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Chapter 1

Introduction to waves with finite
wave height

In practice many waves have a steepness, H/L, so large that calculations done with
1. order theory are too inaccurate.

The mathematical solution of the 1. order problem is based on an exact solution of
the Laplace equation with approximate (linearised) boundary conditions. Boundary
conditions are linearized by assessing the order of magnitude of all terms. If the
order of magnitude of a term is H/L times the order of magnitude of the largest
term, the actual term is discarded.

At the free surface the boundary conditions (BC) are linearized as follows:

kinematic BC :
∂ϕ

∂z
=
∂η

∂t
+
∂ϕ

∂x
∙
∂η

∂x
at z = η (1.1)

linearised kin. BC :
∂ϕ

∂z
'
∂η

∂t
at z = 0 (1.2)

dynamic BC : g η +
1

2

(

(
∂ϕ

∂x
)2 + (

∂ϕ

∂z
)2
)

+
∂ϕ

∂t
= 0 at z = η (1.3)

linearised dyn. BC: g η +
∂ϕ

∂t
' 0 at z = 0 (1.4)

The linear BC´s fulfilled at z = 0 makes it easy to solve the Laplace equation

∂2ϕ

∂x2
+
∂2ϕ

∂z2
= 0 (1.5)
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yielding the following expressions (see eg. Svendsen & Jonsson (1980)):

η =
H

2
cos(ωt− kx) (1.6)

L =
gT 2

2π
tanh (

2πh

L
) (1.7)

ϕ = −
Hc

2

cosh k(z + h)

sinh kh
sin(ωt− kx) (1.8)

u =
πH

T

cosh k(z + h)

sinh kh
cos(ωt− kx) (1.9)

and

w = −
πH

T

sinh k(z + h)

sinh kh
sin(ωt− kx) (1.10)

where:

η surface elevation
T wave period
L wavelength
H wave height
c = L/T wave celerity or phase speed
h water depth
k = 2π/L wave number
ω = 2π/T cyclic frequency
t time
x horizontal coordinate
z vertical coordinate
ϕ velocity potential
u = ∂ϕ/∂x horizontal particle velocity
w = ∂ϕ/∂z vertical particle velocity

Even though we often have H/L < 0.08, measurements shows that the linearized
BC’s in 1.order theory often leads to unacceptable results. See for example Figure
1.1, where a cosine wave is compared to a measured surface profile.

It is seen that both the wave crest (the stretch where η > 0) and wave trough
(η < 0) of the real wave are lifted compared to the cosine wave. The real wave crest
is therefore shorter and steeper than the wave crest of the cosine wave, and the wave
trough is longer and less steep than the wave trough of the cosine wave.
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h surface elevation

0

x

real wave

cosine wave

Figure 1.1: Comparison of real and 1. order (cosine) waves

If we want to describe real waves better than 1. order theory allows, we must discard
fewer terms, when the BC’s are linearized.

Furthermore it is necessary to introduce an extra BC, if we want to fulfill the BC’s at
z = η instead of at z = 0. It is a bit surprising that this problem can be illustrated
by use of the expressions from 1. order theory. A current meter is placed at a level
below the wave trough level, i.e. at z < ηmin, and according to 1. order theory, u is
in phase with η, see equations (1.6) and (1.10). The variation of u(t) is shown on
Figure 1.2.

time

u        velocity

0 T

u = 0

Figure 1.2: Horizontal velocity measured at level z < ηmin.

This variation gives ū = 0, where ū is the average velocity at the current meter, i.e.

ū(z) =
1

T

∫ T

0
u(z, t) dt = 0 (1.11)

If the current meter is placed at a level z > ηmin, one finds ū > 0, again based on
1. order theory. The average velocity is positive, because u = 0 during the time
interval, where the current meter is situated above the free surface. See Figure 1.3.

