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Wastewater remediation is of paramount importance for the water-stressed
modern civilization from the perspective of sustainable development and the
management of limited freshwater resources. Contaminants such as heavy metal
and metalloid ions, toxic dyes, and pathogenic microbes present in the aquatic
ecosystem have adverse effects not only on the environment but also on human
health. Traditional wastewater remediation processes are costly, energy-
consuming, and have less efficiency in removing pollutants from wastewater.
Multi-phasic nanomaterials or nanocomposites have enormous potential for
removing contaminants from water bodies. These materials have an
enormous tunable surface area for interacting with the target toxicants and
are extremely stable in the aquatic system, but they readily agglomerate. Many
research groups have exploited biosorption, bioleaching, and bioprecipitation
capacities of fungal hyphae for wastewater remediation. Recently, researchers
have attempted to explore the synergistic effect of the bionanocomposite of
fungal hyphae and nanomaterials for removing pollutants from wastewater. This
bionanocomposite has already shown promise as a superior material for
wastewater treatment and can easily be separated from the polluted water for
reuse over several cycles. The bionanocomposite-mediated decontamination of
water can lead to a total paradigm shift in wastewater management strategies.
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1 Introduction

Increasing anthropogenic activity and global climate change are pushing the already
water-stressed human civilization into an era where access to fresh water will be limited for a
majority of individuals (Anjum et al., 2019). In today’s world, one-third of the drinking
water requirement is fulfilled from various surface water sources, such as rivers, lakes, dams,
and canals (Edokpayi et al., 2017). Pollution in these water bodies is not only escalating the
potable water crisis but also adversely affecting the environment (Häder et al., 2020). Impact
on the aquatic ecosystem becomes more severe because of the bioaccumulation and
biomagnification of contaminants in water bodies (Kaushal and Singh, 2017). Regarding
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the world’s water consumption, the industrial sector accounts for
22% on average. Nearly 80% of the wastewater produced was
dumped into waterways, which damages human health, pollutes
the environment, and harms aqueous lives (Dutta et al., 2021).
Recycling of this water is of paramount importance for sustainable
development, environment protection, and above all, healthy
human life. Water contaminants can be pathogenic microbes,
such as bacteria, fungi, and protozoa, which mostly come from
domestic sewage. Industrial effluents, mining, unplanned use of
agrochemicals, plastics, vehicular emission, etc., contaminate the
water bodies with heavy metals and metalloids, such as lead (Pb),
cadmium (Cd), mercury (Hg), chromium (Cr), cobalt (Co), nickel
(Ni), arsenic (As), fluoride (F), uranium (U), copper (Cu), and toxic
dyes. All these may cause health disorders such as diarrhea, anemia,
renal damage, encephalopathy, hepatitis, miscarriage, cancer, kidney
damage, respiratory problems, DNA damage, and carcinogenicity
(Baby et al., 2019).

In general, conventional wastewater treatment involves
chemical precipitation, ion exchange, redox reaction, reverse
osmosis, ultrafiltration, adsorption, electrodialysis, and membrane
separation processes (Fu and Wang, 2011). Each treatment process
has its own limitations, including the high cost of design,
construction, and maintenance; higher energy input; complex
operational process; and high-cost chemical additives (Crini and
Lichtfouse, 2019). In this context, scientists are looking for cost-
effective and more efficient materials for wastewater remediation
(Ahmad et al., 2021). Microbes act as a good template, and due to
their rapid growth, easy availability, and fast reproducing capacity,
they are widely used in practical applications (Cheng et al., 2015).
Bioremediation is a process of degradation, transformation, and
adsorption of unwanted materials via microbes such as bacteria,
microalgae, and fungi. Fungi-based remediation is known as
mycoremediation; fungi are excellent scavengers of nature, with a
high capacity of metal uptake capacity, due to the presence of
extracellular and intracellular enzymatic machinery for the
removal of heavy metal ions via biosorption and degradation.
Hence, fungi were acting as a potential bioremediating agent.
Several filamentous fungi, such as Trichoderma, Penicillium,
Aspergillus flavus, A. niger, and A. fumigatus, were used to
remove heavy metal ions from contaminated water (Joshi et al.,
2011; Kumar et al., 2020; Vaksmaa et al., 2023). Recent advances in
nanoscience and technology have paved the way for the
development of better wastewater treatment strategies. An
enhanced surface area to volume ratio, increased reactivity, and
tunable surface functionality make nanoparticles (NPs) suitable as
novel materials for adsorbing heavy metal ions and dyes and
removing pathogenic microbes from contaminated water (Vunain
E et al., 2016). Despite having several advantages, a single
nanomaterial-enabled wastewater management regime has several
technical bottlenecks arising due to nanoparticle agglomeration,
difficulty in separation, nanomaterial leakage into the contact
water, etc. However, to overcome these problems, fungus-based
bionanocomposites (NCs) can be used as superior materials for the
removal of heavy metal ions from wastewater. With negligible
aggregation, excellent enrichment, and high exposure of the
surface area of the nanomaterials, the bionanocomposite can
grow consistently across the entire surface of the
microorganisms. The structure of the composite can be guided

and controlled at the microscale using fungus as the template,
which is low-cost and has great compatibility (Xu et al., 2013).
Over the past decade, there has been a significant increase in
research related to heavy metal ion removal from wastewater.
This growing trend is driven by the growing awareness of
environmental pollution and the adverse effects of heavy metals
on human health. This increasing trend in research articles
(Figure 1) reflects the ongoing efforts to find sustainable, cost-
effective, and efficient solutions for heavy metal removal.
Researchers are also exploring the integration of multiple
techniques to achieve synergistic effects and optimize the overall
performance of wastewater treatment systems.

In this review article, the recent advancements in the use of
different nanocomposites and fungal-based bionanocomposites for
decontaminating wastewater pollutants such as heavy metals
are discussed.

2 Nanocomposites

NCs are multi-phasic solid materials with at least one phase in
the nanoscale (1–100 nm) domain (Dutta et al., 2020). The physico-
chemical properties of NCs depend on the morphology and
interfacial characteristics of the component materials, and these
properties can be precisely tuned with different chemical species to
increase their functionality toward specific targets. NCs have
widespread applications in various sectors, such as the aerospace,
automotive, electronics, and biotechnology industries; bio-/chemical
sensing; drug delivery; microwave absorbing devices; tumor
detection; orthopedic application; and wastewater remediation
(Müller et al., 2017; Beyene and Ambaye, 2019; Said et al., 2020).

Based on the morphology of the component present in the
individual phase, NCs can be classified into three principal types: 1)
nanolayered composite, comprising alternating layers of nanoscale
dimension; 2) nano filamentary composite comprising a matrix with
embedded nanoscale diameter filaments; and 3) nanoparticulate
composite consisting of a matrix with embedded nanoscale particles
(Pandya et al., 2017). Based on structural materials, NCs can be
classified into non-polymer NCs or NPNCs (such as metal/metal,
metal/ceramic, and ceramic/ceramic NPNCs) and polymer NCs or
PNCs (polymer/ceramic, inorganic/organic, inorganic/organic
hybrid, polymeric/layered silicate, polymer/polymer PNCs, and
biocomposites) (Hussain et al., 2006; Omanović-Mikličanin
et al., 2020).

In the last decade, nanomaterials have been used for the
development of novel high-tech materials such as membranes,
adsorption materials, nanocatalysts, functionalized surfaces,
coatings, and reagents for the efficient removal of water
contaminants. However, the wide-scale use of NPs was restricted,
mainly due to their instability, which arises because of their large
surface area and strong interparticle attractive interaction leading to
agglomeration. In NCs, the attractive forces between NPs causing
agglomeration can be overcome without altering the nanoparticle
structure by modulating the interphase properties. Uncontrolled
dispersion of NPs is another challenge, which may result in the
remobilization of contaminants in groundwater (Müller et al., 2017).
Moreover, the long-term ecotoxicological effects of these dispersed
NPs are yet to be fully evaluated, and they may have hazardous
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effects in living organisms in the future. Again, this disadvantage can
be overcome by converting nanomaterials to nanocomposite
(Pandey et al., 2017). Altogether, NCs have great potential to
treat wastewater because of their high surface area, high chemical
reactivity, excellent mechanical strength, and cost-effectiveness.
They can remove bacteria, viruses, and inorganic and organic
pollutants from contaminated water through multimodal
interactions, such as chelation, absorption, and ion exchange
(Beyene and Ambaye, 2019).

3 Nanocomposites for heavy metal ion
removal from wastewater

Metal and metalloid ions such as Pb2+, Cd2+, Hg2+, Cr6+, Co2+,
Ni2+, As3+, F−, U6+, and Cu2+ are the main pollutants present in
wastewater (Wang et al., 2012). Because of high water solubility and
non-biodegradability, heavy metal ions interact with biotic and
abiotic components to be accumulated within living organisms.
The adverse effects of heavy metal exposure on human health are
shown in Figure 2, and the permissible limit of these toxicants in
drinking water, according to the World Health Organization
(WHO) and the Environmental Protection Agency (EPA)
guidelines, is listed in Table 1. The most popular method for the
removal of heavy metals from wastewater is adsorption. However,
the major limitations of popular adsorbent materials are their low
adsorption capacities, relatively weak interactions with metallic ions,
and difficulties in the separation and reusability of wastewater. In
this context, NCs are an excellent adsorbent material for heavy metal
removal because their enhanced surface area provides more sites for
chemical interaction, and surface functionalization increases their
affinity for specific target ions. Nanocomposite-mediated heavy
metal remediation strategies are summarized in Supplementary
Table S1 and explained below.

