
Reqomp: Space-constrained Uncomputation for Quantum
Circuits
Anouk Paradis, Benjamin Bichsel, and Martin Vechev

ETH Zurich, Switzerland

Quantum circuits must run on quantum
computers with tight limits on qubit and gate
counts. To generate circuits respecting both
limits, a promising opportunity is exploiting
uncomputation to trade qubits for gates.

We present Reqomp, a method to automat-
ically synthesize correct and efficient uncom-
putation of ancillae while respecting hardware
constraints. For a given circuit, Reqomp can
offer a wide range of trade-offs between tightly
constraining qubit count or gate count.

Our evaluation demonstrates that Reqomp
can significantly reduce the number of required
ancilla qubits by up to 96%. On 80% of our
benchmarks, the ancilla qubits required can be
reduced by at least 25% while never incurring
a gate count increase beyond 28%.

1 Introduction
Quantum computers will remain tightly resource-
constrained for the foreseeable future, both in terms of
available qubits and number of operations applicable
before an error occurs. Running quantum programs
hence requires compiling them to circuits with a lim-
ited qubit and gate count. A promising opportunity
to achieve this goal is to exploit the need for uncom-
putation as an opening to trade qubits for gates.

What is Uncomputation? Just as classical pro-
grams, quantum circuits often leverage temporary val-
ues, called ancilla variables. Whereas classical pro-
grams can discard temporary values whenever conve-
nient, temporary values in quantum circuits must be
carefully managed to avoid side effects on other val-
ues through entanglement [1, §3]. Uncomputation is
the process of preventing such side effects by reverting
ancilla variables to state |0⟩ after their last use, thus
ensuring that they are disentangled from the remain-
der of the state. For instance, Fig. 1 shows a circuit
implementing CCCCH: the H gate on qubit t with
four control qubits o, p, q, and r. Fig. 1a uses three
ancillae variables a, b, c, stored in the respective an-
cilla qubits u0, u1, u2. The first ancilla a holds o · p, b

Anouk Paradis: anouk.paradis@inf.ethz.ch
Benjamin Bichsel: benjamin.bichsel@inf.ethz.ch
Martin Vechev: martin.vechev@inf.ethz.ch

a

b

c

X

X

X

H

o

p

q

r

u0

u1

u2

t

(a) No uncomputation.

a

b

c

X X

X X

X X

H

o

p

q

r

u0

u1

u2

t

(b) 3-qubit uncomputation.

a a

b

c
X X X X X X

X X

H

o

p

q

r

u0

u1

t

(c) 2-qubit uncomputation.

Fig. #qb #gt
1a 8 4
1b 8 7
1c 7 9

(d) Resources.

Figure 1: Two uncomputation strategies for CCCCH.

holds o · p · q, and c holds o · p · q · r. We then use this
last ancilla c to control the H gate on t, only applying
H if all of o, p, q, and r hold state |1⟩. In Fig. 1a,
these ancilla variables are not uncomputed, and may
result in unexpected interactions if this circuit is used
as part of a bigger computation. They must therefore
be uncomputed, as shown in Fig. 1b: the operations
applied to each of them are reverted at the end of the
circuit, ensuring that all ancilla qubits are reset to |0⟩.
Reducing Qubits. After uncomputing an ancilla
variable, its qubit can be reused by another ancilla
variable, therefore reducing the overall number of
qubits used by the circuit. Sometimes, it is even ben-
eficial to uncompute an ancilla variable (too) early,
allowing its qubit to be reused at the cost of later re-
computing the ancilla variable when it is needed again.

Fig. 1b simply uncomputes ancilla variables in the
reverse order of their computation, namely c–b–a. As
no ancilla qubit can be reused, Fig. 1b requires 8
qubits and 7 gates overall (see Fig. 1d). Fig. 1c shows
an alternative implementation of CCCCH leveraging
recomputation. It uncomputes ancilla variable a early,
making its qubit u0 free for the computation of ancilla

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

21
2.

10
39

5v
2

 [
qu

an
t-

ph
]

 9
 F

eb
 2

02
4

https://quantum-journal.org/?s=Reqomp:%20Space-constrained%20Uncomputation%20for%20Quantum%20Circuits&reason=title-click
https://quantum-journal.org/?s=Reqomp:%20Space-constrained%20Uncomputation%20for%20Quantum%20Circuits&reason=title-click
mailto:anouk.paradis@inf.ethz.ch
mailto:benjamin.bichsel@inf.ethz.ch
mailto:martin.vechev@inf.ethz.ch

variable c. However, uncomputing b requires a again,
forcing us to recompute it and subsequently uncom-
pute it for a second time, at the cost of 2 additional
gates. Overall, Fig. 1c thus trades qubits for gates
compared to Fig. 1b, as summarized in Fig. 1d.

Correctness. Clearly, uncomputation is only use-
ful if it correctly resets ancillae to |0⟩ without mod-
ifying the remainder of the state. However, this is
difficult to achieve, as uncomputing an ancilla may
require some preprocessing on its controls, to ensure
that they are in the right state (for details, see §7.1).
Synthesizing the right gates to achieve uncomputa-
tion is thus a fundamental challenge, as evidenced by
correctness issues in Square [2] which attempts to
automate the placement of programmer-defined com-
putation and uncomputation blocks (see §7.1).

Our Work. We present Reqomp, a method to auto-
matically synthesize and place correct yet efficient un-
computation while respecting hardware constraints.
Reqomp takes as inputs a quantum circuit C without
uncomputation (such as Fig. 1a), its ancilla variables
and a space constraint specifying the number of avail-
able ancilla qubits. If possible, Reqomp extends C
to a circuit C which uncomputes all ancilla variables,
using only the number of ancilla qubits specified.

To ensure Reqomp is both correct (whenever a cir-
cuit C is returned, it is a correct uncomputation of
C) and practical (for most input circuits C and size
constraints, it finds a circuit C), we build it out of
two distinct components. First, to ensure correctness,
we introduce well-valued circuit graphs, which extend
circuit graphs [1] (a graph representation of quantum
circuits) by the new concept of value indices tracking
the state of qubits. We further formalize evolveVertex,
a method to safely introduce computation or uncom-
putation in these graphs. Second, to ensure practical-
ity, we use multiple heuristics picking which steps of
computation and uncomputation should be inserted
(through calls to evolveVertex) and in which order.

Evaluation. Our experimental evaluation shows
that Reqomp can significantly reduce the number of
required ancilla qubits by up to 96% compared to the
most relevant previous work Unqomp [1]. Many algo-
rithms are amenable to a significant reduction: for 16
of 20 benchmarks, Reqomp can reduce the number of
ancilla qubits by 25% compared to Unqomp, without
incurring a gate count increase beyond 28%. For the
remaining 4 examples, Reqomp strictly outperforms
Unqomp, albeit by a smaller margin. In some cases,
Reqomp achieves an impressive ancilla qubit reduc-
tion at very low cost: for one example, by 75% at the
cost of increasing gate count by 17.6%.

Note that Unqomp already showed that manual un-
computation is both error-prone and less efficient than
automatically synthesized uncomputation [1, §7].

Main Contributions. Our main contributions are:

• Well-valued circuit graphs, a graph represen-
tation of circuits allowing for accurate value
tracking, and a method evolveVertex to modify
them (§3);

• Reqomp, a method using well-valued circuit
graphs to synthesize and place uncomputation in
circuits under space constraints (§4);

• A correctness proof for Reqomp (§5);

• An implementation1 and evaluation of Reqomp
demonstrating it outperforms previous work (§6).

2 Background
We now introduce the necessary background on quan-
tum computation.
Quantum States. We write the quantum state φ of
a system with qubits p and q as:

1∑
j=0

1∑
k=0

γj,k |j⟩p ⊗ |k⟩q =
∑

l∈{0,1}2

γl |l⟩pq ∈ H2, (1)

where γj,k, γl ∈ C and ⊗ is the Kronecker product.
If φ factorizes into

(∑
j γ′

j |j⟩p

)
⊗

(∑
k γ′′

k |k⟩q

)
, p

and q are unentangled, otherwise they are entangled.
Whenever convenient, we omit ⊗ and write |j⟩ instead
of |j⟩p. We use latin letters |j⟩ to denote computa-
tional basis states from the canonical basis {|0⟩ , |1⟩}
and greek letters φ to denote arbitrary states.
Gates. A gate applies a unitary operation to a quan-
tum state. Here, we only consider gates with a single
target qubit in state φ and potentially multiple con-
trol qubits C = {c1, ...} in state |j⟩ for j ∈ {0, 1}m,
mapping |j⟩C⊗φ to |j⟩C⊗ϕ, where the mapping from
φ to ϕ may depend on the control j. Specifically, only
the value of the target qubit may be changed, while
control qubits are preserved. Note that this mapping
can be naturally extended to superpositions (i.e., lin-
ear combinations as in Eq. (1)) by linearity. Further,
because any circuit can be decomposed into single-
target gates, not considering multi-target gates is not
a fundamental restriction.

A gate is qfree if its mapping can be fully described
by operations on computational basis states, i.e., if for
control qubits C and target qubit t it is of the form

|j⟩C |k⟩t 7→ |j⟩C |F (j, k)⟩t ,

for F : {0, 1}m × {0, 1} → {0, 1}. For example, the
NOT gate X, the controlled NOT gate CX, and the
Toffoli gate CCX are qfree, while the Hadamard gate
H and the controlled Hadamard gate CH are not
qfree. Qfree gates are known to be critical for syn-
thesizing uncomputation [1, 3, 4].

1Reqomp is publicly available at https://github.com/
eth-sri/Reqomp.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 2

https://github.com/eth-sri/Reqomp
https://github.com/eth-sri/Reqomp

Uncomputation. The task of uncomputation is to
revert all ancilla variables in a circuit to their initial
state |0⟩, while preserving the circuit effect on the
other variables. Formally, given a circuit C, we want
to synthesize C which resets ancillae variables to |0⟩
without affecting the remainder of the state:

Definition 2.1 (Correct Uncomputation, [1, 3]). C
correctly uncomputes the ancillae A in C if whenever

|0 · · · 0⟩A ⊗ φ
JCK7−−→

∑
j∈{0,1}|A|

γj |j⟩A ⊗ ϕj , then

|0 · · · 0⟩A ⊗ φ
JCK7−−→

∑
j∈{0,1}|A|

γj |0 · · · 0⟩A ⊗ ϕj .

Here, JCK denotes the semantics of circuit C acting
on a given input state. We refer to [1] for a more
thorough introduction to uncomputation.

3 Circuit Graphs
As discussed in §1, Reqomp does not work directly
on circuits, but instead relies on well-valued circuit
graphs. In this section, we first intuitively introduce
these graphs (§3.1) and the method evolveVertex to
manipulate them (§3.2). Finally, we formalize the
definition of well-valued circuit graphs and show how
evolveVertex preserves their well-formedness (§3.3).

Circuit graphs were introduced and formalized in
Unqomp [1]. We here extend them to precisely track
qubits values. We discuss the differences between
well-valued circuit graphs and Unqomp circuit graphs
in §3.3.

3.1 Circuit Graph Intuition
As an example, we consider the circuit depicted in
Fig. 2a. This circuit uses an ancilla qubit a to com-
pute some output on qubit t, based on the value of
qubit s. The circuit graph G corresponding to this
circuit is shown in Fig. 2c.
Vertices and Edges. We first focus on the struc-
ture of the circuit graph G. G contains one init
vertex per qubit (e.g., s0.0 for qubit s), and one
gate vertex per gate (e.g., s1.0 for the first X gate
on s). It also connects consecutive vertices on the
same qubit by a target edge, e.g., s0.0 → s1.0 .
Further, as a1.0 represents a CX gate controlled by
qubit s, the circuit graph G also contains a control
edge between the corresponding vertices on s and a:
s1.0 •→ a1.0 . Finally, the circuit graph G also con-

tains anti-dependency edges to enforce correct order-
ing between otherwise unordered vertices. For exam-
ple, a1.0 99K s0.1 ensures that the second X gate
on s (represented by s0.1) can only be applied after
the CX gate targeting a (represented by a1.0). Anti-
dependency edges can be reconstructed from the tar-
get and control edges: for any three vertices n, c, d

X X

X

H

s

a

t

a) Circuit C

s0 s1

a0 a1

t0 t1

X

CX, s1

CCH, s0, a1

b) Value graph gval

s0.0 a0.0 t0.0

s1.0 a1.0

s0.1 t1.0

s1.0 : X a1.0 : CX

s0.1 : X t1.0 : CCH

c) Circuit graph G

Figure 2: A Circuit C and the corresponding value graph gval

and circuit graph G

such that c → d and c •→ n, there is an edge n 99K d
ensuring that n must be applied before d.

Valid Circuit Graphs. A circuit graph is valid iff
it corresponds to a valid circuit. Most importantly,
all valid circuit graphs must be acyclic2. Any valid
circuit graph G can be converted into a circuit. The
resulting circuit has one qubit per init vertex in G.
We then pick any total order on the gate vertices of
G that is consistent with the partial order induced
by its edges, and add gates to the circuit following
this total order. [1] showed that any of the circuits G
can be converted to (depending on the choice of total
order) have equivalent semantics. We hence define the
semantics of a valid circuit graph G, denoted JGK, as
the semantics of any circuit it can be converted to.