The instantaneous value of the discharge through a vertical plane reads:

qwave(t) =
∫ η(t)

−h
u(z, t)dz =

∫ ηmax

−h
u(z, t)dz

3



time

u        velocity

0 T

u > 0

Figure 1.3: Horizontal velocity measured at the level z, where 0 > z > ηmin.

as u = 0 for η(t) < z < ηmax. Taking the average of qwave(t) over one wave period
gives:

q̄wave =
1

T

∫ T

0

(∫ ηmax

−h
u(z, t)dz

)

dt =
∫ ηmax

−h

(
1

T

∫ T

0
u(z, t)dt

)

dz (1.12)

or

q̄wave =
∫ ηmax

−h
ū ∙ dz =

∫ ηmax

ηmin

ū ∙ dz > 0 ! (1.13)

This discharge is only important for non-linear waves. Often it is named “Stokes
drift”, but this name is sometimes also used for the corresponding average velocity
defined as:

UStokes =
q̄wave

h
(1.14)

If the conditions in a closed wave basin are considered, it is obvious that the average
discharge must fulfill q̄ = 0. If not, all the water would end up in one end of the
basin. One way to obtain q̄ = 0 is the generation of a current U (constant velocity
along a vertical, i.e. a potential flow), with qcurrent = Uh. As q̄ = q̄wave+qcurrent = 0,
it is found that

U = −
q̄wave

h
= −UStokes (1.15)

This means U < 0, and therefore current and waves are propagating in opposite
directions. Notice that ū = U for z ≤ ηmin. Therefore U can be measured by a
current meter placed below ηmin.

According to 1. order theory it is found

u = u(1) + U (1.16)

where u(1) is the 1. order horizontal velocity (equation (1.9)). As it can be shown

that U = o
(
u(1)(H

L
)
)
, it is seen that this term should be discarded according to 1.

order theory. For non-linear waves this term may be important and a more stringent
derivation can be found in Svendsen (1985).
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Chapter 2

Stokes Theory

In order to solve the non-linear flow problem a pertubation method is applied. It is
here assumed that all variables may be expressed as a series expansion:

ϕ = ϕ(1) + ϕ(2) + . . .+ ϕ(i) + . . . (2.1)

where

o(ϕ(i+1)) = o(ϕ(i) ∙
H

L
) = o(ϕ(i−1) ∙ (

H

L
)2) = . . . = o(ϕ(1) ∙ (

H

L
)i) (2.2)

and o( ) means the order of magnitude of the expression in the parentesis. The
expressions for surface elevation and dynamic pressure reads:

η = η(1) + η(2) + . . .+ η(i) + . . . (2.3)

p+ = p+(1) + p+(2) + . . .+ p+(i) + . . . (2.4)

and similar expressions exists for the rest of the variables.

In a Stokes theory of order “i” we first substitute equation (2.1) and (2.3) into the
partial differential equation (PDE) and into the boundary conditions (BC). Then we
discard all terms having a factor (H/L)n (where n ≥ i) on their order of magnitude.
According to equation (2.2) “i” terms are taken into account in equation (2.1) in a
Stokes theory of order “i”.

Notice that ϕ(1) , η(1) and p+(1) are the known expressions from 1. order theory
corresponding to the actual values of T,H and h.

Because the free surface is no longer symmetrical about z = 0, it is necessary to
define the wave height as:

H = ηmax − ηmin (2.5)
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2.1 Second Order Stokes Waves

In this theory the expressions for ϕ and η reads:

ϕ = ϕ(1) + ϕ(2) (2.6)

η = η(1) + η(2) (2.7)

where ϕ(1) and η(1) are known from 1. order theory, see equations (1.8) and (1.6),
respectively. For the sake of clarity the PDE and BC’s for ϕ(1) are shown in figure
2.1.

x

z

L

h

Figure 2.1: PDE, solution domain and BC’s for ϕ(1)

Because ϕ(1) fulfills the Laplace equation, i.e.

∂2ϕ(1)

∂x2
+
∂2ϕ(1)

∂z2
= 0 (2.8)

substitution of equation (2.6) into the Laplace equation leads to:

∂2ϕ(2)

∂x2
+
∂2ϕ(2)

∂z2
= 0 (2.9)

In order to find ϕ(2) it is necessary to solve this PDE with the corresponding BC’s.
Just as in the 1. order theory, the problem with the unknown position of the
free surface is solved by a Taylor series expansion from z = 0 of the dynamic and
kinematic BC, respectively. However, this time we only discard terms with an order
of magnitude o((H/L)2) times the leading terms.
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The Taylor expansion of the kinematic BC, equation (1.1), may be expressed as:

(
∂ϕ

∂z
−
∂η

∂t
−
∂ϕ

∂x

∂η

∂x

)

z=0

+ η
∂

∂z

(
∂ϕ

∂z
−
∂η

∂t
−
∂ϕ

∂x

∂η

∂x

)

z=0

+ . . . = 0

and a similar expression exists for the dynamic BC, equation (1.3).