3.1 Lead removal

Pb contamination in the environment is caused by industrial
activities, mine tailings, and disposal of high-metal wastes, leaded
fossil fuels, paints, the application of fertilizers, animal manures,
sewage sludge, pesticides, untreated wastewater irrigation, coal
combustion residues, spillage of petrochemicals into water, etc.
According to the WHO, the permissible limit of Pb that may be
present in drinking water is 3–10 μg L−1 (Shehu and Lamayi, 2019;
Table 1). Pb toxicity causes damage to various organs, such as the
liver, kidney, lungs, reproductive system, and circulatory system,
and impairs brain functions. It also affects plant growth by
interrupting the transport mechanism and even hindering
photosynthesis.

Various NCs are currently undergoing experiments as
potential materials for the removal of Pb2+ from wastewater
(Lofrano et al., 2016). Polymer-layered silicate nanocomposites
were used earlier because of their capacity to filter various-sized
particles from industrial effluents (Pavlidou and Papaspyrides,
2008). Musico et al. (2013) blended poly(N-vinylcarbazole)
(PVK) with graphene oxide (GO) to make a PVK–GO
nanocomposite that could adsorb heavy metal ions from
wastewater. The higher the amount of GO in the polymer
nanocomposites, the more they adsorbed Pb2+ ions as the
concentration of oxygen-containing functional groups resulted
in an increase in adsorption capacity. The GO–montmorillonite
nanocomposite (GMN) can be prepared by adding stearyl
trimethyl ammonium chloride as a crosslinking agent in the
suspension of montmorillonite and GO. This fabricated
nanocomposite appeared to have a honeycomb texture,
providing the chemical reaction site for the adsorption of Pb2+,
although the efficiency of adsorption was dependent on pH,
contact time, contact temperature, and GMN dosage during the
adsorption process (Zhang et al., 2019). Chitosan/sulfydryl-

FIGURE 1
Dataset for the papers published in the last decade related to the removal of heavy metal ions using nanocomposites and bionanocomposites.
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functionalized GO composite (CS/GO-SH), a novel NC containing
multifunctional groups, such as -OH, -COOH, -SH, and -NH2, was
prepared by Li et al. (2015). –OH, –COOH, and -SH groups were
effective for the removal of Pb2+ ions from an aqueous solution. A
molybdenum sulfide (MoS2)/thiol-functionalized MWCNT
(MoS2/SH- MWCNT) NC was synthesized and tested for the
removal of Pb2+. This could efficiently remove Pb2+ from mine
water effluents (Gusain et al., 2019). Porous metal-organic
frameworks (MOFs) have shown great potential to remove
hazardous compounds from water. They can adsorb pollutants
by their coordinatively unsaturated site or by forming a hydrogen
bond, electrostatic interaction, or π-complex formation (Khan
et al., 2013). A magnetic NC based on aluminum MOF (MIL-
53) was synthesized, and the composite exhibited great removal
capacity as high as 492.4 mg g–1 for Pb2+ (Ricco et al., 2015).

A polyaniline polystyrene (PANI/PS) NC was studied for the
removal of Pb2+ from wastewater, and its efficiency was as high as
95% (Bhadra et al., 2016). Its maximum adsorption efficiency was

achieved at pH 5. Agricultural waste can also be converted into
novel low-cost nanoadsorbents using various physical, biological,
or chemical techniques. A nanoadsorbent made up of chemically
modified orange peel has the potential to remove Pb2+ ions from
polluted water. Silica coating on this orange peel (SiO2@OPW)
made it a more efficient adsorbent. SiO2@OPW showed maximum
Pb2+ ion removal capacity at pH 6 and a concentration of
0.02 g L−1 with a contact time of 60 min (Saini et al., 2020).
Lingamdinne et al. (2020) prepared a mesoporous hexagonal
crystalline iron NC from tangerine peels. This could help
remove Pb2+ from wastewater with 95% efficiency. Another
group made silica from rice husk and coupled it with GO in
situ using (3-aminopropyl) triethoxysilane as a coupling agent.
The obtained NC had an enhanced surface area and was used to
remove Pb2+ from an aqueous solution (Thy et al., 2021). The
hydroxyapatite nanoadsorbent prepared by microwave irradiation
of egg shells also had high adsorption capacity for Pb2+ from
wastewater samples (Safatian et al., 2019). Magnetic NPs are used

TABLE 1 Permissible limit of heavy metals in drinking water, according to WHO and EPA guidelines.

Safe limit Pb Cd Hg Cr Co Ni As Cu F U

WHOa 0.01 mg L−1 0.003 mg L−1 0.001 mg L−1 0.05 mg L−1 0.002 mg L−1 0.02 mg L−1 0.01 mg L−1 2 mg L−1, 1.5 mg L−1, and 0.03 mg L−1

EPA* <0.015 mg L−1 <0.005 mg L−1 0.002 mg L−1 0.1 mg L−1 — — 0.01 mg L−1 1.39 mg L−1, 4 mg L−1, and 0.03 mgL−1

aGuidelines for drinking water quality, WHO (2017) (https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950eng.pdf;jsessionid=0684DFA3138DA620293F1852058E8535?

sequence=1).

*Drinking Water Standards and Health Advisories, EPA (2018) (https://www.epa.gov/system/files/documents/2022-01/dwtable2018.pdf).

FIGURE 2
Adverse effects of heavy metal exposure on human health.
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as an effective adsorbent because of their simplicity of synthesis,
large surface area, and high efficiency for the removal of heavy
metal ions from wastewater. CaO/Fe3O4 was used as a magnetic
adsorbent for the effective removal of Pb2+ from wastewater
(Shakerian and Esmaeili, 2018). The magnetic properties of
magnetite nanocrystals were unaffected in the
magnetite–hydroxyapatite NC, prepared by in situ precipitation
of the calcium phosphate phase in iron oxide colloidal suspension.
This NC has a high affinity for aqueous Pb2+ ions (Yang et al.,
2015). A novel magnetic NC comprising GO and magnetic
chitosan-ionic liquids (GOMCS-ILs) showed excellent Pb2+

removal capacity. The incorporation of ionic liquid not only
improved the dispersivity of the adsorbent but also increased
the adsorption sites for Pb2+ ions (Sun et al., 2016). An
exceptional nanocomposite was made via coating of micron-
sized polystyrene beads (MPS) with MoS2 nanoflowers via the
adhesive agent polydopamine (PDA) between the layers for the
removal of Pb ions from wastewater with a maximum adsorption
capacity of 371.7 mg g−1 (Hao et al., 2023).

The biochar fibril–magnesium oxide composite (BCF@MgO)
was investigated for the removal of Cd and lead ions, with
maximum removal capacities for Cd2+ and Pb2+ 2035.4 and
3410.1 mg g−1, respectively. If these two heavy metal ions
were found in the same system, the removal efficiency could
reach up to 100%, and furthermore, this composite will also
help reduce secondary pollution (Zhao et al., 2023). An
nMgO–bentonite nanocomposite was prepared and tested for
the removal of Pb ions from aqueous solution, and the
maximum adsorption efficiency was found to be 4.5 times that
of bentonite alone; it was 75 mg g−1 at pH 9 and at a temperature of
307 K (Elkhatib et al., 2022). Ateia et al. (2020) found that citrate
auto-combustion techniques have been used to develop magnetic
NPs with graphene adsorbents (CoFe2O4/GR) for the removal of
Pb ions. The outcomes indicated that CoFe2O4/0.02 GR effectively
removed 99% of Pb2+ from water. The prepared samples’
distinctive advantages include ease of separation, high
adsorption per unit area, low cost, and remarkable performance
when recycled. The novel graphene oxide–polyether sulfone
nanocomposite (GPN) membrane was examined for the
removal of heavy metal ions. The removal efficiencies of heavy
metal elimination in descending order of Pb2+, Al3+, Cu2+, and Fe2+

were 94%, 67%, 63%, and 43%, respectively. MSP-PANI was
prepared using sporopollenin, magnetic NPs and polyaniline
Pb2+ were better absorbed from wastewater samples using MSP-
PANI, and at pH 6, adsorbent dosage 40 mg, and contact time
90 min, the maximum adsorption efficiency was found to be 95%
(Mosleh et al., 2022). An eco-friendly NC was synthesized by
coating cellulose nanocrystals (CNCs) with silver (Ag) and zinc
oxide (ZnO) NPs separately and investigated for the removal of Pb
ions. When compared to CNCs, the Ag/CNC nanocomposite
improved Pb2+ uptake by approximately 22% and ZnO/CNC
uptake by approximately 60% (Badawy et al., 2021). An iron
nanoparticle-decorated adsorption material based on
carboxymethylcellulose (CMC) and GO has been produced
hydrothermally to purify heavy metal water. At pH 6 and
contact time 30 min, the GO/CMC/FeNP nanocomposite
showed a maximum removal capacity of 1850 mg g−1 for Pb
ions (Neskoromnaya et al., 2022).

3.2 Cadmium removal

Cd is extremely toxic because of its non-biodegradability and its
ability to accumulate in biotic and abiotic components. Cd is used in
batteries (Ni–Cd batteries), pigments, alloys, fertilizers, and metal
plating. According to WHO guidelines, the permissible Cd
concentration in drinking water is 0.003 mg L−1

(Swaddiwudhipong et al., 2012), and the EPA considers the
presence of Cd in less than 0.005 mg L−1 concentration to be safe
(Gusain et al., 2019; Table 1). Several diseases, such as renal damage,
diarrhea, emphysema, hypertension, testicular atrophy, and skeletal
malformation in the fetus, are related to Cd toxicity (Fowler, 2009).
In Japan, a deadly disease called itai–itai is reported due to Cd
poisoning in the Jinzu River basin (Georgescu et al., 2019).