Tracking Values. While the above construction fol-
lows Unqomp [1], we additionally introduce a new ver-
tex naming convention to track qubit values. Specifi-
cally, each vertex (e.g., s1.0) is identified by its qubit
(here s), its value index (here 1) and its instance in-
dex (here 0). The value index is chosen such that in-
tuitively, two vertices with the same qubit and value
index hold the same value, even in the presence of
entanglement. The instance index is used to ensure
uniqueness of vertex names. For example, as X is self-
inverse, the value on qubit s is the same in the very
beginning of the circuit (s0.0) as after applying the
two X gates to s (s0.1). More precisely, if the input
state to the circuit is |0⟩s ⊗ φ, after the two X gates
on s have been applied, the final state is |0⟩s ⊗ φ′ for
some φ′. Reflecting this in the circuit graph, vertices
s0.0 and s0.1 share the same value index 0.

2We recall the definition of valid circuit graphs from [1] in
Def. C.1

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 3

Value Graph gval. To track value indices during
circuit graph construction and later during uncom-
putation, we rely on the value graph gval , shown in
Fig. 2b. It records for each qubit and value index
the possible value transitions. gval contains one init
vertex per qubit but without an instance index, for
example s0 for qubit s. When encountering a new
gate, for example the first X gate on qubit s, we pick
a fresh value index for this qubit and extend gval . The
value graph gval also records which operations can be
safely uncomputed. For instance, as X is a qfree gate,
the X on s0 can be uncomputed: applying X on s1
yields s0 (note that X is self-inverse). We materialize
this with the reverse edge s1 → s0, giving:

s0 s1
X

Similarly, the CX gate from a0 with control s1 yields
a1 (see Fig. 2b). Note that we do not specify the
instance index of s1: as any vertex on qubit s with
value index 1 carries the same value, any of them can
be used as a control. As CX is qfree, we also record
in gval the reverse edge from a1 to a0, with gate CX
and control s1. In contrast, the CCH gate on qubit
r cannot be safely uncomputed as it is not qfree [3].
We therefore only record the forward edge from t0 to
t1.

3.2 Modifying a Circuit Graph
We now discuss the core operation of Reqomp, the
safe extension of a circuit graph in a stepwise manner
through function evolveVertex.

evolveVertex. We show the algorithm for
evolveVertex in Fig. 3a. As its name suggests, it is
used to evolve vertices, i.e., to bring qubits from one
value index to another. It uses the value graph gval as
a guide, and iteratively modifies a circuit graph G. In
Fig. 3, G is a copy of the circuit graph G from Fig. 2c,
and its value graph gval is shown in Fig. 2b. Note that
Reqomp, and hence also evolveVertex, never modifies
the circuit graph G corresponding to its input circuit.
Instead, they both work on a new circuit graph G,
built by following G, as we will explain in §4.

Calling evolveVertex. evolveVertex takes as in-
put three arguments. First, qb is the qubit on which
we will insert the uncomputation. Second, nVId is
the value index we will evolve this qubit to. The
last argument is I, a set of qubits on which vertices
are currently being added—this argument is needed
to avoid infinite recursion (see also Lin. 2, discussed
later). In Fig. 3b, we demonstrate the example call
evolveVertex(a, 0, ∅), which uncomputes a single gate
on qubit a: it will bring qubit a from its current value
index 1 to 0. The argument ∅ indicates that no ver-
tices on any other qubit are in the process of being
added to G.

Building the New Vertex. evolveVertex proceeds
as follows. Lin. 3 gets the last vertex last on qubit a,
that is the lowest one following target edges. Lin. 4
stores its value index in variable oVId. Here last is
a1.0 and oVId is 1. Lin. 5 then checks that nV Id, the
value index we want to add to the graph, here 0, can
be reached in just one gate step. This is the case as
a0 is just one CX gate away from a1, as evidenced by
the edge a0

CX,b0−−−−→ a1 in gval (see Fig. 2b). Lin. 8 then
inserts a new vertex in G on qubit a with value index
0 and gate CX. As there is already a vertex a0.0 in
G, it picks a new instance index, resulting in vertex
a0.1. Lin. 9 finally links it to its predecessor with a
target edge and adds the resulting anti-dependency
edge t1.0 99K a0.1. This results in the second graph in
Fig. 3b (ignoring the red edges s1.0 → a0.1 99K s0.1).
Adding Control Edges. To ensure a0.1 indeed un-
computes a1.0, we must control a0.1 with qubits hold-
ing the same values as were used to control a1.0. More
precisely, a0.1 should be controlled by vertices with
the same qubit and value index as those controlling
a1.0. As the set ctrls contains exactly those qubits
and value indices (see Lin. 6), Lin. 10 simply iterates
over all controls c in ctrls. Through a call to the
auxiliary function getAvailCtrl it then gets a (poten-
tially new) vertex c (Lin. 11), which should have the
same value index and qubit as c and be available as a
control for v (that is adding the control edge c •→ v,
and resulting anti-dependency edges does not create
a cycle in G). Many implementations of getAvailCtrl
are possible, each following different heuristics. The
only restriction is that any modification to G must
be done through a call to evolveVertex. This and the
assertion in Lin. 12 are enough to ensure correctness
of evolveVertex as we will discuss in §3.3.
Choosing a Control. Let us manually follow the
implementation of getAvailCtrl3. The only control
in ctrls is s1. We first check if an existing vertex
in G with qubit s and value index 1 could be used.
This is not the case, as using s1.0 as control for a0.1
would result in a cycle, as shown in the second graph
in Fig. 3b. We must hence compute a new vertex
on qubit s with value index 1. We do so by calling
evolveVertex(s, 1, {a}). Note how the set of qubits
under construction contains a, as this is a recursive
call within the computation of a0.1. We can finally
link s1.1 to a0.1 with a control edge, concluding the
computation and yielding the third graph in Fig. 3b.
Avoiding Infinite Recursion. The assertion in
Lin. 2 ensures that we never call evolveVertex re-
cursively on the same qubit. This avoids infinite
recursion where two qubits keep triggering recom-
putation of the other. To this end, we propa-
gate the set I of qubits currently under construction
through getAvailCtrl to potential recursive calls into
evolveVertex (see Lin. 11).

3We describe this function in §4.3 and show it in Fig. 12.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 4

1: func evolveVertex(qb, nVId, I)
2: assert qb /∈ I
3: last ← getVertex

G
(qb, "last")

4: oVId ← last.valIdx
5: assert ∃qboVId

gt,ctrls−−−−−→ qbnVId in gval

6: define gt, ctrls as above
7: assert well_valued_vertex
8: v ← addVertex

G
(gt, qb,nVId)

9: addTargetEdge(last, v)
10: for c ∈ ctrls do
11: c ← getAvailCtrl(c, v, I ∪ {qb})
12: assert correct_control
13: addControl

G
(c, v)

14: return v

(a) Function evolveVertex

s0.0 a0.0 t0.0

s1.0 a1.0

s0.1 t1.0

s0.0 a0.0 t0.0

s1.0 a1.0

s0.1 t1.0

a0.1

s0.0 a0.0 t0.0

s1.0 a1.0

s0.1 t1.0

s1.1 a0.1

(b) Using evolveVertex to uncompute a1.0 in G

Figure 3: evolveVertex algorithm and demonstration.

Modified Control. Here the uncomputation of an-
cilla a (introducing a0.1 in G) resulted in the modifi-
cation of its control qubit s (introducing s1.1). The
circuit C corresponding4 to G is hence not a correct
uncomputation of C. While ancilla a has been cor-
rectly brought back to its initial value 0, the value
of qubit s has been modified and does not hold the
same value as it would in C. We will show in §4.3
how Reqomp notices and fixes such a value mismatch
to ensure correct uncomputation.

3.3 Formalizing Value Indices
So far, we relied on an intuitive understanding of well-
valued circuit graphs, and used it to build uncompu-
tation for a circuit. Let us now formalize this intuition
in Def. 3.1.

Definition 3.1 (Well-valued Circuit Graph). We say
a valid circuit graph is well valued iff:

(i) all vertex names are of the form qs.i where q is
the name of the vertex qubit, s and i are natural
numbers

(ii) there are no duplicate vertices

(iii) the init vertex on each qubit is named q0.0 and
for any qs.i in G, qs.0 is in G

(iv) any gate vertex qs.i with s > 0 satisfies one of the
following:

(fwd) valIdx(pred(qs.i)) = valIdx(pred(qs.0))
and qs.i and qs.0 have the same gate and same
control vertices (up to their instance indices)

(bwd) if we denote s′ = valIdx(pred(qs.i)),
we have that (i) valIdx(pred(qs′.0)) = s,
(ii) qs.i.gate is qfree and equal to qs′.0.gate†, and
(iii) both qs.i and qs′.0 have the same controls (up
to instance indices).

4This is a slight simplification. Multiple circuits C may
correspond to the circuit graph G. They all have the same
semantics, and will all be incorrect uncomputations of C.

Here, pred(v) is the unique v′ such that v′ → v
and valIdx(v) is the value index of v. We now give
some intuition of the last condition (iv). Case (fwd)
corresponds to a (forward) computation, for instance
s1.0 and s1.1 in the last graph in Fig. 3b. Here, case
(fwd) ensures that s0.0 → s1.0 and s0.1 → s1.1 apply
the same operation to the same starting state, i.e. in
both cases qubit s holds the same value before the
operation is applied. This is the case as both s1.0
and s1.1 have the same gate X, and their predecessors
(s0.0 and s0.1) have the same value index 0. Case
(bwd) corresponds to a (backward) uncomputation,
for instance a1.0 and a0.1. Here, case (bwd) ensures
that the operations a0.0 → a1.0 and a1.0 → a0.1 are
exact inverses of each other. Specifically, it ensures
that (i) a0.1 and the predecessor of a1.0 (here a0.0)
have the same value index 0, (ii) the gates of a1.0 and
a0.1 are inverses of each other, and (iii) their controls
(s1.0 and s1.1) have the same qubit and value index.

Preserving Values. Any circuit graph verify-
ing this definition ensures the following: if a qubit
is in some basis state at a value index, then if
the qubit reaches the same value index at a later
point in time, it will again be in this same basis
state. Or, more formally: for every pair of vertices
qs.i and qs.i′ , applying all gates G′ between these
vertices should preserve q, in the following sense:

∀b ∈ {0, 1}.
∀φ ∈ Hn−1.

∃ψ ∈ Hn−1. |b⟩q ⊗ φ
JG′K
7−−−→ |b⟩q ⊗ ψ, (2)

where Hn−1 denotes the set of quantum states over
n − 1 qubits. As we can write any state as a sum of
computational basis states, Eq. (2) allows us to reason
about any state. We show in App. C that any well-
valued circuit graph ensures Eq. (2) (more precisely,
Lem. C.3 implies this).

evolveVertex. In §3.2, we claimed that evolveVertex
preserves the well-valuedness of a circuit graph. More
precisely, if evolveVertex terminates without error, the
resulting circuit graph G is still well-valued (assuming
it was before the call). This is ensured through the
two assertions in Lin. 7 and Lin. 12. We now specify

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 5

those assertions. The first, well_valued_vertex
requires that one of the following conditions is satis-
fied:

(fwd) there exists i such that qboVId.i → qbnVId.0
is in G and gt and ctrls correspond to the gate
and controls of qbnVId.0 ;

(bwd) there exists i such that qbnVId.i → qboVId.0
is in G, gt is qfree and equal to qboVId.i .gate† and
ctrls correspond to the controls of qboVId.0 ;

The second, correct_control requires that c has
the same qubit and value index as c, and that
adding the control edge c •→ v (and all resulting anti-
dependency edges) does not create a cycle in G. Taken
together, these assertions correspond exactly to the
definition of a well-valued graph, and ensuring that
it stays acyclic. Further, neither of those assertions
refer to the value graph gval and both avoid reliance
on the function getAvailCtrl. This allows for a self-
contained definition of well-valued graphs and simpler
correctness proof, which we discuss in §5.
Contributions to Circuit Graphs. In the follow-
ing, we briefly elaborate on the main differences be-
tween the circuit graphs introduced in Unqomp and
our new notion of a well-valued circuit graph. Un-
qomp does not use value indices. Instead, uncompu-
tation is built by adding to the circuit graph built
from the input circuit an uncomputation vertex for
each vertex on an ancilla. Correctness of the uncom-
putation then relies on this one computation vertex to
one uncomputation vertex correspondence in the final
circuit graph. This one to one correspondence fun-
damentally does not allow for recomputation, where
three or more vertices may correspond to the same
value. In contrast, we introduce the notion of value
indices, and prove formally (see §5) that they accu-
rately track values in qubits. We further introduce the
notion of a value graph and the function evolveVertex,
which leverages value indices to build correct compu-
tation and uncomputation in a circuit graph.

4 Reqomp
The previous section presented our notion of well-
valued circuit graphs, and how they can be used to
insert computation or uncomputation on any qubit.
We now take a step back and present the complete
Reqomp procedure, and how it leverages well-valued
circuit graphs and the evolveVertex function to tackle
the problem of ancilla variables uncomputation under
space constraints. As mentioned in §1, Reqomp takes
as input a quantum circuit and a number of available
ancilla qubits. If successful, it returns a quantum cir-
cuit where all ancilla variables from the original circuit
are uncomputed and all other variables are preserved,
using only the number of available ancilla qubits.