If the equations (2.6) and (2.7) are substituted into the Taylor expansions of the
kinematic and dynamic BC’s, and we subsequently discard the small terms, it is
possible to eliminate η(2) from the two BC’s and combine them into one equation.
After some non-trivial algebra, see e.g. Svendsen (1985), the BC at z = 0 reads:

∂ϕ(2)

∂z
+
1

g

∂2ϕ(2)

∂t2
= −
3ω

4k
(k H)2

sin 2(ωt− kx)
sinh 2kh

In figure 2.2 is also shown the BC’s at the rest of the border of the solution domain.

x

z

L

h

Figure 2.2: PDE, solution domain and BC’s for ϕ(2).

Having found ϕ(2), the 2. order velocity components are derived by differentiation
of ϕ(2), i.e.

u(2) =
∂ϕ(2)

∂x

and

w(2) =
∂ϕ(2)

∂z

7



Finally c(2) , η(2) and p(2) are derived the same way as in the 1. order theory.

In 2. order theory under the assumption q̄ = 0 Svendsen & Jonsson (1980) derived
this expression for the horizontal velocity:

u = u(1) +
3

16
c (kH)2

cosh 2k (z + h)

sinh4 kh
cos 2(ωt− kx)−

1

8

gH2

c h
(2.10)

From (2.10) is seen that for z < ηmin, the average value of the two first terms are
zero, giving

ū = −
1

8

gH2

c h
for z < ηmin (2.11)

Thus, according to 2. order theory the compensation current U is

U = −
1

8

gH2

c h
(2.12)

It is furthermore found that

η(2) = Δη ∙ cos 2(ωt− kx) (2.13)

where

Δη =
1

16
kH2

(
3 coth3 kh− coth kh

)
(2.14)

and η(2) is therefore a term oscillating twice as fast as the 1. order term. See Figure
2.3.

0 20 40 60 80 100 120 140

-2

0

2

4

6

x (m)

η 
(m

)

η
η(1)

η(2)

Figure 2.3: 2. order Stokes wave, H = 6 m, T = 8 secs and h = 10 m
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It is seen that ηmax =
H
2
+Δη and ηmin = −H

2
+Δη, i.e. both wave crest and wave

trough are raised Δη. Hereby the crest becomes shorter than the trough, and

ηmax − ηmin = (
H

2
+ Δη)− (−

H

2
+ Δη) = H

Finally it is surprisingly found that c(2) = 0 giving

c = c(1) + c(2) = c(1) =

√
g

k
∙ tanh kh (2.15)

The propagation velocity is thus unchanged when compared to the 1. order theory.

If we are not looking at a closed wave basin, the actual value of U (= ū for z < ηmin)
must be prescribed.

In many books U = 0 is assumed, but not mentioned. Watch out!

2.2 Third Order Stokes Waves

The most important result from the 3. order theory is c(3) 6= 0, which gives:

c = c(1) + c(2) + c(3) = c(1) + c(3) =

√
g

k
∙ tanh kh+ c(3) (2.16)

as c(2) = 0.

The general expression for c(3) is given in Svendsen & Jonsson (1980). Here we shall
look at deep water only, where the expression reads:

c =

√
g

k
∙

√

1 + (
kH

2
)2 = c(1) ∙

√

1 + (
kH

2
)2 (2.17)

It is seen that the propagation velocity depends on H.

Notice that equation (2.17) is based on the assumption q̄ = 0.

2.3 Fifth Order Stokes Waves

The extent of calculations increases dramatically each time an extra term is included
in each series for the variables. see e.q. the series for ϕ in equation (1.11). Despite
this a 5. order theory was published in 1960, see Skjelbreia & al. (1960).

Notice that Skjelbreia assumed U = 0⇔ q̄ > 0, but in chapter 4 Skjelbreia’s theory

9



is modified to handle U 6= 0.