Biodegradable cellulose nanofibers obtained from sugarcane
waste were doped using nano MgS to increase their adsorption
capacity for Cd2+ ion removal from wastewater. Cellulose nanofibers
acted as a template for the effective dispersion of MgS and also
helped prevent the aggregation of nanoMgS. MgS provided S2+ ions,
which complexed with Cd2+ and caused their removal from
wastewater (Sankararamakrishnan et al., 2019). Magnetic CaCO3

nano adsorbents were found to possess an outstanding capacity to
adsorb Cd2+ ions (Wang et al., 2020). MoS2/SH-MWCNT NC,
synthesized by Gusain et al. (2019), could also remove Cd2+ from
contaminated water effluents. A magnetite/carbon NC was prepared
by Andelescu et al. (2018) and was investigated as an adsorbent for
the effective removal of Cd2+ from wastewater. A cobalt ferrite NC
was prepared, and its efficacy in adsorbing Cd2+ from synthetic
wastewater was studied. At pH 7, 100% of Cd2+ ions were removed
from wastewater (Khoshkerdar and Esmaeili, 2019). The chitosan/
sulfydryl-functionalized GO composite was found to be effective in
adsorbing Cd2+ from wastewater because of the presence of -NH2

and –SH groups in the NC (Li et al., 2015). Fosso-Kankeu et al.
(2017) reported the use of an NC made up of gelatine hydrogel and
clinoptilolite for the adsorption of Cd2⁺ ions from mine effluents.
Sharififard et al. (2018) prepared chitosan and activated carbon from
shrimp shells and grape stalks, respectively. These materials were
used to synthesize activated carbon/iron/chitosan NCs, which
showed excellent Cd2+ removal capacity. In another experiment,
acrylamide was in situ doped into titanium by a sol–gel reaction, and
this NC was used for Cd2+ removal from an aqueous solution
(Sharma and Lee, 2014). BCF@MgO was investigated for the
removal of cadmium and lead ions, and the maximum removal
capacities for Cd2+ and Pb2+ were 2035.4 and 3410.1 mg g−1,
respectively. If these two heavy metal ions were found in the
same system, the removal efficiency could reach up to 100%, and
furthermore, this composite could reduce secondary pollution (Zhao
et al., 2023). An Mg–Fe binary layered hydroxide/graphene oxide
(Mg–Fe LDH/GO) NC was synthesized and investigated for the
removal of Cd2+ from wastewater, and the highest uptake capacity
was found to be 174.83 mg g−1. The Mg–Fe LDH/GO NC efficiently
eliminated 99% of Cd2+ from the environment. It could be usedmore
than four times before it began to diminish its stability and capacity
(Narasimharao et al., 2022). Using a low-temperature plasma-
induced process, polyaniline-functionalized magnetic graphene
oxide (PANI-g-MGO) composites were successfully synthesized.
The removal of Cd in the presence of phenol by the PANI-g-
MGO composite was found to be 99.7%, and the removal of
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phenol in the presence of Cd by the PANI-g-MGO composite was
found to be 99.3% (Zong et al., 2020).

3.3 Mercury removal

The removal of Hg from water resources is a serious
environmental management endeavor due to its short-term or
long-term toxic effects on human health and the aquatic
ecosystem. The major problem with Hg toxicity arises from its
nature of bio-accumulation in the ecosystem (Malar et al., 2015).
Hg2+ ions are released into the ecosystem from different
industries such as paper, plastic, paints, batteries,
pharmaceuticals, and oil refineries. Hg toxicity can lead to
pneumonia, cerebral palsy, kidney damage, etc. (Bernhoft,
2012). Many NCs are now being investigated for their
potential to remove Hg2+ ions from wastewater. Rahmanzadeh
et al. (2016) used a novel adsorbent comprising a
magnetite–polyrhodanine core shell for the efficient removal
of Hg2+ from wastewater. Its maximum adsorption capacity of
29.14 mg g−1 was achieved at pH 6.5° and 25°C with 10 g L−1

nanoadsorbent. A mesoporous magnetic zirconium phosphate
(ZrP/Fe3O4) NC was found to have remarkable potential for the
removal of Hg2+ from contaminated water (Ahamad et al., 2017).
Although ZrP has a strong affinity for toxic metal ions and is
stable in water, toxic metal-loaded ZrP cannot be readily
separated from an aqueous medium. This problem can be
overcome by making an NC of Fe3O4 and ZrP, as this NC can
be separated magnetically. A natural quartz/silver NC was found
to be a more effective adsorbent than nano Ag alone for the
removal of Hg2+ from polluted water sources. The NC could
remove Hg2+ ions with 96% efficiency at 60 min and at pH 6, with
an adsorbent dosage of 0.5 g (El-Tawil et al., 2019). Chavan et al.
(2015) prepared an elastomeric polymer NC made up of ZnSe
nanocrystal-capped polydimethylsiloxane (PDMS), which could
entrap heavy metal ions such as Hg2+ and successfully remove
these toxicants by a cation exchange reaction. CdS/carbon NCs,
synthesized from chestnut and cadmium nitrate, could
successfully remove heavy metals such as Hg2+ from water
(Ebadi et al., 2016). Although activated carbon is one of the
most commonly used adsorbents for pollutant removal, it is
expensive. Al-Ghouti et al. (2019) prepared silane- and sulfur-
modified roasted date pits and applied these for Hg2+ removal
from water. It was observed that Ag NPs uniformly doped in
ordered mesoporous silica can reduce Hg2+ to Hg, which
ultimately reacts with Ag present in the NC, followed by alloy
formation (Ganzagh et al., 2016). A MnO2-coated magnetic NC
(Fe3O4/MnO2) was prepared by the hydrothermal process, and
the thiol-functionalized hierarchical zeolite NC showed good
sorption ability for Hg2+ ions (Xia et al., 2019). The
production and application of CoS2/GO NCs as high-efficiency
adsorbents for Hg2+ removal in a water system was also
addressed. Even when other interfering metal ions exist, CoS2/
GO adsorbents exhibited excellent performance in capturing
Hg2+ from wastewater (1,267 mg g−1), which was comparatively
higher than that of other metal sulfide adsorbents. They also
rapidly reduced Hg2+ contaminants below the critical level for
drinking water (2 ppb) (Wang et al., 2020). By combining

activated carbon (AC) produced by a waste rubber with a
copolymer of diethylenetriamine (DETA) and trimesoyl
chloride (TMC), a novel adsorbent was developed.

The AC/DETA-TMC NC was shown to have an adsorption
capacity of 317.3 mg g−1 for inorganic mercury (Hg2+) and
263.6 mg g−1 for organic mercury (methyl mercury; [CH3Hg]+)
(Tuzen et al., 2022). Malachite green (MG), an anionic dye known as
reactive red 120 (RR120), and Hg2+ were effectively eliminated from
an aqueous solution using low-cost epichlorohydrin crosslinked
chitosan at magnetic Fe3O4/activated carbon NC, known as CH-
EP@Fe3O4/AC. The maximum adsorption capacity is 166.6 mg g−1
(Kaveh and Bagherzadeh, 2022). To eliminate both inorganic
pollutants, such as Hg2+ and Cu2+, and organic pollutants, such
as methylene blue (MB) and crystal violet (CV), from wastewater, an
EDTA-functionalized graphene oxide–chitosan nanocomposite
(GO-EDTA-CS) was developed. For Hg2+, Cu2+, MB, and CV,
the maximum adsorption efficiencies of the adsorbent were
determined to be 324 ± 3.30, 130 ± 2.80, 141 ± 6.60, and 121 ±
3.50 mg g−1, respectively. The presence of a few active functional
groups on the adsorbent, such as -COOH, -OH, and -NH2, was
considered to be the cause of the outstanding adsorption capacity
(Verma et al., 2022).

3.4 Chromium removal

Cr is one of the most common metallic contaminants present in
water. The sources of Cr include different chemical dyes, mining,
electroplating, metal processing, leather tanning, and automobile
manufacturing industries (Rodríguez et al., 2018). Although Cr can
be present in numerous oxidation states (from −2 to +6) depending
on the medium’s chemical and physical properties (Malaviya and
Singh, 2016), in an aqueous solution, Cr is majorly present as
chromite (Cr3+) or chromate (Cr6+) ions. Cr6+ present in water is
1,000 times more toxic than Cr3+ because of its mobility.
Overexposure to Cr6+ ions may lead to various diseases, such as
liver damage, nephritis, stomach distress, and even cancer (Baby
et al., 2019; Maitlo et al., 2019). Khoshkerdar and Esmaeili (2019)
reported that a cobalt ferrite NC could remove 100% Cr3+ from
wastewater at pH 7. This NC could be used as a sorbent and photo-
catalyzer for the purification of contaminated water. Photocatalysis
is an attractive treatment technique for the removal of hexavalent Cr
from wastewater. In acidic water solutions, TiO2 is mostly used for
the photocatalytic reduction of Cr6+ (Cheng et al., 2015). A mixture
of TiO₂ and titanate nanotubes gained popularity as it could
simultaneously remove Cr6+ and Cr3+ from wastewater by a
photocatalytic reduction of Cr6+ followed by the subsequent
adsorption of Cr3+ ions (Figure 3). Previously, the removal of
Cr3+ and Cr6+ was a two-step process. This single-step process
reduced the reaction time by 50%. The combination of
photocatalysis and adsorption plays an important role in
increasing the efficiency of the Cr removal process (Liu et al., 2014).