Example Circuit. Fig. 4 gives an overview of Re-
qomp and applies it to an example circuit with five
ancilla variables, a, b, c, d, and e, and two non ancilla
variables r and t. We note that while this circuit does
not implement a relevant algorithm, it allows showcas-
ing the key features of Reqomp on a simple example.
Reqomp Workflow. Fig. 4 shows the steps per-
formed by Reqomp, which we detail below.

First, Reqomp converts the circuit C into a cir-
cuit graph G and a value graph gval (see Fig. 4b).
Using this representation, Reqomp identifies the de-
pendencies among ancilla variables in the circuit (see
§4.1 and Fig. 4c), and uses them to derive an uncom-
putation strategy respecting the number of available
ancilla qubits (see §4.2 and Fig. 4d). Reqomp then ap-
plies this strategy to build a new circuit graph G con-
taining uncomputation (see §4.3 and Fig. 4e). Finally,
Reqomp converts the resulting circuit graph into a cir-
cuit C (see §4.4 and Fig. 4f).

4.1 Identifying Ancilla Variables Dependencies
The first step of Reqomp is converting the input cir-
cuit into a circuit graph G, as we described in §3.
Using this circuit graph G, Reqomp then identifies
ancilla dependencies.

On the circuit graph G from Fig. 4b, Reqomp
identifies all ancilla variables vertices (highlighted in
red) and their dependencies (highlighted in blue), and
extracts the ancilla dependencies shown in Fig. 4c.
There, each vertex corresponds to an ancilla variable
and each solid edge corresponds to a control edge
among gate vertices between these respective ancilla
variables. We will discuss the dotted edge shortly.

4.2 Deriving the Uncomputation Strategy
Based on the ancilla dependencies derived above, Re-
qomp will derive an uncomputation strategy.

What is an Uncomputation Strategy? The un-
computation strategy describes in which order the an-
cillae in the circuit should be computed and uncom-
puted, to satisfy the space constraints that were given
as input, while minimizing the number of gates in the
circuit. For instance Fig. 1 showcases two different
such strategies. The first one, shown in Fig. 1b, is
to compute ancilla a, then b, then c, then uncompute
c, then b, then finally a. We typically write such a
strategy as a, b, c, c†, b†, a†, where we write a to denote
"computing ancilla a", and a† to denote "uncomput-
ing ancilla a". The second strategy, shown in Fig. 1c
is a, b, a†, c, c†, a, b†, a†.
Partitioning Ancillae. The first step in deriving
such an uncomputation strategy from the ancilla de-
pendencies is to distinguish groups of ancillae vari-
ables that depend on each other; in other words, par-
titioning the ancillae according to their dependen-

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 6

X

X

X

H

X

X

H

a

b

c

r

d

e

t

a) Input Circuit C

a0.0 b0.0 c0.0 r0.0 d0.0 e0.0 t0.0

a1.0 b1.0

c1.0

r1.0 d1.0 e1.0

t2.0

a1.0 : X b1.0 : CX

c1.0 : CCX

r1.0 : CH d1.0 : CX e1.0 : CX

t1.0 : CH

b) Circuit Graph G and value graph gval (omitted)

2
Ancilla

Qubits

a b c d e

c) Ancilla Dependencies

a, b, a†, c, c†, a, b†, a†, d, e, e†, d†

d) Uncomputation Strategy
(omitted)

e) Circuit Graph G

a a

b

c d

e
X X X X X X X X

X X X X

H

H

u

v

r

t

f) Circuit With Uncomputation C

Figure 4: Overview of Reqomp

cies. More precisely, Reqomp identifies ancilla vari-
ables that do not interact with each other (i.e., lie
in different connected components of the ancilla de-
pendency graph), and can therefore be computed and
uncomputed independently. For instance in Fig. 4c,
ancillae variables a, b and c belong to the same con-
nected component highlighted in dark gray, while an-
cillae variables d and e are in another component.

Why Partition Ancillae? Reqomp aims at bal-
ancing ancilla qubits and gates. For two ancillae that
do not interact, such a trade-off is easy: we should
always uncompute the first ancilla early, making its
qubit available for the latter one. As the ancillae are
independent, the latter one does not need the ear-
lier one, so the early uncomputation will not induce
extra gates, i.e., no recomputation is necessary. For
instance, in Fig. 4c, ancillae {a, b, c} and {d, e} are
independent. Therefore, it is strictly better to un-
compute a, b and c before computing d and e, thereby
reusing the physical ancilla qubits initially holding a, b
and c for d and e. This is in contrast to ancillae that
are part of the same partition. For instance, in Fig. 1,
we saw that for the 3 linked ancillae a, b, c, uncomput-
ing early yields a different trade-off than uncomputing
late.

Strategy for a Connected Component Now
that we have split the ancillae variables in two com-
ponents, let us derive the uncomputation strategy

for each of them. We first note that within each of
the components in Fig. 4c, the ancilla variables ex-
hibit a linear dependency. Formally, we say ancillae
a1, . . . , an are linearly dependent if all gates targeting
ai for i > 1 are only controlled by ai−1 and non-
ancillae. This corresponds to a component that forms
a simple path. In this case, we can derive an op-
timal uncomputation strategy (in terms of number
of computation/uncomputation steps) using dynamic
programming [5] 5. For the first component ({a, b, c})
on at most two ancilla qubits, the following optimal
strategy is found:

a, b, a†, c, c†, a, b†, a†. (3)

For the second component ({d, e}), also on at most
two ancilla qubits, the following optimal strategy is
found:

d, e, e†, d†. (4)

If within a component the ancilla variables are not
linearly dependent, we abort the current procedure,
and fall back on an alternative one, Reqomp-Lazy,
which we describe in §4.5. We note that we avoid
solving the general problem of finding an uncompu-
tation strategy for any ancilla dependency, as it is
P-SPACE complete [6].

5We show our implementation of this method in Fig. 13.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 7

15: func ApplyingStrategy(stages)
16: G← initGraph(G.qbs)
17: for anc, fwd ∈ stages do
18: if fwd then
19: ancQb← getFreeAncillaQubit()
20: i← freshInstanceId

G
(anc, 0)

21: addVertex
G

(anc0.i, ancQb)
22: addEdge

G
(getLastOnQb

G
(ancQb)→ anc0,i)

23: if fwd then
24: evolveVtxUntil(anc,max{s | ancs ∈ gval})
25: else
26: evolveVtxUntil(anc, 0)
27: if s is last fwd stage in stages acting on anc then
28: for ts such that ∃ts′

gate,..,anci−−−−−−−−→ ts in gval do
29: if t is not an ancilla and ts.0 /∈ G then
30: evolveVtxUntil(t, s)
31: if not fwd then
32: freeAncillaQubit(ancQb)
33: for vs.i final vertex in G do
34: if v not an ancilla then
35: evolveVtxUntil(v, s)
36: assertFullyEvolved()
37:
38: func evolveVtxUntil(var , to)
39: from ← lastOnQb

G
(var).valIdx

40: steps ← getPath(var from , var to, gval)
41: for step ∈ steps do
42: evolveVertex(anc, step, ∅)

Figure 5: Applying the uncomputation strategy. We assume
G, G, and gval are globally available.

Combining Strategies After determining the op-
timal uncomputation strategy for each connected
component, we must combine those strategies to yield
our complete strategy. To this end, we determine in
which order the components should be processed, en-
suring that if an ancilla d transitively depends on an-
cilla c, c’s component is processed before d’s compo-
nent (captured by edges in Fig. 4c). In our case,
we must process the component with ancilla variables
a, b, c before the one with ancilla variables d, e, as d
depends on c through the qubit r. Combining the
respective strategies in this order, we finally get the
complete uncomputation strategy shown in Fig. 4d. If
ordering the connected components is impossible due
to cycles, we again fall back to Reqomp-Lazy.

4.3 Applying the Uncomputation Strategy
We showed in the previous section how Reqomp de-
rives the uncomputation strategy for a given circuit.
Further, we have shown in §3.2 how we could use
evolveVertex to insert computation or uncomputation
in a circuit graph. However, there is a gap between the
uncomputation strategy and evolveVertex: the for-
mer does not mention any non-ancilla variables, nor
any value indices, which are a required argument of
evolveVertex. Fig. 5 bridges this gap by showing how
Reqomp translates the uncomputation strategy into a
series of calls to evolveVertex, which will build a new
circuit graph G with uncomputation.

A New Circuit Graph. Reqomp does not insert
the uncomputation directly in G, the circuit graph
built from the input circuit C. Instead, it builds a
new graph G from scratch, adding computation and
uncomputation on all qubits step by step. G is ini-
tialized in Lin. 16. Initially, it contains one init vertex
for each non ancilla qubit in G. For the circuit graph
G shown in Fig. 4b, this results in the following graph
G:

s0.0 r0.0

Qubits Allocation. The strategy consists of a se-
quence of stages, where each stage fully computes an
ancilla or fully uncomputes it. Each stage is described
by the ancilla it concerns, and a boolean fwd that is
true for a computation step, and false for an uncom-
putation one. For instance the first stage in the strat-
egy shown in Fig. 4d is (a, True), that is computing
ancilla a. For a computation stage, the first step is
to allocate a qubit (Lin. 19) and create a new vertex
on this qubit (Lin. 20–21). This new vertex is then
linked to the last vertex on the same qubit, if it ex-
ists, with a target edge in Lin. 22. This is typically the
case if the qubit was previously used to compute and
uncompute another ancilla. Further, at the very end
of each stage, if it was an uncomputation stage, the
qubit is marked as freed and therefore can be reused
for later stages, see Lin. 32.
Detailed Steps for Ancilla (Un)computation.
Now that the ancilla has been allocated a qubit if nec-
essary, Reqomp computes the detailed computation
or uncomputation steps the current stage requires, in
Lin. 23–26. First, Reqomp decides on what is the ob-
jective value index for the current stage. If this is
an uncomputation, it is 0, as the ancilla should be
uncomputed back to its initial value. If this is a com-
putation step, the ancilla should be computed until its
maximum value index in G. For instance, for ancilla
a, this maximum value is 1.
EvolveVtxUntil. To compute an ancilla to the ob-
jective value index chosen above, Reqomp relies on
the function evolveVtxUntil, shown in Lin. 38. This
function first determines what the current value index
of the variable is in G, that is to say what is the value
index of the last vertex with qubit var . Using gval ,
the function then determines the intermediate com-
putation steps required to bring var from its current
value index from to the objective one to. This is sim-
ply the shortest path in gval from var from to var to.
Those steps can then be applied in order, using the
function evolveVertex, which we discussed in §3.2.
Non Ancilla Variables. We explained above how
the uncomputation strategy can be detailed for non
ancilla variables. Let us now describe how non ancilla
variables are computed. This is done in two places.
First, at the end of the last forward stage on an ancilla
anc, anything controlled by this ancilla is computed.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 8

More precisely, we want to compute all ts, where t is
a non ancilla variable and s a value index such that
the computation of ts is controlled by some anci, that
is to say that there exists some edge ts′

gate,..,anci−−−−−−−→ ts

in gval . This is shown in Lin. 28–30, and the required
computation steps are again computed and applied
through the function evolveVtxUntil6. Non ancilla
variables are also computed at the very end of the
strategy, in Lin. 33–35. Here any non ancilla variable
whose final value index in G is not the same as in G
is computed to its final value index in G.
getAvailCtrl. When we introduced evolveVertex in
§3.2, we mentioned that it relies on an auxiliary func-
tion getAvailCtrl to get the controls required for a
vertex. Any heuristic can be used for this function,
as long as it only modifies G through evolveVertex.
Reqomp uses the following heuristic7. Suppose we
need a control cs (that is value index s on qubit c)
to be used to control some vertex v. We first find
the latest (that is the lowest following target edges)
vertex with this qubit and value index in G. If this
vertex is available for v, that is adding a control edge
from this vertex to v does not create a cycle in G, we
return it. If this vertex is not available, or if no such
vertex exists, we recursively call evolveVertex to build
a new vertex on qubit c with value index s from the
latest vertex on qubit c.
Asserting Uncomputation is Complete. After
the uncomputation strategy has been applied as de-
scribed above, Lin. 36 performs a final check 8. It
asserts that all variables are fully evolved, either back
to their initial state index 0 (for ancilla variables), or
to their final state index in G (for non-ancillae). If
not, Reqomp falls back to the alternative Reqomp-
Lazy strategy (see §4.5).

4.4 Obtaining the Final Circuit
If the above check succeeded, the final step of the al-
gorithm converts the circuit graph G to a circuit C.
During this step, we perform a generic post-processing
optimization, previously discussed in [1]. Specifically
it replaces in G all CCX gates which are later uncom-
puted by RCCX gates. While RCCX gates introduce
an additional phase change, replacing pairs of CCX
gates ensures that this phase change is also reverted.

As RCCX gates can be implemented more effi-
ciently than CCX gates (the latter require more T
gates), this can lead to a substantial efficiency im-
provement. This is particularly appealing in our set-
ting, were we encounter many CCX gates, and most
of them are uncomputed.

6As detailed in App. B.2 (Fig. 12), we may force extra steps
in the computation to ensure some values are computed at least
once for non ancilla variables.

