56)
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the expression for Df reads:

Df =
2

3 π
fw ρ a

3
u (3.57)

Substitution of E = 1/8 ρ g H2 valid for regular waves yields:

Wf =
Df

E
=

2
3 π
fw ρ a

3
u

1
8
ρ g H2

=
16

3 π
fw
a3u
g H2

(3.58)

Finally substitution of au gives:

Wf =
Df

E
=
16 π2

3 g
fw

H

(T sinh kh)3
for regular waves (3.59)

For irregular waves it is not so easy to determine the dissipation due to bottom
friction. The energy in the irregular waves is E = 1/8 ρ g H2rms, Hrms is the root-
mean-square wave height. One might assume that the irregular wave are equivalent
to regular waves having the same content of energy. This leads to regular waves
with period T = Tp and wave height H = Hrms, and the dissipation due to bottom
friction reads:

Wf =
Df

E
=
16 π2

3 g
fw

Hrms

(Tp sinh kh)3
(3.60)

If the distribution of wave heights is a Rayleigh distribution, we have Hrms =
√
8 ση,

which substituted into equation (3.60) yields:

Wf =
Df

E
=
16 π2

3 g
fw

√
8 ση

(Tp sinh kh)3
for irregular waves (3.61)

3.5 Fields of application for Mild Slope equations

In practice results obtained by Mild Slope equations are reliable as long as non-linear
effects are insignificant. This means that harbour disturbance due to short periodic
waves normally is modelled quite well, but the long periodic waves bound to the
wave groups are not modelled automatically. If long periodic waves are suspected
to be important (harbour resonance, motions of moored ships), it is necessary to
generate these long period waves together with the short periodic waves. Also wave
forces from non-breaking waves on large structures are modelled accurately due to
a very accurate modelling of difraction phenomena.
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