Several carbon-based NCs were also explored as potential
adsorbents of toxic Cr ions from wastewater. A carboxyl-rich
carbon NC based on natural diatomite was an effective adsorbent
for removing Cr6+ from an aqueous solution. It had optimum
adsorption efficiency at pH 1 (Sun et al., 2020). Han et al. (2018)
fabricated a novel NC of microspherical carbon loaded with a
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nanoscale zerovalent iron to remove Cr6+ from water with 100%
efficiency. The resultant NC could be separated from water because
of its magnetism. Similarly, the magnetic NC of GO and rGO is
applied not only to enhance the adsorption characteristics but also to
allow magnetic recovery (Abu -Nada et al., 2020). Liu et al. (2018)
synthesized a sandwiched NC using GO, MnO2 nanowires, nano
Fe3O4, and polypyrrole for the removal of hexavalent Cr ions from
water via an adsorption–reduction process. In the sandwiched NCs,
GO provided an enhanced surface area, functional groups, and
hydrophilic surface for efficient absorption. Fe3O4 NPs made it
easy to separate, purify, and recover the NC from water. Baby et al.
(2019) reported that various MWCNT-based NC materials, such as
MWCNT/Fe2O3, MWCNT/ZrO2, MWCNT/Fe3O4, MWCNT/
Al2O3, and MWCNT/MnO2/Fe2O3, can be utilized for the
adsorption of Cr6+ ions from water. Among several adsorbents,
silica has some advantages over other materials because of its high
porosity, large surface area, and several functionalities (Dinker and
Kulkarni, 2015). Using a one-pot technique, a PEI-silica NC was
synthesized by uniformly dispersing PEI polymers on silica NPs.
The adsorption capacity of the NC for the removal of Cr ions was
183.7 mg g−1, and the result showed that in addition to the
adsorption of Cr6+, this NC also reduced Cr6+ to Cr3+ (Choi
et al., 2018). Another silica-based adsorbent made from a
glutaraldehyde cross-linked silica gel/chitosan-g-poly (butyl
acrylate) was prepared using the sol–gel method and found to be
very efficient in the removal of toxic chromium ions from
wastewater (Nithya et al., 2016). Zeolitic imidazolate frameworks
ZIF-8 and their various composites with GO and Mg(OH)2/GO
were synthesized using sonochemical and hydrothermal methods.
Among these, ZIF-8/NH2/Mg(OH)2/GO composites have been
demonstrated to be excellent adsorbents for Cr6+ removal
(Begum et al., 2020). A halloysite–bentonite clay/magnetite NC
was synthesized using ball milling and calcination and was
investigated for the removal of chromium. At optimum

conditions, with an adsorbent dosage of 0.5 g, and a contact time
of 60 min, the maximum adsorption capacity was found to be
199 mg g−1 (Masindi et al., 2021). For the removal of Cr6+ ions
from tannery effluent, Fe3O4@polyaniline/itaconic acid (Fe3O4@
PANI/IA) NCs are a potential adsorbent material. The findings
demonstrated that the PANI with IA nanocomposite’s percentage of
Cr6+ elimination was increased (Parthiban et al., 2020). Singh et al.
(2022) developed chitosan/polyvinyl alcohol (CS/PVA), PEI, and
Fe3O4 impregnated beads for wastewater treatment that
simultaneously removed hazardous azo dyes and Cr6+.

3.5 Cobalt removal

Co is an essential element for all organisms as it is a constituent
of vitamin B12. However, overexposure to Co2+ may lead to several
clinical syndromes, including neurological, cardiovascular, and
endocrine deficits (Leyssens et al., 2017). It may also lead to
genetic disorders and cell mutations in humans (Khoo and
Esmaeili, 2018).

A novel adsorbent made up of bentonite embedded in a
polyacrylamide gel acted as a good adsorbent for the removal of
Co2+ from an aqueous solution. The rate of sorption was optimal at
pH 7 (Zhao et al., 2010). Kang et al. (2016) reported a magnetic
cobalt ion-imprinted polymer prepared by precipitation
polymerization using 1-vinylimidazole as the adsorbent. This NC
was reusable and stable and could remove Co2+ with an efficiency of
96%. Tizro and baseri (2017) prepared a magnetite–clinoptilolite
nanoadsorbent using the co-precipitation method to remove Co2+
from wastewater. Moreno-Sader et al. (2019) prepared an NC
comprising polyacrylamide and sodium montmorillonite (PAM/
Na-MMT) by free-radical crosslinking polymerization and used it
for Co2+ adsorption from an aqueous solution. Earlier CNTs had
limited application as an adsorbent of heavy metal ions because of

FIGURE 3
Photocatalytic reduction of Cr+6 into Cr+3 followed by subsequent adsorption of Cr+3 by the composite of TiO2 and titanate nanotubes.
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their intense agglomeration property. However, Hayati et al. (2016)
prepared a poly-amidoamine dendrimer (PAMAM)-functionalized
CNT. This PAMAM/CNT NC had a high absorption capacity for
several heavy metals, including CO2+. A biosorbent made up of
phosphorylated MWCNT-cyclodextrin/silver-doped titanium could
remove Co2+ from the mine effluent sample (Taka et al., 2018).
Mohammadnezhad and Mohammadnezhad (2020) reported the
TiO2/poly (acrylamide–styrene sodium sulfonate) NC prepared
by the in situ intercalative polymerization of polyacrylamide and
styrene sodium sulfonate in the presence of TiO2 NPs as an
inorganic filler. Although this NC could adsorb Co2+ ions from
aqueous solutions, its efficiency was dependent on the concentration
of TiO2 in the NC. Magnetite NPs were coated with tannic acid;
Bagtash et al. (2016) synthesized a magnetite–tannic acid composite
that proved to be a viable sorbent for the pre-concentration of Co2+.
Similarly, a CaO-magnetic NC was found to be a low-cost adsorbent
for the removal of CO2+ fromwastewater (Khoo and Esmaeili, 2018).
The magnetic chitosan/activated carbon bionanocomposite (MCS/
AC) was modified with UiO-66 MOFs, and the resulting
bionanocomposite was used as an effective adsorbent for the
simultaneous removal of Co2+ ions, MG dye, and imidacloprid
(IMI) pesticide from an aqueous solution with ultrasound
assistance. For Co2+, MG, and IMI, the maximal adsorption
capacity values were 44.5 mg g−1, 62.1 mg g−1, and 25.2 mg g−1,
respectively (Motaghi et al., 2022).

Poly-ortho aminophenol and glycerol (P(oAP)/G), a novel NC,
has garnered significant interest in this field because of the special
characteristics of polymer-based composites and has been
investigated for the removal of Co ions from wastewater.
P(oAP)/G efficiency for the removal of Co2+ ions was 96%, and
the adsorption capacity was 117.9 mg g−1, indicating a better
capacity for the treatment of water (Abdelfatah et al., 2022). To
remove Ni2+ and Co2+ ions from synthetic and industrial effluents, a
nanocomposite ceramic containing clay, bovine bone nanopowder,
and human hair was invented. From industrial wastewater, the Ni2+

and Co2+ adsorption efficiency was observed to be greater than 95%.
Up to 60 cycles of renewal and reuse were possible for the adsorbents
(Abdollahi et al., 2022). One-dimensional palygorskite (Pal) and
two-dimensional material GO were crosslinked to produce NCs of
GO-modified palygorskite (mPal-GO), which was used to remove
Co2+ from wastewater. At pH 6.0 and T 298 K, the maximum
adsorption capacity was achieved at 16.9 mg g−1 (Mou et al., 2021).

3.6 Nickel removal

Ni2+ is a toxic metal ion abundant in industrial effluents. The
permissible limit of the presence of Ni2+ ions in potable water is
0.02 mg L−1 (Table 1). The presence of excess Ni2+ in water causes
several diseases in human beings, such as anemia, diarrhea,
encephalopathy, hepatitis, lung and kidney damage,
gastrointestinal distress, pulmonary fibrosis, renal edema, skin
dermatitis, and central nervous system dysfunction (Zhang and
Wang, 2015). Various carbon-based nanomaterials, such as
activated carbon, CNTs, and GO, have the potential to remove
Ni2+ contaminants from wastewater. An Fe3O4/GO/chitosan NC
(FGC) was prepared using the co-precipitation method for the
effective removal of Ni2+ ions from wastewater via the adsorption
process. Because of the presence of magnetic NPs, the FGC
adsorbent could be recovered by an external magnet (Tran et al.,
2019). The magnetic recovery of Ni2+-loaded FGC is shown in
Figure 4. The NC of magnetic hydroxyapatite was synthesized by
adding Fe3O4 NPs to hydroxyapatite nanorods at pH 11. This NC
proved to be a good adsorbent for Ni2+ ions, and the fully adsorbed
NC can easily be separated from aqueous media using an external
magnetic field (Thanh et al., 2018).

A novel and inexpensive lignocellulose/montmorillonite (LNC/
MMT) NC was prepared via a chemical intercalation of LNC with
MMT and tested for the removal of Ni2+ ions via the adsorption and
desorption processes in an aqueous solution. The highest adsorption

FIGURE 4
Fe3O4/graphene oxide/chitosan nanocomposite can adsorb Ni2+ from wastewater. Ni2+-loaded FGC adsorbent can easily be recovered by an
external magnet.
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capacity of the LNC/MMT NC was 94.86 mg g−1 when the initial
Ni2+ concentration was 0.0032 mol L−1, at pH 6.8 and at adsorption
temperature and time of 70 °C and 40 min, respectively. This NC
acted as a potential adsorbent in the detoxification of Ni2+ from
contaminated wastewater (Zhang and Wang, 2015). The PAM/Na-
MMTNC prepared byMoreno-Sader et al. (2019) could also be used
for the adsorption of Ni2+ ions from wastewater effluents. To remove
Ni2+ and Co2+ ions from synthetic and industrial effluents,
respectively, a nanocomposite ceramic containing clay, bovine
bone nanopowder, and human hair was invented. From
industrial wastewater, the Ni2+ and Co2+ adsorption efficiency
was observed to be greater than 95%. Up to 60 cycles of renewal
and reuse were possible for the adsorbents (Abdollahi et al., 2022).
One-dimensional Pal and two-dimensional GO were crosslinked to
produce an NC of mPal-GO, which was used to remove Co2+ from
wastewater. At pH 6.0 and T 298 K, the maximum adsorption
capacity was achieved at 16.9 mg g−1 (Mou et al., 2021).