7Fig. 12 shows this implementation of getAvailCtrl.
8Fig. 12 shows the implementation of assertFullyEvolved.

43: func Reqomp-Lazy()
44: G← DeepCopy(G)
45: U ←

{
qs.0 ∈ G | q ancilla in G.qbs and s > 0

}
46: for v ∈ reverse(topologicalSort(U)) do
47: l← last

G
(v.qubit)

48: assert l.valIdx == v.valIdx
49: evolveVertex(v.qubit, v.valIdx− 1, ∅)
50: assertFullyEvolved()
51: reuseAncillaRegisters()

Figure 6: Fallback algorithm closely following Unqomp [1].

We note that Unqomp could only apply this opti-
mization to gates it had itself uncomputed, whereas
Reqomp can also identify uncomputation that is al-
ready in place in the original circuit, by leveraging
value indices.

The updated circuit graph G is then converted back
to a circuit, as described in §3.1. For our example, this
results in the circuit C in Fig. 4f. Importantly, the
resulting circuit uses the same physical ancilla qubit
to hold both a and c, saving one qubit at the cost of an
extra uncomputation and recomputation of qubit a.
The same physical qubit is also used to hold d, at
no extra recomputation cost, as d does not depend
directly on a.

4.5 Fallback procedure: Reqomp-Lazy
In general, uncomputation according to Def. 2.1 is
not always physically possible [1, §6.2]. Because we
cannot always achieve uncomputation, Reqomp ap-
plies heuristics to succeed as frequently as possible.
However, we must accept that they may fail in some
cases. First, the ancillae within a partition may not
be linearly dependent, or the ancillae partitions may
have cyclic dependencies. In such cases, Reqomp falls
back to the heuristic Reqomp-Lazy, which we will
describe shortly. Second, assertions in evolveVertex
or assertFullyEvolved may fail, both in Reqomp and
Reqomp-Lazy. In such cases, Reqomp returns an er-
ror. When this happens, it may indicate that no ap-
proach can achieve uncomputation, hinting at a possi-
ble implementation mistake or misconception by the
programmer. If uncomputation is possible, but no
available approach can synthesize it automatically, a
programmer can always uncompute manually instead.
Overview. Reqomp-Lazy is inspired by Unqomp [1],
but leverages the augmented circuit graphs and
evolveVertex. In particular, Reqomp can uncompute
and recompute controls for a vertex when they are not
directly available. In contrast, Unqomp would have
returned an error anytime this happens. We provide
an example in Fig. 9 (§6).

Fig. 6 shows the algorithm Reqomp-Lazy. Lin. 44
initializes G with a copy of G, to be extended by
adding vertices that perform uncomputation. Lin. 45
defines U as the set of all vertices to be uncomputed:
it contains the first instance of each value index on

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 9

(a) Circuit

(b) Extension

H

X X

X

X

X

X

X

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

q

a

q0.0

q1.0

a0.0

a1.0

a0.1

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

|1⟩
|0⟩

|0⟩
|1⟩
|0⟩
|1⟩
|0⟩

1√
2

1√
2

+

Figure 7: Intuition on the correctness of Reqomp.

each ancilla qubit. Then, Lin. 46–49 step through U
in reverse topological order and revert all operations
on ancillae one step at a time by calling evolveVertex
(Lin. 49). Then, analogously to Reqomp, Lin. 50 as-
serts all qubits are fully evolved. Finally, as specified
in the original version of Unqomp [1, §5.4], Lin. 51
allocates ancillae to the same physical qubits if their
lifetimes do not overlap. The resulting circuit graph
is then finally converted to a circuit, using the proce-
dure detailed in §4.4.

Custom Control Strategy. While Reqomp-Lazy
reuses evolveVertex, it uses a different implementation
of getAvailCtrl. This new implementation aims at us-
ing controls that are as early (in terms of target edges)
as possible, therefore keeping later controls available
for later uncomputations. Specifically, to find a con-
trol cs for a vertex v, it finds the earliest vertex in G
on qubit c and value index s that is available for v.
Recall that in contrast, we used the latest such vertex
when using evolveVertex to apply an uncomputation
strategy (see §4.3). If no such control vertex can be
found, we recursively call evolveVertex to evolve the
last vertex on qubit c until it has the state index s,
just as we did in §4.3.

5 Correctness
We prove in App. C that Reqomp synthesizes correct
uncomputation. In this section, we provide an intu-
ition of this proof.

Value Index Assertions. The correctness of Re-
qomp relies on value indices. At the end of the al-
gorithm (Lin. 36 when ApplyingStrategy succeeded,
Lin. 50 when Reqomp falls back to Reqomp-Lazy),
we assert that the last vertex on all ancilla qubits has
value index 0, and that for any non-ancilla qubit, the
value indices of the last vertex are the same for the
original graph and the synthesized graph. Intuitively,
this ensures that ancillae are reset to |0⟩, while other
qubits are preserved.

Correctness hence relies on the precise formal inter-
pretation of value indices. Intuitively, we claim that
two vertices on the same qubit with the same value
index hold the same value.
Extended Circuits. To formally define this notion,
we introduce the notion of an extended circuit. We
conceptually extend a given circuit to allow us to com-
pare the value of all vertices occurring in the circuit.

Fig. 7 exemplifies this by extending the example
circuit in Fig. 7a, which applies an H gate and two
controlled X gates to qubits q and a. Overall, the
circuit in Fig. 7a yields state

1√
2 |0⟩q |0⟩a + 1√

2 |1⟩q |0⟩a ,

which we write in a column-by-column format in
Fig. 7a (right).

Fig. 7b shows our extension of Fig. 7a, copying9

the value of each vertex from the corresponding cir-
cuit graph to a fresh qubit. The name of these copy
qubits is the same as their corresponding vertex but
underlined, e.g., q0.0 holds the initial state of q, cor-
responding to vertex q0.0.
Value Index. Intuitively, copy qubits with the same
value index and qubit hold the same value. More pre-
cisely, if we write the state produced by the extended
circuit as a sum of computational basis states, in each
summand (with a non-null coefficient), copy qubits
with the same value index and qubit hold the same
value. For example, in every summand (i.e., column)
of the final state in Fig. 7b, a0.0 and a0.1 hold value
|0⟩ (see red bracket in Fig. 7).

Similarly, each qubit holds the same value as its
last copy qubit. For example, in every summand (i.e.,
column) of the final state in Fig. 7b, q and q1.0 both
hold either value |0⟩ or |1⟩ (see blue bracket in Fig. 7).

In Lem. C.3 (App. C) we formally prove that these
two facts hold for any well-valued circuit graph, as
defined in Def. 3.1.

We further show in App. C that any circuit graph
built with evolveVertex (Fig. 3a) is well-valued.
Final Values in the Extended Graph. The as-
sertion in Lin. 36 (resp. Lin. 50) ensures that in the
circuit graph G built by applying the uncomputation
strategy (resp. the circuit graph G built by Reqomp-
Lazy), the last vertex on all ancilla qubits has value
index 0. Hence, those qubits hold the same value as
the initial value of that qubit, i.e., |0⟩. More precisely,
consider a circuit graph G with ancilla qubits A and
non ancilla qubits Q, and denote G the circuit graph
after uncomputation. We then have that any sum-
mand in the final state after applying the extended
version of G is of the form |0...0⟩A⊗|i⟩Q⊗|...⟩V , where
we use V to denote all the copy qubits in E(G).

The assertions in Lin. 36 and Lin. 50 further
check that the value indices of non-ancilla qubits

9Note that copying using a controlled X gate does not vio-
late the no-cloning theorem.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 10

match their respective last vertices in G. As
we show more formally in App. C, this means
that if the effect of the extended version E(G)
of G on some initial state can be written as

|0 · · · 0⟩A ⊗ φ
JE(G)K
7−−−−−→

∑
j∈{0,1}|A|

k∈{0,1}|Q|

γjk |j⟩A ⊗ |k⟩Q ⊗ |...⟩V ,

then the effect of the extended version E(G)
of G on the same state can be written as:

|0 · · · 0⟩A ⊗ φ
JE(G)K
7−−−−−→

∑
j∈{0,1}|A|

k∈{0,1}|Q|

γjk |0 · · · 0⟩A ⊗ |k⟩Q ⊗ |...⟩V ′ ,

where we denote V ′ the set of copy qubits in E(G).

Circuit Graph Semantics. Importantly, the se-
mantics of the unextended circuit follows straight-
forwardly from the semantics of the extended circuit.
In Fig. 7, simply ignoring the rows from Fig. 7b yields
the correct final state. If we similarly ignore the val-
ues of the copy qubits V and V ′ in the two equations
above, we recover the correct uncomputation theo-
rem, for circuits C and C:

Definition 2.1 (Correct Uncomputation, [1, 3]). C
correctly uncomputes the ancillae A in C if whenever

|0 · · · 0⟩A ⊗ φ
JCK7−−→

∑
j∈{0,1}|A|

γj |j⟩A ⊗ ϕj , then

|0 · · · 0⟩A ⊗ φ
JCK7−−→

∑
j∈{0,1}|A|

γj |0 · · · 0⟩A ⊗ ϕj .

Multiple Graphs. Note that here we assumed
that both G and G have the same effect, as they
apply the same gates for the same value indices.
Proving this formally requires extra work, done in
Lem. C.4 (App. C).

6 Evaluation

We have evaluated Reqomp on an existing benchmark
to answer the following research questions:

Q1 Circuit Efficiency: Can Reqomp create efficient
circuits in terms of number of qubits and gates,
while allowing to trade one for the other?

Q2 Usability: Is Reqomp fast and directly applicable
to a wide range of circuits?

Implementation. We implemented Reqomp as a
language extension of Qiskit, using Qiskit’s built-in
AncillaRegister type to mark ancilla variables in
the circuit. As Qiskit, our extension is implemented
in Python.

6.1 Benchmarks and Baseline
To evaluate Reqomp, we used the benchmark from
Unqomp [1]. The first column in Table 1 summarizes
the circuits in our benchmark, separated into "small"
and "big" circuits. While the "small" circuits were
taken directly from Unqomp, we have generated the
"big" circuits by re-parametrizing the original circuits
to yield bigger circuits. This allows us to demonstrate
the Reqomp also performs well on larger circuits.

For completeness, we provide the exact parameters
for each circuit in App. D, including the resulting cir-
cuit sizes.
Circuits. To provide an intuition on our benchmark,
we explain selected circuits (see [1, §7.1] for details).

IntegerComparator takes a constant parameter n
and multiple input qubits encoding a value v, and flips
its output qubit if and only if v ≥ n. MCX flips its
output qubit if and only if all its input qubits are one.
MCRY applies a rotation to its output qubit if and
only if all its control qubits are one. PiecewiseLinearR
applies a rotation f(x) to its output qubit, where x
is the value on its input qubits and f is piecewise
linear. PolynomialPauliR works analogously, but for
polynomial f . WeightedAdder takes as parameters a
list of weights λ0, ...λn and outputs

∑
λiqi where the

qi are the input values.
Selecting a Baseline. We provide a thorough
overview of related work in §7. Of the many works
discussed there, only four can take circuits as in-
put: Square [2], Quipper [7], ReQWire [4] and
Unqomp [1]. Of these, ReQWire can only verify
uncomputation in circuits and not synthesize it10,
and we show in §7.1 that due to various shortcom-
ings Square is not a viable option for uncomputa-
tion. This leaves only Quipper and Unqomp. As [1]
showed that Unqomp generally outperforms Quipper,
we choose Unqomp as our baseline.

Other works take as input boolean formulas (to be
compiled to circuits) [8, 9, 10], focus on building un-
computation strategies without explaining how to ap-
ply them [11, 12], or do not compile to circuits [13].

6.2 Q1: Circuit Efficiency
We now discuss the efficiency of circuits produced by
Reqomp in terms of qubits and gates and compare
them to circuits produced by Unqomp [1].
Approach. For each circuit, we ran Reqomp
targeting all possible number of ancilla qubits
nAncillaQubits. We then recorded, for all calls that
terminated without error, the number of qubits and
gates of the resulting circuit (with uncomputation).

We note that Reqomp had to fall back to Reqomp-
Lazy for circuits Multiplier and WeightedAdder, as

10It can synthesize circuits with uncomputation from a
boolean formula but we focus here on its possibilities when
working directly on circuits.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 11

Table 1: Reqomp results when targeting a specific ancilla qubit reduction compared to Unqomp (e.g., −66.7 indicates a
reduction by 66.7%). Gate counts are reported as compared to Unqomp (e.g., 70.5 indicates an increase by 70.5%). Columns
Max and Min report the results for the most aggressive settings, respectively optimizing only for number of qubits and
optimizing only for number of gates. Columns -75%, -50%, and -25% report the gate counts when achieving the respective
ancilla qubit reductions. Entries "x" indicate that a given ancilla qubit reduction was not achieved.

Ancilla Reduction
Max -75% -50% -25% Min

Algorithm anc (as %) gates (as %) gates (as %) gates (as %) gates (as %) anc (as %) gates (as %)
Small
Adder -66.7 70.5 x 39.2 15.7 -8.3 0.0
Deutsch-Jozsa -50.0 40.9 x 40.9 20.4 0.0 0.0
Grover -33.3 12.9 x x 12.9 0.0 0.0
IntegerComparator -63.6 47.1 x 36.1 11.6 0.0 -5.2
MCRY -63.6 80.0 x 53.3 26.7 0.0 0.0
MCX -60.0 55.2 x 46.0 27.6 0.0 0.0
Multiplier 0.0 -5.1 x x x 0.0 -5.1
PiecewiseLinearR -50.0 7.5 x 7.5 2.5 0.0 -3.3
PolynomialPauliR -33.3 9.5 x x 9.5 0.0 0.0
WeightedAdder 0.0 -9.7 x x x 0.0 -9.7
Big

Adder -93.0 314.9 64.7 42.9 21.0 -1.0 0.0
Deutsch-Jozsa -92.9 327.1 69.0 45.7 23.3 0.0 0.0
Grover -50.0 37.8 x 37.8 16.2 0.0 0.0
IntegerComparator -92.9 310.8 60.2 37.6 14.7 0.0 -6.7
MCRY -96.0 515.4 75.3 50.2 25.1 0.0 0.0
MCX -96.0 509.9 74.9 49.8 25.1 0.0 0.0
Multiplier 0.0 -5.4 x x x 0.0 -5.4
PiecewiseLinearR -85.0 47.1 17.6 10.2 2.8 0.0 -3.8
PolynomialPauliR -50.0 14.4 x 14.4 1.5 0.0 0.0
WeightedAdder 0.0 -8.0 x x x 0.0 -8.0

the ancilla dependencies of these circuits are not lin-
ear. While Reqomp-Lazy succeeds on these circuits
and even outperforms Unqomp, it cannot offer multi-
ple space-time trade-offs.

Results. Table 1 summarizes our results. Note that
gate counts are expressed as a percentage of Unqomp
gate counts. For all examples, using the maximum
number of ancilla qubits (column Min as this is the
minimal reduction) yields better results than Unqomp
for 10 circuits, and equivalent results for the remain-
ing 10 circuits. For example, Reqomp saves 5.2% of
gates on circuit IntegerComparator, without requir-
ing additional qubits. This is because Reqomp can
identify uncomputation already present in the orig-
inal circuit, allowing it to avoid unnecessary opera-
tions when uncomputing or recomputing an ancilla or
even a control. Analogous effects occur for Piecewise-
LinearR, WeightedAdder, and Multiplier, where the
last two are handled by Reqomp-Lazy.

More importantly, Table 1 demonstrates that Re-
qomp can significantly reduce the number of ancilla
qubits compared to Unqomp: by up to 96% for two
examples, and by at least 25% for 16 out of 20 circuits.
Importantly, this reduction comes at only a moderate
cost in gate count, below 28% for qubit reductions of
25%. As most quantum computers are more limited in
terms of qubits than gates, these trade-offs are highly
favorable. Further, for some examples the reduction
in qubits comes at almost no cost in gates: for Piece-
wiseLinearR, reducing by 75% the number of ancilla
qubits only increases the number of gates by 17.6%.

Trade-Offs. To further demonstrate the gate count
cost incurred by these reductions, Figs. 8a–8b show
a more fine-grained visualization of the trade-offs be-
tween ancilla qubits and gate count.

Overall, we immediately observe that on all circuits,
reducing the number of available ancilla qubits can
only increase (and never decrease) the gate count of
the resulting circuit. However, the rate of this increase
varies among the different circuits, as discussed next.

For some benchmarks such as PiecewiseLinearR
(Figs. 8a–8b) and PolynomialPauliR (Table 1), Re-
qomp can drastically reduce the number of ancillae at
almost no cost in terms of gates.

For other benchmarks such as MCX (Figs. 8a–8b)
and MCRY (Table 1), Reqomp can still reduce the
number of ancillae substantially, but at a significant
cost in terms of gates. In such cases, the appropriate
ancilla reduction depends on the available hardware—
a programmer with access to Reqomp can then sys-
tematically select the right trade-off.

Other circuits fall somewhere between these two
categories (Figs. 8a–8b and Table 1): Reqomp can re-
duce the number of ancilla qubits, at a non-negligible
cost in terms of gates.
Very Small Number of Qubits. Fig. 8 further
demonstrates that enforcing a very small number
of ancillae typically increases the number of applied
gates significantly. For instance, MCX with 200 con-
trols can be implemented with only 8 ancilla qubits,
but this requires a staggering 21 831 gates, compared
to only 3579 when 200 ancillae are used.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 12

(a) Gate counts for selected small circuits. (b) Gate counts for selected big circuits.

(c) Circuit depth for selected small circuits. (d) Circuit depths for selected big circuits.

Figure 8: Gate counts (a–b) and circuit depths (c–d) for given numbers of ancillae, using Reqomp () and Unqomp ().

Overall, we conclude that enforcing very small num-
ber of ancilla qubits is typically not a good approach.

Depth. For completeness, Figs. 8c–8d shows the
trade-off between ancilla qubits reduction and circuit
depth. As we do not optimize for circuit depth, reduc-
ing the number of ancillae sometimes yields shorter
circuits. Still, overall, circuit depth behaves analo-
gously to gate count, generally increasing for reduced
ancilla qubits counts, at different rates depending on
the circuit.

Interestingly, in some cases, we can reduce the an-
cilla count at almost no cost in circuit depth, even

though there is a cost in gate count. For example, re-
ducing ancillae from 99 to 25 on Adder only increases
depth by 31%, even though it increases the gate count
by 64%.

6.3 Q2: Reqomp Usability
We also investigated the usability of Reqomp, showing
that it is both fast and directly applicable to many
quantum circuits.
Reqomp Runtime. Our evaluation indicated that
Reqomp is fast: it synthesized uncomputation for all
circuits in Table 1 within five seconds.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 13

X X X X

X X

X

p

a

r

p0 p1 p0 p1 p0

Figure 9: Gate requiring definition in Unqomp.

Furthermore, running Reqomp typically takes as
much time as decomposing the resulting circuit to ba-
sic gates using Qiskit’s built-in decompose() function.
We hence believe that Reqomp can be integrated into
the programmer’s workflow without incurring a sig-
nificant slowdown.
Applicability. Recall that even for a circuit where
uncomputation is possible in principle, Reqomp may
raise an error. We therefore investigated how fre-
quently Reqomp succeeds in practice, comparing it
to other tools:

Qfree only Unqomp Reqomp
% examples covered ≤ 50% 60% 100%

We find that Reqomp (with the fallback strategy
Reqomp-lazy) finds a circuit with uncomputation for
all input circuits. In contrast, Unqomp can only cover
60% of those circuits directly. We will explain shortly
how we tweaked Unqomp to also cover the remaining
40%. Furthermore, only 50% of the circuits in our
benchmark are purely classical, hence any tool that
exclusively supports qfree gates can at most be used
on 50% of the examples.
Unqomp Limitations. Unqomp can only handle
60% of the circuits in our evaluation directly, because
it cannot accurately handle uncomputation that al-
ready occurs in the input circuit. Fig. 9 illustrates
this on a circuit applying a CX gate (see red box
on the left), where the bar over C indicates that the
control is inverted. To invert the controls, the circuit
applies an X gate to invert the control, and another
X gate to restore the value of the control. To uncom-
pute a it is hence necessary to track that after two
X gates, p is back to its original value shown as p0
in Fig. 9, and therefore applying a third X gate will
bring its value to p1 again, allowing to uncompute a.
Value indices allow Reqomp to precisely track those
value changes, and insert the uncomputation gates (in
the green box on the right). In contrast, Unqomp fun-
damentally cannot allow for recomputation, as its cor-
rectness relies on each operation being computed and
uncomputed exactly once. It further does not recog-
nize uncomputation or recomputation already present
in the original circuit. Therefore, in Fig. 9, Unqomp
cannot recognize that the second X gate recovers the
original value of p. Even if it did, it could not recom-
pute p1 to uncompute a.

In our evaluation (Table 1), we bypassed this type
of issue by defining the red block on the left as a

X X

X X

X X X X

X X

X

i

u0

u1

u2

r

a b c a†b†c†

a

b

c

(a) Uncomputation using 3 qubits.

X X X X

X X X X X X

X X X X

X

i

u0

u1

r

a ab ca†
2 a†b†

2c†

a ac

b

(b) Correct uncomputation using 2 qubits.

X X

X X X X X X

X X X X

X

i

u0

u1

r

a ab ca† a†b†c†

(c) Incorrect uncomputation using 2 qubits.

Figure 10: Circuit with varying uncomputation.

custom gate controlled by p. Unqomp then never de-
composes this new gate, assumes it keeps p constant,
and places it to uncompute a. Unfortunately, this
approach makes Unqomp harder to use, and in some
cases makes the resulting circuit less efficient.

7 Related Work
We now discuss works related to Reqomp.

7.1 Square
Even though it cannot synthesize uncomputation
code, Square [2] looks very closely related to Re-
qomp at first sight. Specifically, it presents "a com-
piler that automatically [places uncomputation] in or-
der to manage the trade-offs in qubit savings and gate
costs" [2, §1]. Unfortunately, Square suffers from
various shortcomings that prevent a meaningful com-
parison to Reqomp.
Square Problem Statement. Square takes as
input a program defining a qfree circuit (non qfree
gates are not supported). In this program, each func-
tion consists of the three blocks Compute (indicating
forward computation), Store (indicating computation
of outputs), and Uncompute (indicating uncomputa-

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 14

tion). Square then compiles this program to a circuit
by arranging these blocks, possibly repeating blocks
when recomputation is helpful.

Square defines three different strategies for inter-
leaving the blocks. Lazy (uncompute as late as pos-
sible), Eager (uncompute as early as possible), and
finally Square itself, using a custom heuristic. For
the example CCCH in Fig. 1, Lazy would correspond
to the 3-qubit strategy shown in Fig. 1b and Eager to
the 2-qubit strategy shown in Fig. 1c. We now present
the main shortcomings of Square.
Constant Compute/Uncompute Blocks. As
mentioned in §1, the gates needed to uncompute an
ancilla variable may depend on where this uncompu-
tation occurs in the circuit. It is hence impossible
to define fixed Compute and Uncompute blocks to be
applied anywhere.

For instance, consider the circuit in Fig. 10a. It
uses three ancilla variables a, b, and c to compute the
output variable r from the input i. Fig. 10a highlights
the Compute and Uncompute blocks Square would
consider, namely blocks a, b and, c for computation
and blocks a†, b†, and c† for uncomputation. Note
how the value of qubit i is changed by block b, and
restored later by block b†, ensuring that qubit i has
the same value for the CX gate in block a† as it had
in block a. Now, if we want to save one ancilla qubit
by uncomputing ancilla variable a early, we get the
circuit shown in Fig. 10b. Here, when uncomputing a
for the first time, the value of i has been changed in
block b and is not yet restored. To correctly uncom-
pute a in the block a†

2 (different from the block a†), it
is hence necessary to restore i using an X gate before
using it as a control to uncompute a. Similarly, block
b†

2 must change the value of i again.
Not accounting for the above, Square assumes

that no matter its placement, uncomputation code
can be kept unchanged. In particular, its eager strat-
egy would use the Compute and Uncompute blocks
from Fig. 10a, yielding Fig. 10c. This is clearly incor-
rect as this circuit has different semantics than the one
in Fig. 10a. For example, for input |0⟩i |0⟩t, Fig. 10a
produces state |0⟩i |0⟩t while Fig. 10c produces state
|0⟩i |1⟩t (assuming ancillae are in state |0⟩).

We note that Square does not exclude such
patterns—in fact its little-belle benchmark con-
tains an analogous pattern. 11

Incomplete Uncomputation. Besides only sup-
porting fixed uncomputation code, Square may also
skip uncomputation of some ancilla variables. For
some examples evaluated in [2], the implementation of
the lazy strategy does not insert any uncomputation

11Benchmark little-belle is available at https:
//github.com/epiqc/Benchmarks/blob/master/bench/
square-cirq/synthetic/little_belle.py. We note that
different uncomputation strategies do not yield different
results on it, as it does not contain gates modifying the output
and hence is semantically equivalent to the identity.

code at all, leaving all ancilla variables dirty, while
the eager strategy uncomputes all of them. Specifi-
cally, we believe that the reported differences between
strategies in the Square publication ([2, Tab. III]) on
the benchmarks12 RD53, 6SYM, 2OF5, and ADDER4
are only due to leaving some ancillae dirty—as these
benchmarks do not contain nested uncomputation,
the order of uncomputation should not make a dif-
ference.
Additional Parameters. Finally, the implemen-
tation of Square is inconsistent with the system de-
scribed in [2]. Specifically, using the interface to spec-
ify Compute blocks requires providing 7 parameters,
and some benchmarks evaluated in [2] also contain
Unrecompute and Recompute blocks not mentioned
in the publication [2]. Even though the authors pro-
vided us with brief explanations of these parameters
on request, we could not confidently derive correct
parameters for new benchmarks.

7.2 Purely Classical Circuits
Most works synthesizing uncomputation cannot han-
dle non-qfree gates [4, 7, 8, 9, 14]. 13 It has already
been established [1] that using such works on quan-
tum circuits by separating out the qfree subparts typ-
ically yields inefficient circuits, and is sometimes even
impossible.