For the first time, a new class of multifunctional material
identified as PANI/NiO/MnO2 NC was developed by chemically
polymerizing an aniline monomer in an acidic aqueous solution
with metal oxides (NiO and MnO2), an oxidant (ammonium
persulfate), and methyl orange (MO) dye. According to the
results, PANI NCs doped with MnO2 and NiO NPs showed an
adsorption efficiency of 97% compared to 53% for pure PANI. The
PANI/NiO/MnO2 NC’s experimental adsorption capacity
(248.4 mg g−1) was significantly greater than that of PANI
(57.5 mg g−1) (Ali et al., 2021).

A new ZIF-8@SnO2@CoFe2O4 nanostructure was generated by
the hydrothermal route, and its efficacy for Ni2+ sorption and
microbial disinfection was tested. The results showed that ZIF8@
SnO2@CoFe2O4 exhibited excellent performance for Ni2+
adsorption from an aqueous medium, such that mixing 40 mg of
adsorbent with 50 mg L−1 of pollutant for 60 min at a pH of 6 is
possible. The highest possible adsorption capacity, 21.43 mg g−1, was
also attained (Roudbari et al., 2021). A polypyrrole-
polyethyleneimine (PPy-PEI) polymer nanocomposite was
prepared via the coupling of polyethyleneimine with polypyrrole
and later tested for the elimination of nickel ions from the
wastewater. In comparison with the PPy-PEI nanocomposite,
which had a substantially greater nickel ion adsorption efficiency
of 99.8%, pure polypyrrole was found to have 42% adsorption
efficiency (Birniwa et al., 2021). Rajivgandhi et al. (2021)
employed GO and reduced rGO NCs to investigate the removal
of Ni ions from the electroplating effluent. For GO and rGO, the
highest sorption effectiveness was determined to be 90.8% and
84.4%, respectively, at optimal pH 8, contact duration
180–1,440 m, RPM 250–300, and adsorbent dosage 0.2 mg L−1.

3.7 Arsenic (As) removal

As is a naturally occurring metalloid present in rocks, soil, water,
air, plants, and animals. Volcanic eruptions, forest fires, and erosion
of rocks are some natural causes of As release in the environment;
mining, application of pesticides and herbicides, and disposal of
waste containing As are the anthropogenic sources of arsenic
(Nicomel et al., 2015). As can exist in four oxidation states:
arsenite (As3+), arsenate (As5+), arsenic (As0), and arsine (As3-).

Among these four As species, arsenite and arsenate are most
commonly found in water, and these are, unfortunately, the most
toxic forms of As (Pous et al., 2015). Drinking As-contaminated
water can cause several disorders, such as cancer, melanosis,
hyperkeratosis, restrictive lung disease, gangrene, hypertension,
type 2 diabetes, and peripheral vascular disease (Ashraf et al., 2019).

Among various metal- and metal oxide-based NCs, TiO2-based
NCs showed an excellent affinity for the removal of both arsenite
and arsenate from water (Ashraf et al., 2019). A mesoporous TiO2/
Fe2O3 bifunctional composite was synthesized by infusing Fe3+ into
mesoporous TiO2. This bifunctional NC could not only convert
more toxic As3+ into less toxic As5+ species but also adsorbed As5+ on
its surface (Zhou et al., 2008). Similarly, a Ce/TiO2 nanoadsorbent
could efficiently remove As5+ (Deng et al., 2010). Interestingly, Zr-
doped TiO2 could adsorb both As3+ and As5+ from water
(Andjelkovic et al., 2016). Another NC made up of nano-Ti
loaded basic yttrium carbonate (BYC) showed an enhanced
capacity for arsenate removal from water.

It could remove As5+ in a wide pH range and was a better
adsorbent than BYC alone because of enhanced surface area and
surface charge (Lee et al., 2015). Iron-doped TiO2 NPs also showed
higher arsenic removal capability compared to nano TiO2 alone
(Yang et al., 2019). Polyaniline is one of the most popular polymers
used in water purification. The polyaniline hollow microsphere/
Fe3O4 magnetic NC, synthesized by Dutta et al. (2020), could adsorb
both arsenate and arsenite from water. Hao et al. (2018) reported the
use of several iron NCs, such as iron-doped activated carbon, iron-
doped polymer/biomass materials, iron-doped inorganic minerals,
and iron-containing combined metal oxides, for the removal of As
from wastewater. Su et al. (2017a) prepared an iron oxide/GO
mesoporous NC synthesized by the co-precipitation of iron oxide
on GO sheets. The amorphous morphology endowed the NC with a
high surface area, which ultimately increased adsorption sites and
enhanced arsenic adsorption capability. Another iron-based porous
NC where the iron oxide nanoparticle was loaded onto the carbon
nanosphere matrix had excellent adsorption capacity for both As3+

and As5+ (Su et al., 2017b). Singh et al. (2020) made biochar from
rice and wheat husk by pyrolysis and then converted to iron oxide
rice husk biochar by the co-pyrolysis of FeCl3 and the biochar. This
nanohybrid adsorbs both As3+ and As5+ over a broad pH range.
Saif et al. (2019) investigated the arsenate adsorption potential of
polymer NCs of iron oxide. Polymers such as chitosan and polyvinyl
alcohol (PVA) alginate were used to make the iron oxide/polymer
NC. The iron oxide/PVA alginate NC was found to be a superior
adsorbent material for As5+ from an aqueous medium compared to
its other chitosan counterpart. Ansari et al. (2017) showed that
CeO2/Fe2O3 NC can effectively remove As3+ from water.

Chowdhury et al. (2018) synthesized MOF/GO NCs using an
aluminum-based MOF MIL-53(Al) (AlC8H5O5) and found it to be
highly promising in the removal of arsenite from an aqueous
solution. An MWCNT-loaded carbon foam was used for the
removal of As5+ and was found to be more efficient than similar
materials in this regard (Agrawal et al., 2018). The goethite/silica NC
adsorbent showed high efficiency in removing arsenic from
wastewater effluents (Attinti et al., 2015). The NC-functionalized
membrane made up of surface-functionalized mesoporous silica
NPs (MCM-NH2 or MCM-PEI) crosslinked to a modified
polyacrylonitrile nanofibrous substrate and showed far superior
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efficacy in removing As5+ than the NC in a colloidal form. Modifying
the NC membrane surface with Fe3+ could result in the membrane
being more efficient in arsenic removal (Yohai et al., 2019). The
nanocomposite material (ZnO–CuO/g–C3N4) has been synthesized
using the solution approach for an efficient extraction of As3+. As3+ is
absorbed from water on NC surfaces because of their large surface
area and abundance of hydroxyl groups. At a medium pH of 3, As3+

had a maximum adsorption capacity of 98% (Khan et al., 2022). To
eliminate the arsenate ion (AsO4-3) from water, CuO/TiO2 NCs
were manufactured using the precipitation–deposition method, and
this NC demonstrated a higher adsorption capacity for As5+ (Farooq
et al., 2022).

3.8 Copper removal

The major sources of Cu contamination are mining and
metallurgy, paints and dyes, electroplating, explosives, fertilizers
and pesticides, microelectronics industry effluents, etc. Although Cu
is an essential element, a higher dosage of Cu in wastewater causes
several health issues in humans, such as liver and kidney damage,
gastrointestinal problems, and diarrhea (Varma and Mishra, 2018).
Even at relatively low concentrations, this heavy metal is an inhibitor
of microbial activity (Ochoa-Herrera et al., 2011).

A mixture of different types of CNTs and graphene was
synthesized, and its composite showed higher efficiency for the
removal of Cu2+ via the adsorption process from wastewater. The
maximum adsorption capacity of the CNT/GO NC was found to be
higher than 250 mg g−1 (Dichiara et al., 2015). Magnetically aligned
NCs were synthesized and tested for the removal of Cu ions. NCs
were synthesized by embedding silica gel with co-precipitated
nanomagnetite particles of Fe3O4. A magnetically aligned gel and
a non-aligned gel had the potential for Cu2+ ion removal from
wastewater. The efficiency of magnetically aligned NCs was found to
be 34.4% with the highest adsorption capacity at 23 mg g−1 (Lo et al.,
2018). Polystyrene-Schiff base (PS/SB) NCs were synthesized by
encapsulating Schiff base molecules in sulfonate groups containing
charged PS beads. PS/SB NCs have the potential to remove Cu2+ ions
from wastewater (Zhou et al., 2018).

A novel and efficient NC polypyrrole/alumina-iron oxide was
prepared by Lissy et al. (2019), and the NC showed 100% removal of
Cu2+ from wastewater at pH 8. The magnetite/carbon NC
synthesized by Andelescu et al. (2018) also proved to be an
efficient adsorbent of Cu2+ ions. The GO/chitosan aerogel
microspheres with honeycomb cobweb could efficiently remove
Cu2+ contaminants from wastewater (Yu et al., 2017). Several
other GO-based NCs, such as chitosan/GO, EDTA-functionalized
chitosan GO, and 2,2′-dipyridylamine-modified GO, were also
found to be suitable for the removal of Cu2+ contaminants from
wastewater (Abu-Nada et al., 2020). A novel GPN membrane was
examined for the removal of heavy metal ions. The removal
efficiencies of heavy metal elimination in descending order of
Pb2+, Al3+, Cu2+, and Fe2+ were 94%, 67%, 63%, and 43%,
respectively. To eliminate both inorganic pollutants from
wastewater, such as mercury (Hg2+) and copper (Cu2+), and
organic pollutants, such as MB and CV, an EDTA-functionalized
graphene oxide–chitosan nanocomposite (GO-EDTA-CS) was
developed. For Hg2+, Cu2+, MB, and CV, the maximum

adsorption efficiencies of the adsorbent were determined to be
324 ± 3.30, 130 ± 2.80, 141 ± 6.60, and 121 ± 3.50 mg g−1,
respectively. The presence of a few active functional groups on
the adsorbent, such as -COOH, -OH, and -NH2, was considered to
be the cause of the outstanding adsorption capacity (Verma et al.,
2022). Studies have been conducted on how well the nanocomposite
of alumina and iron oxide behaves as an adsorbent for eliminating
copper. An observation of 98% elimination and optimal adsorption
on the uptake of copper ions was made (Lissy et al., 2019). A
graphene oxide/chitosan (GO/CS) nanocomposite was produced
using a simple method and used in batch tests to remove copper ions
from industrial effluents. The maximum removal percentage was
99.4% with an initial copper ion concentration of 5 × 10−2 mol L-1,
pH of 6, contact time of 75 min, temperature of 25 °C, and adsorbent
dosage of 0.1 g/L (Kadhim and saleh, 2022).