In the following, we discuss works which only sup-
port qfree gates, and define a custom strategy allowing
to trade qubits for gates. We have already discussed
Square in §7.1.
Boolean Functions. Revs [8, 9] translates irre-
versible classical functions to reversible circuits. It
focuses on optimization possibilities during the trans-
lation from boolean functions to reversible circuits,
but also offers an uncomputation strategy, however
without the option of trading qubits for gates.

Similarly, [10] also translates boolean specifications
to reversible circuit. While it introduces another un-
computation heuristic, it also cannot trade qubits for
gates.

We expect that both of those strategies could be
incorporated into Reqomp, possibly yielding more ef-
ficient circuits.
Pebble Games. Multiple works present uncompu-
tation strategies for classical reversible computation,
which can be reduced to solving pebble games [12].
Importantly, while pebble games operate on depen-
dency graphs on values, Reqomp operates on quan-
tum circuits. In particular, pebble games assume all
values can be uncomputed, which is incorrect for non-
qfree gates. Further, a direct translation of circuits to

12Available at https://github.com/epiqc/Benchmarks/
tree/master/bench/square-cirq/application.

13[4] can verify uncomputation for non qfree circuits, but can
synthesize it only for qfree ones.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 15

https://github.com/epiqc/Benchmarks/blob/master/bench/square-cirq/synthetic/little_belle.py
https://github.com/epiqc/Benchmarks/blob/master/bench/square-cirq/synthetic/little_belle.py
https://github.com/epiqc/Benchmarks/blob/master/bench/square-cirq/synthetic/little_belle.py
https://github.com/epiqc/Benchmarks/tree/master/bench/square-cirq/application
https://github.com/epiqc/Benchmarks/tree/master/bench/square-cirq/application

such graphs would ignore repeated values, leading to
issues analogous to Fig. 9. In contrast, conflating re-
peated values can lead to cyclic dependencies, which
are not supported by pebble games.

Knill [5] provides an optimal yet efficient solution
for linear dependencies. As most circuits we en-
counter in practice exhibit linear dependencies, Re-
qomp uses the same uncomputation strategy. Meuli
et al. [11] suggest using a SAT-solver to handle arbi-
trary dependencies, which may be a possible extension
of Reqomp.

7.3 Non-Qfree Circuits
We now discuss works offering uncomputation for
non-qfree circuits.
Language Level. Quantum languages like Quip-
per [7] and Q# [13] offer convenience functions to
automatically insert uncomputation. However, these
functions are often tedious to use, and may insert in-
correct uncomputation (see [1, §8] for details).

Silq [3] uses a type system to detect which variables
can be safely uncomputed, but does not synthesize
this uncomputation. Overall, none of those works can
constrain the number of ancillae used.
Circuit Level. We are aware of only two works
supporting uncomputation for non-qfree circuits. Re-
QWire [4] can only verify user supplied uncomputa-
tion (in the case of non-qfree circuits). Unqomp [1]
allows to synthesize uncomputation for quantum cir-
cuits, but cannot trade qubits for gates. Further, as
discussed in §6, it uses a notion of circuit graphs that
does not allow to track qubit values and therefore is
unable to uncompute directly many examples that Re-
qomp can handle.

8 Conclusion
We introduced Reqomp, a method to synthesize and
place efficient uncomputation for quantum circuits
with space constraints. Reqomp is proven correct and
can easily be integrated into circuit based quantum
languages such as Qiskit. We demonstrate in our eval-
uation that Reqomp is widely applicable and yields
wide ranges of trade-offs in space and time, for in-
stance allowing to generate tightly space constrained
circuits by using only a few ancilla qubits.

References
[1] Anouk Paradis, Benjamin Bichsel, Samuel Stef-

fen, and Martin Vechev. “Unqomp: synthesiz-
ing uncomputation in Quantum circuits”. In
Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language
Design and Implementation. Pages 222–236. As-

sociation for Computing Machinery, New York,
NY, USA (2021).

[2] Yongshan Ding, Xin-Chuan Wu, Adam
Holmes, Ash Wiseth, Diana Franklin, Mar-
garet Martonosi, and Frederic T. Chong.
“Square: Strategic quantum ancilla reuse for
modular quantum programs via cost-effective
uncomputation”. In 2020 ACM/IEEE 47th
Annual International Symposium on Com-
puter Architecture (ISCA). Pages 570–583.
IEEE (2020).

[3] Benjamin Bichsel, Maximilian Baader, Timon
Gehr, and Martin Vechev. “Silq: A High-
level Quantum Language with Safe Uncompu-
tation and Intuitive Semantics”. In Proceed-
ings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion. Pages 286–300. PLDI 2020New York, NY,
USA (2020). Association for Computing Machin-
ery.

[4] Robert Rand, Jennifer Paykin, Dong-Ho Lee,
and Steve Zdancewic. “ReQWIRE: Reasoning
about Reversible Quantum Circuits”. Electronic
Proceedings in Theoretical Computer Science
287, 299–312 (2019).

[5] Emanuel Knill. “An analysis of Bennett’s pebble
game”. Technical Report arXiv:math/9508218.
arXiv (1995).

[6] Siu Man Chan, Massimo Lauria, Jakob Nord-
strom, and Marc Vinyals. “Hardness of approxi-
mation in pspace and separation results for peb-
ble games”. In 2015 IEEE 56th Annual Sympo-
sium on Foundations of Computer Science. Pages
466–485. (2015).

[7] Alexander S. Green, Peter LeFanu Lumsdaine,
Neil J. Ross, Peter Selinger, and Benoît Val-
iron. “Quipper: A scalable quantum program-
ming language”. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming
Language Design and Implementation. Page
333–342. PLDI ’13New York, NY, USA (2013).
Association for Computing Machinery.

[8] Alex Parent, Martin Roetteler, and Krysta M.
Svore. “Reversible circuit compilation with space
constraints”. Technical Report arXiv:1510.00377.
arXiv (2015).

[9] Alex Parent, Martin Roetteler, and Krysta M.
Svore. “REVS: A Tool for Space-Optimized
Reversible Circuit Synthesis”. In Iain Phillips
and Hafizur Rahaman, editors, Reversible Com-
putation. Pages 90–101. Lecture Notes in
Computer ScienceCham (2017). Springer Inter-
national Publishing.

[10] Debjyoti Bhattacharjee, Mathias Soeken, Srijit
Dutta, Anupam Chattopadhyay, and Giovanni
De Micheli. “Reversible Pebble Games for Reduc-
ing Qubits in Hierarchical Quantum Circuit Syn-
thesis”. In 2019 IEEE 49th International Sympo-

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 16

https://dx.doi.org/10.1145/3453483.3454040
https://dx.doi.org/10.1109/ISCA45697.2020.00054
https://dx.doi.org/10.1145/3385412.3386007
https://dx.doi.org/10.4204/EPTCS.287.17
https://dx.doi.org/10.4204/EPTCS.287.17
https://dx.doi.org/10.4204/EPTCS.287.17
https://dx.doi.org/10.48550/arXiv.math/9508218
https://dx.doi.org/10.1109/focs.2015.36
https://dx.doi.org/10.1109/focs.2015.36
https://dx.doi.org/10.1145/2491956.2462177
https://dx.doi.org/10.1145/2491956.2462177
https://dx.doi.org/10.48550/arXiv.1510.00377
https://dx.doi.org/10.1007/978-3-319-59936-6_7

Symbol Meaning
i Imaginary unit
o, p, q, r, t, u, . . . Qubits
a, a(0), b, c, d, . . . Ancilla qubits
n Number of qubits
C Circuit
G = (V,E) Circuit graph
gval = (V val , Eval) Value graph
G = (V ,E) Synthesized circuit graph
v, v′, v, w, . . . Vertex
s State index
i Instance index
qs.i, p0.1, r1.0, . . . Vertex with explicit q, s, i
c, c Control vertex
φ, ϕ, ψ,

∑
j
γj |j⟩ Quantum state

γ, γ′, γ, λ, λ′, λ, . . . Complex coefficient (see above)
j, k, l Variables to sum over (see above)
Q Set of qubits
A Set of ancilla qubits
R Set of non-ancillae qubits (rest)
F : {0, 1}n+1 → {0, 1} Classical function defining qfree

gate with n controls
U (Unitary) gate (e.g., X or CX)
JGK Semantics of a circuit graph, as a

function over quantum states
E(G) Extended graph of G
qs.i Qubit in E(G) holding a copy of

qs.i

LGMp Coefficient for the projection p of
the semantics of E(G)

Table 2: Notational conventions used throughout this work.

sium on Multiple-Valued Logic (ISMVL). Pages
102–107. (2019).

[11] Giulia Meuli, Mathias Soeken, Martin Roet-
teler, Nikolaj Bjorner, and Giovanni De Micheli.
“Reversible pebbling game for quantum mem-
ory management”. In 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition
(DATE). Pages 288–291. IEEE (2019).

[12] Charles H. Bennett. “Time/Space Trade-Offs
for Reversible Computation”. SIAM Journal on
Computing 18, 766–776 (1989).

[13] Krysta Svore, Alan Geller, Matthias Troyer,
John Azariah, Christopher Granade, Bettina
Heim, Vadym Kliuchnikov, Mariia Mykhailova,
Andres Paz, and Martin Roetteler. “Q#: En-
abling scalable quantum computing and devel-
opment with a high-level dsl”. In Proceedings
of the Real World Domain Specific Languages
Workshop 2018. RWDSL2018New York, NY,
USA (2018). Association for Computing Machin-
ery.

[14] Matthew Amy, Martin Roetteler, and Krysta M.
Svore. “Verified Compilation of Space-Efficient
Reversible Circuits”. In Rupak Majumdar and
Viktor Kunčak, editors, Computer Aided Veri-
fication. Volume 10427, pages 3–21. Springer
International Publishing, Cham (2017).

A Notational Conventions
Table 2 summarizes notational conventions used in
this work.

B Algorithms

B.1 Partitioning
Fig. 11 shows the algorithm for partitioning the input
graph.

B.2 Reqomp Convenience Methods
Fig. 12 shows convenience functions omitted from Re-
qomp.
GetPath. The function getPath used by
evolveVertexUntil is shown in Fig. 12. For ancilla vari-
ables, it simply returns the shortest path between the
two values in the value graph. However for non an-
cilla variables, it forces the computation of interme-
diate values that may not have been computed yet.
This could happend for a circuit such as:

q X X H

Here the value graph is:

q1 q0 q2
X

X

H

Therefore, if we want to compute q2 from q0, the
shortest path is simply q0 → q2. However as H is not
qfree, once q2 has been computed, it can never be un-
computed again, and therefore, we can never compute
q1, which may be needed for some later computation.
To correct this, we introduce q1 (if it has not already
been computed in G) in the path, giving:

q0 → q1 → q0 → q2

B.3 Linear Steps
Fig. 13 shows getLinearStrat. It is adapted from [5]:
we added the uncLast parameters that allows us to
apply it to ancillae only (that is we want all qubits
to be computed once then uncomputed whereas the
original algorithm did not uncompute the last qubit
in the dependency line).

C Formal Correctness Proof
In the following, we provide a formal proof that Re-
qomp synthesizes correct uncomputation according to
Def. 2.1.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 17

https://dx.doi.org/10.1109/ISMVL.2019.00026
https://dx.doi.org/10.1109/ISMVL.2019.00026
https://dx.doi.org/10.23919/date.2019.8715092
https://dx.doi.org/10.1137/0218053
https://dx.doi.org/10.1137/0218053
https://dx.doi.org/10.1145/3183895.3183901
https://dx.doi.org/10.1007/978-3-319-63390-9_1

52: func PartitionAncillae()
53: Ganc ← AncillaDependencies(G)
54: comps ← ConnectedComponents(Ganc) ▷ Subgraphs of Ganc
55: Gancdeps ← (comps, {}) ▷ Each comp is a vertex of Gancdeps
56: for comp ∈ comps do
57: for comp′ ∈ comps do
58: if ∃ path from c ∈ comp to c′ ∈ comp′ in G then
59: addEdgeGancdeps (comp, comp′)

60: assert Gancdeps has no cycles
61: return comps in topological order according to Gancdeps

62:
63: func AncillaDependencies(G) ▷ Dependency graph on ancilla qubits
64: Va ← {v.qbit | v ∈ G, v.isAnc}
65: Ea ← {(v.qbit, v′.qbit) | v •→ v′ ∈ G} ∩ Va × Va

66: Ga ← (Va, Ea)

Figure 11: Partitioning the uncomputation problem into independent subproblems.

67: func getAvailCtrl(c: Vertex, v: Vertex, I :Set[Qb])
68: c ← getVertex

G
(c.qbit, "last", c.valIdx)

69: if isAvailable
G

(c, v) then
70: return c
71: else
72: c′ ← getVertex

G
(c.qbit, "last")

73: c ← evolveVertexUntil(c′, c.valIdx, I)
74: return c
75:
76: func assertFullyEvolved()
77: ▷ Abort if values were evolved incorrectly
78: for v ∈ final vertices in G do
79: v ← getVertex

G
(v.qbit, "last")

80: if v.isAnc then
81: assert v.valIdx = 0
82: else
83: assert v.valIdx = v.valIdx
84:
85: func getPath(q: Qubit, from: int, to: int)
86: p← shortestPathInValueGraph(q, from, to)
87: if q.isAnc then
88: return p

89: p′ ← []
90: r ← [from+ 1, to] if from < to else [to, from− 1]
91: v ← from
92: for i in r do
93: if i /∈ p and qi.0 /∈ G then
94: p′ ← p′ + shortestPathInValueGraph(q, v, i)
95: v ← i
96: p′ ← p′ + shortestPathInValueGraph(q, v, to)
97: return p

Figure 12: Convenience functions leveraged by Reqomp.