3.9 Fluoride removal

Fluoride contamination in the environment is caused by
uncontrolled discharge from industries, such as fertilizers,
refining metals, rubber manufacturing, glass and ceramic
production, and other sources, such as weathering and leaching
of rocks and volcanic activities (Liu et al., 2016). According to the
WHO, the permissible limit of F that may be present in drinking
water is 1.5 mgL-1. At low concentrations, fluoride provides an
antioxidant defense against tooth decay; however, excessive
fluoride intake can result in dental and skeletal fluorosis,
infertility, and neurological disorders (Kusrini et al., 2015;
Chigonda et al., 2018).

Various NCs are currently being investigated as potential
materials for the removal of fluoride ions from wastewater. A
titanium-grafted β-cyclodextrin nanocomposite was synthesized
via a nucleophilic reaction to remove fluoride ions from
wastewater using a batch technique. It exhibited a great removal
capacity, at 99.88% at an optimum pH of 5, at room temperature,
and with a contact time of 40 min. An overall positive charge present
on the surface of this nanocomposite resulted in an increase in the
chemisorption of ionic charge between positive charge and negative
charges present on fluoride ions (Fallah et al., 2020). Mondal and
Purkait (2019) synthesized a green iron–aluminum nanocomposite
and tested for its ability to remove fluoride ions from contaminated
water. The highest adsorption capacity for fluoride removal was
42.95 mg g−1 for 0.25 g L−1 adsorbent dosage. The mechanism of
fluoride adsorption was an ion exchange process due to the presence
of hydroxyl groups on the surface. Another group made a chitosan-
based magnetic nanocomposite and tested it for the removal of
fluoride ions from wastewater. Its maximum adsorption capacity
was found to be 15.38 mg g−1 at optimum pH 5 and temperature
318 K. Some modifications have been made to chitosan to make it a
better adsorbent by its modification using chloroacylchloride and 2-
(2-aminoethylamino)ethanol. Electrostatic and hydrogen bonding
are the main elements for the sorption of fluoride (Abri et al., 2019).
An exceptional nanocomposite (Fe3O4@LDH/poly) nanocomposite
adsorbent for defluoridation from drinking water was synthesized
using magnetic iron oxide nanoparticles and Zn–Ce double-layer
hydroxide/cellulose. The ion exchange mechanism is the basic
mechanism through which the removal of fluoride ions occurs.
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The (Fe3O4@LDH/poly) NC exhibited many positively charged
ions, such as Zn2+, Fe2+, Fe3+, and Ce3+, and formed complexes
with negatively charged fluoride ions through electrostatic
interactions. It showed the highest adsorption capacity of
167.63 mg g−1 at optimum conditions, namely, pH 7, temperature
300 K, adsorbent dosage 20 mg, and contact time 40 min
(Ammavasi and Mariappan, 2018). Using a simple co-
precipitation deposition technique on pre-synthesized polyaniline
nanofibers (PANI NFs), hydrous CeO2–Fe3O4 (HCeFe)-decorated
polyaniline nanofibers (HCeFe NFs) were generated. Then, these
NFs were assessed as adsorbents for the removal of fluoride from
both synthetic and actual water samples. It showed a maximum
adsorption capacity of 116.28 mg g−1 via electrostatic interaction and
the ion exchange mechanism. Optimum conditions for maximum
defluoridation were pH 3, temperature 25oC, and dose 0.03 g
(Chigonda et al., 2018). A graphene oxide/alumina NC was
synthesized using a hydrothermal method and was tested for the
removal of fluoride ions. It showed a maximum adsorption capacity
of 4.68 mg g−1 for fluoride ions (Xu et al., 2020). Chitosan-decorated
iron nanoparticles were synthesized and tested for the removal of
fluoride ions from wastewater. Due to their presence in surface
charge, they act as an excellent defluoridating agent (Mohammadi
et al., 2019). Mohseni-bandpi et al. (2015) reported a novel
magnetite–chitosan composite for defluoridation. It showed a
maximum adsorption capacity of 9.43 mg g−1 at optimum
conditions, namely, pH 7, temperature 500oC, adsorbent dosage
0.5 g L−1, and contact time 60 min. It was an excellent adsorbent
because it can be separated quickly and easily because of its magnetic
properties. Sahoo and Hota (2018) effectively created a new
magnetic MgO–MgFe2O4 nanocomposite, which was anchored
onto a GO substrate (MgO–MgFe2O4/GO) and a MgO–Fe2O3

nanocomposite through hydrothermal techniques. These GO-
based nanocomposites were used as effective adsorbents to
remove fluoride ions from an aqueous solution. The maximum
adsorption capacity was found to be 34 mg g−1 at pH 6, temperature
30°C, contact time 60 min, and adsorbent dose 0.05 g/100 mL.

3.10 Uranium removal

The US Environmental Protection Agency (USEPA) has
identified uranium, an essential byproduct of the nuclear
industry, as a hazardous and radioactive heavy metal. Uranium is
accessible due to a variety of sources, including natural deposits,
mine tailings, combustion byproducts, nuclear industry emissions,
and corrosion of uranium and phosphate fertilizers containing
uranium (Su et al., 2017). The WHO has set the provisional
guideline value for uranium in drinking water at 30 µgL−1.
Uranium toxicity causes damage to the kidney and affects other
organs such as the bones, liver, and reproductive system. High
exposure to radiation may lead to various kinds of cancer, such as
lung, bone, and liver cancer (Bhalara et al., 2014).

Many NCs are now being investigated for their potential to
remove uranium ions from wastewater. A simple microwave-
assisted method was used for the synthesis of magnetically
modified hydroxyapatite nanoparticles and was tested for the
removal of uranium (VI) ions from wastewater (Zheng et al.,
2020). It was found that the maximum adsorption efficiency was

310 mg g−1, at pH 5, with an equilibrium time of 120 min, and at a
temperature of 25°C. The mechanism of adsorption was via complex
formation between the phosphate group of the adsorbent and U(VI)
ions (El-Maghrabiet et al., 2019). An excellent reusable
nanocomposite was synthesized by conjugating BR with
hydroxyapatite (HAP) and tested for the removal of uranium
[U(VI)] from an aqueous solution. The maximum adsorption
capacity of BR/HAP NC was found to be 428.25 mg g−1, while
BR alone showed a max. adsorption capacity of 110.56 mg g−1.
Optimum conditions for the adsorption were pH 5.5,
temperature 298 K, and contact time 120 min. The primary
mechanism of adsorption was the ion exchange mechanism
between -OH and -COOH groups present on the surface of the
adsorbent and UO2

2+ (Ahmed et al., 2021). An Fe3O4@TiO2 core
shell magnetic composite was synthesized and investigated for the
removal of uranium ions from water. It was acting as a fast and
efficient sorbent with a maximum adsorption capacity of
118.8 mg g−1 at pH 6, temperature 25°C, and shaking time
240 min. A potent and promising sorbent for the effective
extraction of uranium (VI) from aqueous solutions was the
Fe3O4@TiO2 nanocomposite (Tan et al., 2015). Li et al. (2019)
reported a novel low-cost and eco-friendly composite, the
magnetic biochar composite, and investigated this composite for
the removal of uranium ions from wastewater. Due to the porous
structure and large surface area of the composite, it was acting as an
excellent wastewater remediating agent. The highest adsorption
capacity was found to be 52.63 mg g−1 at pH 4, temperature
318 K, and contact time 2–14 days. The β-cyclodextrin magnetic
bentonite (βCD-FB) nanocomposite, a novel low-cost adsorbent,
was synthesized and tested for the removal of uranium ions from
wastewater. The maximum adsorption capacity was recorded as
305 mg g−1 in just 60 min at room temperature, and the adsorption
efficiency was 61%. The low-cost nanoadsorbent that has been
designed has a high degree of sustainability and holds potential
for use in the industrial treatment of wastewater that contains
radioactive materials that are harmful (Zahran et al., 2019).
Nanocomposite-mediated heavy metal remediation strategies are
summarized in Supplementary Table S1.

4 Fungi-based bionanocomposite-
mediated removal of heavy metal ions
from wastewater

Among other different strategies, many researchers are also
adopting biosorption strategies for wastewater management,
specifically for heavy metal removal. Although some
microorganisms, such as bacteria, algae, and fungi, have been
used in such biosorption processes, fungi are considered the best
possible contenders because they are simple to handle, are mostly
tolerant of heavy metals at low pH, produce a significant amount of
biomass, and can be separated from aqueous solutions using simple
techniques because of their hyphal network, and genetic and
morphological manipulations in fungi can be performed very
easily (Deshmukh et al., 2016; Lotlikar et al., 2018). To optimally
use fungi for the biosorption of toxic materials from wastewater, a
suitable matrix is required to immobilize the fungi. Two decades ago,
various inorganic matrices were used for the immobilization of
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fungal biomass such as Ca-alginate beads for the white rot fungus
Trametes versicolor and Phanerochaete chrysosporium, polyurethane
for Aspergillus terrus, and polyethylene amine (PEI) for Penicillium
chrysogenum (Arica et al., 2001; Dias et al., 2002; Kacara et al., 2002;
Deng and Ting, 2005). The composites of fungi and nanomaterials
can become an attractive choice for industrial wastewater
management, and there is not much information on the long-
term practical applications of merging nanotechnology with
existing fungal-based biosorption strategies. The nanomaterials
can not only provide an immobilization platform but also have a
huge potential to show a synergistic effect on toxic material
management. A suitable microorganism for immobilization
should also be chosen through screening examinations, and the
feasibility of scaling up these bionanocomposites must be
considered. It should be noted that only fungi that can form
hyphae or pellets are used in the synthesis of fungal-based
bionanocomposites, as fungal morphology is important in the
biosorption process (Xu et al., 2012).

Polyaromatic hydrocarbons (PAHs) are released from various
human activities, such as the combustion of fossil fuel, petroleum
leakage, and burning of waste, as well as from several natural
activities, such as volcanic activity and the synthesis of microbial
vegetation (Shakya and Esmaeili, 2018). The removal of PAHs is
very important because they have carcinogenic and mutagenic
effects on organisms and cause bioaccumulation at various levels
in the food chain. A novel approach to assembling inorganic NPs
with fungal mycelia was developed to enhance the adsorption and
degradation of PAHs. Zhou et al. (2021) reported the coupling of
CNTs with Penicillium oxalicum SYJ-1 fungal mycelium, which
resulted in overall PAH degradation in adsorption by CNTs and
biodegradation by fungal mycelium. Assembling CNTs with
functional fungal mycelia may be an alternative to avoid the
drawbacks of only adsorption and biodegradation by swiftly
adsorbing PAHs onto CNTs to lower the aqueous PAH content
and adsorb PAHs to enhance their bioavailability to fungi, thus
accelerating PAH breakdown. CNTs alone had a capacity of
approximately 80% for the removal of pyrene, and this fungal
mycelium also exhibited a removal capacity of 72% in 72 h. The
pyrene removal efficacy for the composites and mycelia was
estimated to be 1.98 and 0.44 mg g−1 dry weight h−1 during the
first 48 h, respectively, and to be 0.52 and 0.29 mg g− 1 dry weight h−1

at the end of 72 h, respectively. The composite of CNTs and
Penicillium oxalicum SYJ-1 fungal mycelium promoted the
efficiency of pyrene removal at 20 mgL-1 within 48 h.
Conventionally, using a combined process of the amidation
reaction, crosslinking polymerization, and the sol–gel method, an
insoluble nanosponge biopolymer composite was synthesized to
obtain phosphorylated multiwalled carbon nanotubes (MWCNT)-
cyclodextrin/silver-doped titanium (pMWCNT-βCD/TiO2-Ag) for
the removal of Pb2+ ions from wastewater effluents (Taka et al.,
2018). Iron oxide NPs, a potential adsorbent, and Ca-alginate
immobilized on the surface of Phanerochaete chrysosporium were
used by Xu et al. (2012) to remove Pb2+ ions from polluted water,
and the reusability of this bionanocomposite was monitored. The
adsorption capacity was 176.33 mg g−1 at pH 5 and temperature
35 °C, and adsorption equilibrium was attained within 8 h. PVA and
PVA/MnCl2 nanofibers immobilized on the surface of Mn2+-
oxidizing fungi, Coprinellus sp. and Coniothyrium sp., were used

for the adsorption of Mn2+, Cu2+, and Pb2+. Compared to the Mn
oxide synthesized, biogenic Mn(III/IV)O has superior adsorption
qualities. Due to the extensive amount of vacancies in Mn(III/IV)O,
the compound is very adsorptive. With the goal of removing heavy
metals from water, hybrids of Mn(III/IV)O-producing fungi and
nanofibers have been suggested as environmentally friendly
approaches. This innovative method immobilizes biosorbents on
the surface of nanofibers. The outcomes of this cutting-edge strategy
support the scalable application of nanotechnologies for the
remediation of groundwater. Mn (III/IV)-O coated nanofibers
and the Coniothyrium sp.-nanofiber composite were potentially
effective not only in the removal of Mn2+ ions but also in
enhancing the adsorption efficiency, leading to >90% removal of
Mn2+ ions (Park et al., 2020).

Four fluoride-resistant fungal strains were gathered from the
fluoride-contaminated area, Pencillium camemberti SIT CH-1,
Aspergillus ficcum SIT CH-2, Aspergillus terreus SIT CH-3, and
Aspergillus flavipes SIT CH-4, and a nanobiocomposite was
developed via zirconium doping on these four biosorbent fungal
strains. This novel and eco-friendly nanobiocomposite was very
efficient and inexpensive for the removal of fluoride ions from
groundwater not only at higher concentrations but also at low
concentrations via adsorption, electrostatic attraction, ion
exchange, etc. Greater sorption uptake, greater adsorption, or
higher mechanical stability could arise from physical alterations
of fungal biomass. Therefore, fungi were bound to tetravalent
zirconium and used as an adsorbent for fluoride removal. Fungi
are recognized to have strong heavy metal sorption ability. It was
expected that fluoride removal occurred due to chemisorption, in
which fluoride ions created covalent bonds with the surface of the
biosorbent by electron sharing or exchange. The adsorption
efficiencies of Pencillium camemberti SIT CH-1 + zirconium,
Aspergillus ficcum SIT CH-2 + zirconium, Aspergillus terreus SIT
CH-3 + zirconium, and Aspergillus flavipes SIT CH-4 + zirconium
were 94.9%, 95.98%, 95.2%, and 96.35%, respectively (Hiremath and
Theodore, 2016).

Discharges from industries, such as textiles, leather, paper,
plastics, food, and rubber, are continuously polluting our water
bodies with toxic dyes (Ashrafi et al., 2017). The amount of dye may
vary from 10 to 200 mg L−1 in contaminated water (Muntean et al.,
2018). Since many of the chemicals used in these dyes are poisonous
to both aquatic animals and human health, it is a matter of
paramount concern to remove these dyes from contaminated
water bodies (Kandisa and Saibaba, 2016). In addition to
conventional methods for the removal of dyes, the potential of
the fungal hyphae/carbon nanotube (FH/CNT) composite prepared
by embedding CNTs on the surface of fungal hyphae (Xylaria sp.)
was investigated for the removal of anionic (Congo red) and cationic
(methylene violet) dyes from polluted water. The maximum
adsorption efficiencies of fungal hyphae alone for Congo red
(CR) and methylene violet (MV) were 27.72 and 13.61 mg g−1,
respectively, but due to the fixation of CNTs onto fungal hyphae,
these adsorption capacities were observed to be enhanced to
43.99 and 20.89 mg g−1, respectively. The maximum absorption
capacities were attained at pH 7 and at 30 °C, and the
equilibrium reaction time was 120–160 min (Zhu et al., 2018).

Zhu et al. (2016) synthesized fungal hyphae/carbon nanotube
(FH/CNT) composite spheres for the treatment of polluted water via
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the removal of heavy metal ions and dyes present inside it. The
presence of O-containing groups on functionalized CNTs leads to an
increase in their adsorption capacities for various pollutants. Hence,
these CNTs were coupled with microbes such as FH to make them a
more versatile and robust adsorbent. They used FH/CNT spheres for
the removal of malachite green and Cu2+ ions from contaminated
water. The maximum adsorption capacities for Cu2+ and malachite
green were 154 and 50.2 mg g− 1, respectively. Pure FH had
adsorption efficiencies of 35% and 42% for Cu2+ and malachite
green, respectively, and this was obviously lesser than that of the
composite. Lain et al. (2017) also prepared a novel three-layered
sphere FH/N-TiO2/NG (fungal hyphae/N-doped titanium dioxide/
N-doped graphene), with fungal hyphae as the innermost layer,
fungal hyphae/Fe3O4 as the middle layer, and fungal hyphae/
N-TiO2/NG as the outermost layer, and its adsorption and
photocatalytic activity were tested on tannin removal. The
addition of nano ferric oxide (Fe3O4) to FMT (fungal hyphae/
Fe3O4/N-doped TiO2 and graphene) made it easy to recycle
without any pollution. The following order of adsorption
capacities was observed: Fe3O4 < N-TiO2/NG < FMT < FH.
Polysaccharides, proteins, and phosphate groups present on the
fungal cell wall interacted with tannin and made it an excellent
tannin adsorbent. N-doping in NTG (N-doped TiO2 and graphene)
was also responsible for tannin adsorption. After the adsorption of
tannin on the surface of FMT, sunlight led to the breakdown of
tannin by photocatalysis. FH-magnetic NPs can also be a promising
tool for the elimination of Cu2+ from an aqueous solution.
Saccharomyces cerevisiae immobilized on the surface of chitosan-
coated magnetic NPs (CCM) were used. The high hydrophilicity of
CCM due to the substantial number of -OH groups in glucose units
and the presence of numerous functional groups, such as acetamido,

primary amino, and hydroxyl groups, enabled it to absorb heavy
metal ions in wastewater treatment, and these groups had high
chemical reactivity, and the polymer chain’s versatility also
contributed to the material’s excellent adsorption properties for
heavy metals. At optimum pH 4.5, a maximum removal efficiency of
96.8% was attained, and the adsorption capacity increased as the
initial Cu2+ concentration increased. Adsorption equilibrium could
be obtained in 1 h using CCM, which was particularly effective for
the quick adsorption of Cu2+ within the first 10 min. The maximum
adsorption capacity of Saccharomyces-CCM for Cu2+ was found to
be 144.9 mg g−1, which was considerably greater than that of many
magnetic nanocomposites (Peng et al., 2010). A general scheme for
the bionanocomposite-based wastewater strategy is shown in
Figure 5. A bionanocomposite prepared by immobilizing alginate
beads laden with the filamentous fungus Stereum hirsutum inside
nanoporous silica hydrogels was found to be useful for the
bioremediation of contaminated water. The fundamental premise
behind this was that silica-alginate matrices exhibited good
mechanical and chemical stability to produce simple-to-handle
operative units with minimal ecological danger, slow passage of
contaminants to microorganisms, preventing intoxication under
high levels of pollutant, and leakage decreased the losses of
enzymes involved in the dissolution of contaminants. Dye
adsorption, managed transport, and the preservation of dye
breakdown enzymes inside the hydrogel were the main
challenges. Porosity was vital for the efficient interaction of dye-
degrading enzymes. Three reference conditions were taken, and the
embedded mycelium can be either an active reactor (AR) or a
passive reactor (PR) depending on whether it is in an active form
or inactivated by autoclaving. Bare support (BS) is a ca-alginate
capsule containing active mycelium. After 20 h of contact with the

FIGURE 5
Removal of pollutants from wastewater using a fungal-based bionanocomposite.
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dye, AR, PR, and BS eliminated 80%, 65%, and 35% of MG,
respectively. The production of ligninolytic enzymes by S.
hirsutum, their retention in the immediate vicinity of the fungus
to increase the possibility of the dye–enzyme contact, and the fine
supply of MG to the fungi contributed to the remarkable efficacy of
AR (Perullini et al., 2010).