C.1 Definitions and Helper Lemmas
We first define what we consider to be a valid circuit
graph, following [1]:

Definition C.1 (Valid Circuit Graph). A circuit
graph is valid iff

(i) its init vertices have no incoming target edge
while gate vertices have exactly one,

(ii) all its vertices have at most one outgoing target
edge

(iii) its anti-dependency edges can be reconstructed
from its control and target edges according to the
rule discussed in §3.1,

(iv) the number of incoming control edges of each gate
vertex v matches the number of controls of the
gate of v

(v) G is acyclic.

In a valid circuit graph, we can define for any non
init vertex n its predecessor pred(n) as the only vertex
m such that m → n (the target edge from m goes
to n). We can also define for any qubit q its last
vertex last(q): it is the only vertex on qubit q with no
outgoing target edge.

We now recall the well-valued circuit graph defini-
tion.

Definition C.2 (Well-valued Circuit Graph). We say
a valid circuit graph is well valued iff:

(i) all vertex names are of the form qs.i where q is
the name of the vertex qubit, s and i are natural
numbers

(ii) there are no duplicate vertices

(iii) the init vertex on each qubit is named q0.0 and
for any qs.i in G, qs.0 is in G

(iv) any gate vertex qs.i with s > 0 satisfies one of the
following:

(fwd) valIdx(pred(qs.i)) = valIdx(pred(qs.0))
and qs.i and qs.0 have the same gate and same
control vertices (up to their instance indices)

(bwd) if we denote s′ = valIdx(pred(qs.i)),
we have that (i) valIdx(pred(qs′.0)) = s,
(ii) qs.i.gate is qfree and equal to qs′.0.gate†, and
(iii) both qs.i and qs′.0 have the same controls (up
to instance indices).

Vertices in a well-valued circuit graph are of the
shape qs.i, where we call s its value index (valIdx in
the algorithms) and i its instance index. i is 0 for the
first occurrence of qs in the graph, but otherwise we
only use its value to ensure uniqueness of the vertex
names.

Due to the following lemma, it suffices to only con-
sider valid and well-valued circuit graphs:

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 18

98: func getLinearStrat(cc: Qubit, nqbits: int)
99: sortedAncillae ← topoSort(cc)
100: return [(sortedAncillae[i], b) for (i, b) ∈ stepsDP(|sortedAncillae|,nqbits, false)]
101:
102: func stepsDP(nanc: int, nqbits: int, uncLast: bool)
103: if return value was computed previously then
104: return previously computed value ▷ memoization
105: if nanc = 0 then
106: return []
107: if nanc = 1 then
108: if nqbits = 0 then
109: return null
110: if uncLast then
111: return [(0, true), (0, false)]
112: else
113: return [(0, true)]
114: for m ∈ {1, . . . ,nanc − 1} do
115: if uncLast then
116: toM ← stepsDP(m,nqbits, false) ▷ 0→ m
117: fromM ← [(i+m, b) for (i, b) ∈ stepsDP(nanc −m,nqbits − 1, true)] ▷ m ⇄ nanc
118: cleanM ← [(i,¬b) for (i, b) ∈ reverse(stepsDP(m,nqbits, false))] ▷ 0← m
119: else
120: toM ← stepsDP(m,nqbits, false) ▷ 0→ m
121: fromM ← [(i+m, b) for (i, b) ∈ stepsDP(nanc −m,nqbits − 1, false)] ▷ m ⇄ nanc
122: cleanM ← [(i,¬b) for (i, b) ∈ reverse(stepsDP(m,nqbits − 1, false))] ▷ 0← m
123: stepsm ← toM + fromM + cleanM
124: return arg minstepsm cost(stepsm)

Figure 13: Optimal uncomputation strategy for linear graphs.

x0.0 x0.00.0 x1.00.0

x0.00.1 : CX

x1.0 : H

x1.01.0 : CX

Figure 14: Extended graph example, copy vertices are shown
in green.

Lemma C.1 (evolveVertex Correctness). For a valid
and well-valued circuit graph G, any number of calls
to evolveVertex results in a valid and well-valued cir-
cuit graph G such that (i) {qs.0 ∈ G} is a subset of
{qs.0 ∈ G} and (ii) for any qs.0 in G ∩ G, it has the
same gate and control vertices (up to instance index)
in both graphs.

Proof. By induction on the depth of calls to evolveV-
ertex.

We then define the extended graph E(G) of a circuit
graph G. Roughly, we want E(G) to keep a copy of
every vertex qs.i in G, saved on a fresh qubit qs.i. For
a graph G with one qubit and two vertices, we show
E(G) in Fig. 14.

Definition C.3 (Extended Graph). For any cir-
cuit graph G = (V, E), we define its extended graph

E(G) = (Ve, Ee) as follows:

Ve =V ∪
{

qs.i0.0, qs.i1.0 | qs.i ∈ V
}

Ee =E ∪
{

qs.i0.0 → qs.i1.0 | qs.i ∈ V
}

∪
{

qs.i •→ qs.i1.0 | qs.i ∈ V
}

For each qs.i in V , we have added a new qubit qs.i,
with one init vertex and one gate vertex CX con-
trolled by qs.i. In the following we refer to those added
qubits as V . Note that while qs.i1.0 is a vertex, qs.i is
qubit.

As the extended graph is a valid graph, it corre-
sponds to a circuit and therefore its semantics JE(G)K
is well defined. For a given input state φ to G, this
allows us to define:

Definition C.4 (Projected Coefficients). For a fixed
input state φ to the circuit graph G = (V, E), we de-
fine the projected coefficients of G as the unique com-
plex numbers LGMp such that:

JE(G)Kφ ⊗ |0...0⟩V =∑
p:E(G).qbs→{0,1}

LGMp |p(G.qbs)⟩G.qbs ⊗ |p(V)⟩V

where p(Q) = (p(q(1)), ..., p(q(n))) for qubits Q =
{q(1)...q(n)}.

Using these coefficients, we can prove the follow-
ing three lemmas. First, the semantics of the circuit
graph G can be expressed in terms of its projected
coefficients LGMp:

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 19

Lemma C.2 (Projected Coefficients for Graph Se-
mantics). For a circuit graph G we have:

JGKφ =
∑

p:E(G).qbs→{0,1}

LGMp |p(G.qbs)⟩

Proof. We can prove this by induction on the number
of gates in G.

Second, copies have consistent values. Specifically,
for a given qubit q and valIdx s, all qs.i hold the same
value as qs.i, and the value of q is the same as the
copy of the last vertex on q:

Lemma C.3 (Null Projected Coefficients). For a
valid and well-valued circuit graph G = (V, E) and
p : E(G).qbs → {0, 1}, we have LGMp = 0 if

(i) p(qs.i) ̸= p(qs.0) for some qs.i, or

(ii) p(q) ̸= p(last(q)) for some qubit q.

Proof. We prove Lem. C.3 in App. C.3.

Finally, if LGMp ̸= 0, it depends only on the gates
used for the first computation of each qs.0.

Lemma C.4 (Projected Coefficients Values). For a
circuit graph G and p : E(G).qbs → {0, 1}, we have
that if LGMp ̸= 0 then:

LGMp =α
p(q

(0)
0.0...q

(n)
0.0)

∏
qs.0∈G

s̸=0

γqs.0

Here the α describe the initial state:

φ =
∑

k∈{0,1}m

αk |k⟩ .

and the γ are gate coefficients defined such that
JgK |c⟩ |t⟩ =

∑1
t′=0 γg

t,c→t′ |c⟩ |t′⟩ for a gate g and t in
{0, 1} and c ∈ {0, 1}m. We have further shortened

γqs.0 = γqs.0.gate
p(pred(qs.0)),p(ctrls(qs.0))→p(qs.0)

Proof. We prove Lem. C.4 in App. C.3.

C.2 Main Proof
Using Lem. C.1–C.4, we can prove the correctness of
Reqomp:

Theorem C.1 (Correctness). Have G a circuit graph
built from a circuit with n qubits, of which m are an-
cilla variables. Without loss of generality, we can as-
sume that those ancilla variables A =

(
a(1), . . . , a(m))

are the first m qubits of G. Let Reqomp(G, A) = G.
If

|0 · · · 0⟩A ⊗ φ
JGK7−−→

∑
k∈{0,1}m

λk |k⟩A ⊗ ϕk, then

(5)

|0 · · · 0⟩A ⊗ φ
JGK7−−→

∑
k∈{0,1}m

λk |0 · · · 0⟩A ⊗ ϕk. (6)

Note that this is an equivalent rewrite of Def. 2.1.

Proof. We first make the values of the non-ancilla
qubits explicit, and denote R = G.qbs\A. This al-
lows us to rewrite Eq. (5) as :

JGK |0 · · · 0⟩A ⊗ φ =
∑

k∈{0,1}m

k′∈{0,1}n−m

λkk′ |k⟩A |k′⟩R (7)

Similarly for G we can write:

JGK |0 · · · 0⟩A ⊗ φ =
∑

k∈{0,1}m

k′∈{0,1}n−m

λkk′ |k⟩A |k′⟩R (8)

Note that here we use λ to refer to a coefficient in
G, and not to the complex conjugate of λ.

To prove the theorem, it is hence enough to prove
that for all k′,

λkk′ =
{

0 if k ̸= 0 (i)∑
k λkk′ if k = 0 (ii)

To do so, we first identify Eq. (8) with Lem. C.2.
This gives us that:

λkk′ =
∑

p:E(G).qbs→{0,1}
p(G.qbs)=kk′

LGpM (9)

The assertion at Lin. 36 in the Reqomp algorithm
(Fig. 5) and Lem. C.3 then give that for any ancilla
qubit a(i), if p(a(i)) ̸= p(a(i)

0.0), then LGpM is null. As
a

(i)
0.0 copies the initial state of the ancilla, we then get

that if k ̸= 0, then λkk′ = 0, proving (i).
To prove (ii), we first note that Eq. (9) holds analo-

gously for G, allowing us to derive the following. Here,
we denote V0 = {qs.0 ∈ V }. We then have for any k′

in {0, 1}n−m:

∑
k∈{0,1}m

λkk′ =
∑

k∈{0,1}m

∑
p:E(G).qbs→{0,1}

p(G.qbs)=kk′

LGpM (10)

=
∑

p:E(G).qbs→{0,1}
p(R)=k′

LGpM (11)

=
∑

p0:V0→{0,1}

∑
p:E(G).qbs→{0,1}

p(R)=k′

p|V0 =p0

LGpM (12)

Using Lem. C.3, we have that for any p0 : V0 →
{0, 1}, there is a unique p+

0 : E(G).qbs → {0, 1} such
that p|V0 = p0 and LGMp is not known to be null. We
can hence further rewrite Eq. (12):

∑
k∈{0,1}m

λkk′ =
∑

p0:V0→{0,1}
p0(R0)=k′

LGMp+
0

, (13)

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 20

where we denoted R0 = {qs.0 | last(q) = qs.i, q ∈ R}.
Similarly, we write the same equation for G and λkk′ :

∑
k∈{0,1}m

λkk′ =
∑

p0:V0→{0,1}
p0(R0)=k′

LGMp+
0

(14)

Using that λkk′ is null if k ̸= 0, we finally get:

λ0k′ =
∑

p0:V0→{0,1}
p0(R0)=k′

LGMp+
0

(15)

Now, if V0 = V0, as gates are the same for any qs.0
in G and G, Eq. (13) and Eq. (15) combined with
Lem. C.4 and Lem. C.1 give us (ii).

If this is not the case, there must exist some qs.0
in V0\V0. For instance this could happen if G con-
tains q0.0 → q1.0 → q0.1, and G only contains q0.0
: it was not necessary to compute q1.0 to reach the
same final state as in G. The crucial observation is
that this vertex qs.0 gate is qfree. If q is an ancilla,
this is clear as Reqomp would have raised an error
otherwise. Indeed, Reqomp computes all ancillae (in
Lin. 23–26) and check that they are all later uncom-
puted (Lin. 36). All operations on ancillae are hence
uncomputed, and therefore their gate must be qfree
(this is checked in Lin. 7). If q is not an ancilla, it
means then qs.0 must have been uncomputed in G (as
the final state of non ancilla qubits in both graphs is
the same). As qfree gates coefficients γ are either 0 or
1, having an extra qfree gates does not change the re-
sult of the sum in Eq. (13), concluding this proof.

C.3 Proofs of Helper Lemmas
We now prove Lem. C.3 and Lem. C.4 by induction
on the number of gates in G.

Proof. For a circuit graph G with no gates, an imme-
diate induction on the number of qubits gives both
lemmas.

Now suppose both lemma holds for any G with at
most l gates. Now have G′ = (V ′, E′) with l+1 gates.
We can write G′ as G′ = G ·qs.i where G = (V, E) has
l gates and qs.i can be applied last in G′. To simplify
notations, we assume qs.i has only one control vertex
ct.j . If it has 0 or more controls, the reasoning is
analogous.