Titanium dioxide NPs (TiO2 NPs) were loaded with filamentous
fungus from an oil plant biomass and utilized as a sorbent for Pb2+

enrichment and separation in on-line-flow injection. At pH 4.0, Pb2+

ions were adsorbed on a biosorbent mini-column and then removed
using 288 µL of a 1.0-mol L−1 HCl solution. The detection threshold
was 0.78 μg L−1 (Bakircioglu et al., 2010). Phanerochaete
chrysosporium pellets immobilized with elemental selenium NPs
(nSe0-pellets) were used as a novel hybrid biosorbent to remove
zinc from an aqueous solution. At pH 4.5 and an initial Zn
content of 10 mg L−1, fungal pellets containing nSe0 (nSe0 pellets)
demonstrated superior biosorbancy by eliminatingmore Zn (88.1 % ±
5.3%) 700 than Se-free fungal pellets (56.2% ± 2.8%). The increased
sorption capacity of nSe0-pellets was attributed to an increase in the
number of sorption sites, which provided a denser distribution of
negatively charged surfaces. The functional groups, including -OH
and -COOH groups, involved in the sorption process were identifiable
in fungal pellets prior to and following the adsorption of Zn (Espinosa
et al., 2016). Based on the ultrasonic cavitation-assisted oxygen
implosion strategy, a new bioadsorbent agent named the
nanomagnetic/carboxyl Candida albicans biomass composite
(MCC) was developed, and the adsorption capacity of the toxic
metal ions (Pb2+, Cd2+, and Cu2+) was investigated. At pH 4, 6,
and 6.5, the best removal efficiencies for Cu2+, Cd2+, and Pb2+ were
observed, respectively. For Pb2+, Cd2+, and Cu2+, the adsorption
capacities were calculated to be 1,009, 80, and 202 mg g−1,
respectively. In treated wastewater with varying quantities of
coexisting ions, the removal rates for Pb2+, Cd2+, and Cu2+ reached
99.8%, 99.4%, and 94.7%, respectively. The MCC nanocomposite
bioadsorbent agent fulfilled an increasing demand for water resource
purification and can be extensively used in industrial wastewater
treatment (Azzam et al., 2021).

Phanerochaete chrysosporium was successfully immobilized using
iron oxide magnetic NPs (MNPs) and Ca-alginate to generate a novel
biosorbent. To capture P. chrysosporium to produce an efficient
biosorbent for the removal of Pb2+, iron oxide NPs blended with
Ca-alginate were used as an immobilization matrix. The highest Pb2+

biosorption efficiency, which was 96.03%, was achieved at pH 5.0 and
35 °C. The uptake of metal started extremely quickly and reached
equilibrium after 8 h. In a sample containing 500 mg L−1 of Pb2+, the
maximum biosorption capacity reached up to 185.25 mg g−1 dry
biosorbent (Xu et al., 2013). Nano-hydroxyapatites (n-HAPs) have
limited ability to immobilize heavy metals in contaminated soils due
to self-aggregation. Low-cost, easily available, and eco-friendly
filamentous fungi could be utilized for making a
bionanocomposite-based matrix to potentially overcome the
problem of n-HAPs. To construct the hybrid bionanocomposite,
Aspergillus niger and Penicillium hyphae were immobilized with
n-HAPs, which not only solved the problems of self-aggregation
but also improved the efficiency of heavy metal (Cd2+ and Pb2+)
adsorption. In contrast to n-HAPs or fungal hyphae alone, the
bionanocomposites demonstrated immobilization efficiencies one
to four times greater for diethylenetriaminepentaacetic acid

(DTPA)-extractable Cd2+ and Pb2+ in polluted soils. The
Aspergillus niger-based bionanocomposite (ANHP) also
outperformed the Penicillium Chrysogenum F1-based
bionanocomposite (PCHP) in immobilizing Cd2+ and Pb2+ in
contaminated soils. The immobilization efficiency of DTPA-
extractable Cd2+ by ANHP was 84.0%, which was 2.77, 3.86, 3.89,
and 7.53 times greater than that of n-HAPs, PCHP, and the two fungi
hyphae, respectively. Meanwhile, the immobilization efficiencies for
DTPA-extractable Pb2+ by ANHP (42.6%) and PCHP (39.7%) were
comparable and greater than those by the two fungus hyphae,
n-HAPs, respectively. Aspergillus niger hyphae were immobilized
more effectively than Penicillium chrysogenum F1 hyphae by the
previously mentioned modifications. The efficiency of heavy metal
removal from the soil was in the following order: ANHP > PCHP >
n-HAP. The soils treated with ANHP obtained the immobilization
equilibrium of DTPA-extractable Cd2+ and Pb2+ within 7 days, with
the greatest efficiencies being 83.95% and 42.55%, respectively (Yang
et al., 2018). A low-cost, novel fungus–Fe3O4 bionanocomposite was
synthesized and tested for the removal of radionuclides such as U(VI).
Fungus in this bionanocomposite acts as a template for nano-Fe3O4

and, hence, increases the dispersity and stability of nano-Fe3O4.
Oxygen-containing groups, such as alcohol, acetyl, and carboxyl,
were present in this bionanocomposite, which primarily form
complexes with the inner spheres of radionuclides, enhancing their
sorption. The maximum sorption capacity for U (VI) was found to be
280.8 mg g−1 at pH 5 and temperature 303 K (Ding et al., 2015). FH/
Fe3O4/GO-layered core shell-structured nanocomposite spheres
(FFGS) were effectively created by cultivating FH in media
containing either GO or Fe3O4. This three-layered core shell FFGS
composite was used for the removal of U (VI) ions from wastewater.
Themechanism for the removal was chemical adsorption via chemical
interaction between functional groups present on the surface of the
FFGS composite and U (VI) hydroxy compounds. The highest
adsorption efficiency was 219.71 mg g−1 at pH 5 and temperature
293 K (Zhu et al., 2019). A novel adsorbent of the fungus/attapulgite
(F/ATP) composite was synthesized hydrothermally and is a
promising material for the removal of uranium from wastewater.
The maximum sorption capacity was 125 mg g−1 at pH 4 and
temperature 303 K. Over a period of six cycles, the F/ATP
composites showed a strong sorption of U (VI) (~91%) (Cheng
et al., 2015). As an efficient material for treating nuclear
wastewater, a FH/GO composite was invented. It was found that
at an initial pH of 6.0 (±0.1) at 20°C, the U (VI) adsorption capacity of
the FH/GO composite increased by 60% compared to biomass (FH),
and its maximum U(VI) adsorption efficiency was 199.37 mg g−1 (Li
et al., 2018). CNTs were attached to FH using a biological assembly
technique to create a sphere FH/CNT composite, which can be
employed as a flexible adsorbent for mitigating water pollution.
The maximum adsorption capacity of the FH/CNT composite for
uranium ions was 187.26 mg g−1 (Zhu et al., 2018).

5 Conclusion

Nanomatrix-embedded bioaccumulating/biosorbing microbes
were investigated for the removal of heavy metal ions from
wastewater because this bio-nanocomposite can be
bioremediation by adsorption. Conventional methods used for
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wastewater remediation, such as chemical precipitation,
ultrafiltration, reverse osmosis, ultrafiltration, and ion exchange,
have several drawbacks, such as dealing with low concentrations of
metal ions, the generation of high sludge, and the aggregation of
metal precipitates. To overcome these bottlenecks, nanocomposites
with advantages such as high efficiency, cost-effectiveness, recycling,
enhanced surface area, and increased reactivity were used. Adding
fungal biomass to nanocomposites made them a superior adsorbent.
Bionanocomposites are wonder materials with colossal potential to
clear aquatic systems from the menace of harmful contaminants.
These multi-phasic materials are stable in an aqueous solution and
have enormous surface area to interact with the target toxicants.
Moreover, easy separation processes and reusability of the initial
composite materials make them suitable for wastewater
remediation. Various bionanocomposites are already being
investigated for their capability to adsorb or catalytically degrade
heavy metal ions and toxic dye effluent from wastewater. Although
all these fungal-based bionanocomposites are promising materials
for the eradication of pollution in water, they also demand a deep
insight into their potential side effects on human health. A large-
scale application of bionanocomposites in water remediation may
deliberately increase the nanomaterial exposure, but there is no
comprehensive study on their toxicity, which may drastically differ
depending on the size, shape, and surface coating of the material.
Hence, a fungal-based bionanocomposite-enabled wastewater
decontaminating infrastructure should be set up in such a way
that there is minimal nanomaterial leakage in the water bodies.
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