By definition, we know that:

JE(G)Kφ =
∑

p:E(G).qbs→{0,1}

LGMp |p(G.qbs)⟩G.qbs |p(V)⟩V

If we now apply qs.i and qs.i0.1 (the CX gate copying
qs.i to a new qubit) to one state of the sum above, we
get for any p : E(G).qbs → {0, 1}:

Jqs.i · qs.i0.1K |p(G.qbs)⟩G.qbs |p(V)⟩V =∑
b∈{0,1}

γqs.i.gate
p(q),p(c)→b |p(G.qbs\{q}), b⟩G.qbs |p(V), b⟩V ′

Here b appears first as the value on the qubit q, and
second as the value on the copy qubit qs.i.

As E(G′) = E(G) ·qs.i ·qs.i0.1, we can use the above
to compute LG′Mp′ for any p′ : E(G′).qbs → {0, 1}. We
first notice that if p′(q) ̸= p′(qs.i), then LG′Mp′ = 0,
giving us in Lem. C.3 (ii) for q. In the following, we
hence only consider p′ such that p′(q) = p′(qs.i). We
then get:

LG′Mp′ =
∑

b∈{0,1}

LGMp′
|E(G).qbs

[q 7→b]

γqs.i.gate
b,p′(c)→p′(q) (16)

Using the recursion hypothesis, this immediately
gives that if for any q′ ̸= q if p′(q′) ̸= p′(last(q′)),
then LG′Mp′ = 0, giving us Lem. C.3 (ii) for q′ ̸= q.
Together with the above, we hence get Lem. C.3 (ii).

We now work on proving both Lem. C.3 (i) and
Lem. C.4. The recursion hypothesis gives us that for
any (q′, s′, i′) ̸= (q, s, i), if p′(q′

s′.i′) ̸= p′(q′
s′.0), then

again LG′Mp′ = 0. We hence only need to establish
that if p′(qs.i) ̸= p′(qs.0) then LG′Mp′ = 0, and the
value of this coefficient when it is not null (that is to
say Lem. C.4). To do so, we now consider p′ consistent
with what we have already proven, i.e., p′ such that
for any q′ in G.qbs, p′(q′) = p′(last(q′)) and for any
(q′, s′, i′) ̸= (q, s, i), p′(q′

s′.i′) = p′(q′
s′.0).

We first notice that the recursion hypothesis gives
that if b ̸= p′(pred(qs.i)), then LGMp′

|E(G).qbs

⊕q 7→b

= 0.

Hence one of the summands in Eq. (16) is null:

LG′Mp′ = LGM p′
|E(G).qbs

⊕q 7→p′(pred(qs.i))

γqs.i.gate
p′(pred(qs.i)),p′(c)→p′(q)

Using the constraints on p′, we can rewrite this to:

LG′Mp′ = LGM p′
|E(G).qbs

⊕q 7→p′(pred(qs.i))

γqs.i.gate
p′(pred(qs.i)),p′(ct.0)→p′(qs.i)

Now we distinguish two cases. If this is the first
occurence of qs, that is to say i = 0, we immediately
get Lem. C.3 (i), as i = 0. For Lem. C.4, by rewriting
the equation above using that i = 0

LG′Mp′ = LGM p′
|E(G).qbs

⊕q 7→p′(pred(qs.0))

γqs.0.gate
p′(pred(qs.0)),p′(ct.0)→p′(qs.0)

and using the induction hypothesis, we can conlude.
On the other hand, if i ̸= 0, we again need to

distinguish two possibilities: cases fwd and bwd in
Item (iv) of Def. 3.1. We focus on the later case, as
the first is simpler. We denote qs′.i′ = pred(qs.i). We
can hence rewrite:

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 21

γqs.i.gate
p′(pred(qs.i)),p′(ct.0)→p′(qs.i) =

γqs.i.gate
p′(qs′.0),p′(ct.0)→p′(qs.i)

As we know that G′ is well-valued, we have that
qs.i.gate = qs′.0.gate† and that both gates are qfree.
Generally, the coefficient for the reverse of a qfree gate
g is

γg†

t,c→t′ = γg
t′,c→t,

as a qfree gate coefficient can only be 0 or 1.
We can hence again rewrite the above coefficient as:

γ
qs′.0.gate
p′(qs.i),p′(ct.0)→p′(qs′.0).

Here, we used that
(
g†)† = g. Overall this gives us

that:

LG′Mp′ = LGM p′
|E(G).qbs

⊕q 7→p′(pred(qs.0))

γ
qs′.0.gate
p′(qs.i),p′(ct.0)→p′(qs′.0)

Now if p′(qs.i) ̸= p′(qs.0), let us prove that LG′Mp′ is
null. If LGM p′

|E(G).qbs

⊕q 7→p′(pred(qs.i))

is null this is clear, other-

wise using Lem. C.4 we get that LGM p′
|E(G).qbs

⊕q 7→p′(pred(qs.i))

contains γ
qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0). We hence have

that LG′Mp′ is a product which includes the factors
γ

qs′.0.gate
p′(qs.i),p′(ct.0)→p′(qs′.0) and γ

qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0).

As qs′.0.gate is qfree, one of those coefficients is null,
and hence so is LG′Mp′ .

Finally, if p′(qs.i) = p′(qs.0), we get Lem. C.3
(i) trivially. If LGM p′

|E(G).qbs

⊕q 7→p′(pred(qs.i))

is null, Lem. C.4

holds trivially. Otherwise, we use as above that
γ

qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0) is in LGM p′

|E(G).qbs

⊕q 7→p′(pred(qs.i))

. As

γ
qs′.0.gate
p′(qs.0),p′(ct.0)→p′(qs′.0) is 0 or 1, it is equal to its

squared value, and the recursion hypothesis allows us
to conclude.

D Evaluation Values
We show in Table 4 the absolute numerical results
on which the relative values in Table 1 are based.
Table 3 further shows the exact parameters of each
circuit used in our evaluation.

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 22

Table 3: Parameters for all examples in Table 1 and Table 4.

Algorithm Parameters
Small
Adder 12 qubits per operand
Deutsch-Jozsa 10 control qubits, with oracle MCX, returning true iff the value is 1111111111
Grover’s algorithm 5 control qubits, with oracle MCX, returning true iff the value is 1111111111
IntegerComparator 12 control qubits, comparing to i = 463
MCRY 12 control qubits, with rotation angle θ = 4
MCX 12 control qubits
Multiplier 5 qubits for each operand, and 5 for the result
PiecewiseLinearR 6 control qubits, function breakpoints are [10, 23, 42, 47, 51, 53, 63], slopes are [39, 32, 77, 27, 77, 4, 74]

and offsets are [174, 40, 110, 163, 100, 185, 130]
PolynomialPauliR 5 control qubits, polynomial coefficients are [2, 2, 2, 2, 2]
WeightedAdder 10 controls qubits, values for sum are [0, 1, 1, 5, 2, 10, 4, 4, 9, 3]
Big
Adder 100 qubits per operand
Deutsch-Jozsa 100 control qubits, with oracle MCX, returning true iff the value is 1111111111
Grover’s algorithm 10 control qubits, with oracle MCX, returning true iff the value is 1111111111
IntegerComparator 100 control qubits, comparing to i = 878234040205782925887743338143
MCRY 200 control qubits, with rotation angle θ = 4
MCX 200 control qubits
Multiplier 16 qubits for each operand, and 5 for the result
PiecewiseLinearR 40 control qubits, function breakpoints are [63870600266, 81180069351, 185076947411, 350818281077,

590566882159, 677977056232, 866030640015, 949186564661, 978976427282], offsets are [46, 59, 40, 48,
54, 67, 21, 71, 22] and coefficients are [60, 59, 6, 45, 83, 44, 34, 130, 130]

PolynomialPauliR 10 control qubits, polynomial coefficients are [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
WeightedAdder 20 controls qubits, values for sum are [9, 0, 9, 10, 2, 6, 10, 6, 8, 5, 8, 7, 8, 4, 0, 0, 5, 7, 5, 6]

Table 4: Reqomp results for the reductions presented in Table 1. We also report Unqomp results. Columns Max and Min
report the results for the most aggressive settings, respectively optimizing only for number of qubits and optimizing only for
number of gates. Columns -75%, -50%, and -25% report the gate counts when achieving the respective ancilla reductions.
Entries "x" indicate that a given ancilla reduction was not achieved. Q is total number of qubits, A is number of ancillae, CX
is number of CX gates, G is total number of gates and D is circuit depth.

Ancilla Reduction
Max -75% -50%

Algorithm Q A CX G D Q A CX G D Q A CX G D
SmallAdder 28 4 326 1132 482 x x x x x 30 6 270 924 346Deutsch-Jozsa 15 4 78 331 162 x x x x x 15 4 78 331 162Grover 8 2 192 839 456 x x x x x x x x x xIntegerComparator 17 4 110 456 251 x x x x x 18 5 100 422 231
MCRY 17 4 122 486 263 x x x x x 18 5 104 414 225MCX 17 4 102 405 243 x x x x x 18 5 96 381 202Multiplier 24 20 420 1500 550 x x x x x x x x x x
PiecewiseLinearR 10 3 1000 3851 2188 x x x x x 10 3 1000 3851 2188PolynomialPauliR 8 2 360 1381 846 x x x x x x x x x x
WeightedAdder 25 40 689 2606 1184 x x x x x x x x x x
Big

Adder 207 7 6824 24664 8832 225 25 2820 9792 3005 250 50 2470 8492 2806Deutsch-Jozsa 108 7 2700 10999 5632 125 24 1038 4351 2289 150 49 888 3751 2041Grover 15 4 3600 15312 7734 x x x x x 15 4 3600 15312 7734IntegerComparator 108 7 2720 11758 6190 125 24 1042 4584 2452 150 49 892 3938 2177
MCRY 209 8 7358 29430 15268 250 49 2096 8382 4646 300 99 1796 7182 4134MCX 209 8 7278 29109 15283 250 49 2088 8349 4653 300 99 1788 7149 4141Multiplier 79 64 4688 16768 5764 x x x x x x x x x x
PiecewiseLinearR 47 6 31064 124834 67353 51 10 25252 99754 55636 61 20 23812 93512 50941PolynomialPauliR 15 4 30322 119245 65640 x x x x x 15 4 30322 119245 65640
WeightedAdder 38 80 1857 7042 3259 x x x x x x x x x x

Ancilla Reduction Unqomp
-25% Min

Algorithm Q A CX G D Q A CX G D Q A CX G D
SmallAdder 33 9 228 768 275 35 11 200 664 267 36 12 200 664 267Deutsch-Jozsa 17 6 66 283 142 19 10 54 235 126 19 8 54 235 126Grover 8 2 192 839 456 9 3 168 743 386 9 3 168 743 378IntegerComparator 21 8 82 346 172 24 12 68 294 164 24 11 68 310 164
MCRY 21 8 86 342 177 24 12 68 270 161 24 11 68 270 161MCX 20 7 84 333 179 23 12 66 261 154 23 10 66 261 154Multiplier x x x x x 24 20 420 1500 550 24 20 460 1580 573
PiecewiseLinearR 11 4 958 3671 1952 13 6 906 3465 1932 13 6 906 3583 1986PolynomialPauliR 8 2 360 1381 846 9 3 330 1261 693 9 3 330 1261 735
WeightedAdder x x x x x 25 40 689 2606 1184 25 40 749 2886 1322
Big

Adder 275 75 2120 7192 2494 299 99 1784 5944 2291 300 100 1784 5944 2291Deutsch-Jozsa 174 73 744 3175 1563 199 100 594 2575 1386 199 98 594 2575 1386Grover 17 6 3000 12912 6279 19 8 2550 11112 5902 19 8 2550 11112 5852IntegerComparator 175 74 742 3284 1662 200 100 596 2670 1484 200 99 596 2862 1484
MCRY 350 149 1496 5982 3145 400 200 1196 4782 2793 400 199 1196 4782 2793MCX 349 148 1494 5973 3138 399 200 1194 4773 2786 399 198 1194 4773 2786Multiplier x x x x x 79 64 4688 16768 5764 79 64 5168 17728 5886
PiecewiseLinearR 71 30 22372 87224 45711 81 40 21050 81592 44966 81 40 21050 84852 46752PolynomialPauliR 17 6 26962 105805 55664 19 8 26572 104245 50936 19 8 26572 104245 60488
WeightedAdder x x x x x 38 80 1857 7042 3259 38 80 1989 7658 3458

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 23

	Introduction
	Background
	Circuit Graphs
	Circuit Graph Intuition
	Modifying a Circuit Graph
	Formalizing Value Indices

	Reqomp
	Identifying Ancilla Variables Dependencies
	Deriving the Uncomputation Strategy
	Applying the Uncomputation Strategy
	Obtaining the Final Circuit
	Fallback procedure: Reqomp-Lazy

	Correctness
	Evaluation
	Benchmarks and Baseline
	Q1: Circuit Efficiency
	Q2: Reqomp Usability

	Related Work
	Square
	Purely Classical Circuits
	Non-Qfree Circuits

	Conclusion
	References
	Notational Conventions
	Algorithms
	Partitioning
	Reqomp Convenience Methods
	Linear Steps

	Formal Correctness Proof
	Definitions and Helper Lemmas
	Main Proof
	Proofs of Helper Lemmas

	Evaluation Values