The calculations in Skjelbreia’s solution go like this:

Given : T, h and H

Calculate : 1) L
2) ϕ
3) u,w and η

The wavelength L and the coefficient λ are found by iteration of the equations:

L =
gT 2

2π
tanh(kh) ∙ (1 + λ2C1 + λ

4C2) (2.18)

and

πH = L
(
λ+ λ3B33 + λ

5(B35 +B55)
)

(2.19)

The coefficients Blm = Blm(kh) and Cn = Cn(kh) depend on kh (where k = 2π/L
as usual). The expressions are given in Skjelbreia (1960), but notice that in Skjel-
breia’s original expression for C2, the factor +2592 must be replaced by −2592, see
Nishimura & al. (1977).

In practice values of L and λ are obtained by an iterative solution of the equations
(2.18) and (2.19) rewritten to:

F (k, λ) = ω2 − gk tanh(kh) ∙ (1 + λ2C1 + λ
4C2) = 0 (2.20)

and

f(λ, k) =
k H

2
−
(
λ+ λ3B33 + λ

5(B35 +B55)
)
= 0 (2.21)

To keep things simple the Bisection Method is recommended to solve F (k, λ) = 0
and f(k, λ) = 0 in each iteration.

The iteration is initiated by guessing λ = 0, because this value corresponds to
L = L(1), see equation (2.18). This first λ-value is denoted λ1, i.e. we have λ1 = 0.

The first iteration:

- Solve F (k, λ1) = 0 and denote the solution k1
- Solve f(λ, k1) = 0 and denote the solution λ2

10



The second iteration:

- Solve F (k, λ2) = 0 and denote the solution k2
- Solve f(λ, k2) = 0 and denote the solution λ3

and so on ....

Iteration is repeated until convergence is obtained, e.g. |ki − ki−1| < 0.0001 ki.

After calculation of L and λ, the velocity potential ϕ is calculated from:

ϕ = −
c

k

5∑

j=1

Dj cosh jk(z + h) sin jθ (2.22)

where

c = L/T
θ = ωt− kx
D1 = λA11 + λ

3A13 + λ
5A15

D2 = λ2A22 + λ
4A24

D3 = λ3A33 + λ
5A35

D4 = λ4A44
D5 = λ5A55

and
Alm = Alm(kh) are known functions of kh, see Skjelbreia (1960).

Now the velocity components are found by differentiation of the velocity potential
ϕ, giving:

u =
∂ϕ

∂x
=
∂ϕ

∂θ
∙
∂θ

∂x
=
∂ϕ

∂θ
∙ (−k) (2.23)

or

u = c
5∑

j=1

j Dj cosh jk(z + h) cos jθ (2.24)

and

w =
∂ϕ

∂z
(2.25)
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or

w = −c
5∑

j=1

j ∙Dj sinh jk(z + h) sin jθ (2.26)

Accelerations are found from:

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
(2.27)

where

∂u

∂t
=
∂u

∂θ
∙
∂θ

∂t
=
∂u

∂θ
∙ ω = −c ω

5∑

j=1

j2 ∙Dj cosh jk(z + h) sin jθ (2.28)

∂u

∂x
= c k

5∑

j=1

j2 ∙Dj cosh jk(z + h) sin jθ (2.29)

∂u

∂z
= c k

5∑

j=1

j2 ∙Dj sinh jk(z + h) cos jθ (2.30)

The equations (2.28) and (2.29) shows (because ω = ck) that

∂u

∂t
= −c

∂u

∂x
(2.31)

This result is obtained directly, if it is taken into account that the wave is propagating
without changing form.

Finally η is calculated from:

η =
1

k

5∑

j=1

Ej cos jθ (2.32)

where

E1 = λ
E2 = λ2B22 + λ

4B24
E3 = λ3B33 + λ

5B35
E4 = λ4B44
E5 = λ5B55

12



and
Blm = Blm(kh) are the same functions, applied

under the calculation of L, see Skjelbreia (1960).

2.4 General comments to Stokes Waves

In the assessment of the order of magnitude of the individual terms it is assumed
that o( h

L
) = 1. Therefore problems occur for all orders of Stokes waves (except 1.

order waves) on shallow water where h
L
<< 1. The problems results in secondary

crests in the general wave trough. These secondary crests are not present in nature.

In practice it is necessary to have h/L > 0.10 − 0.15, to avoid secondary crests for
Stokes 5. order waves. For waves of lower order the secondary crests appears for
larger values of h/L.

Notice that all equations are derived under the assumption of potential flow, curl ~v =
rot~v = ~0, and notice finally that all Stokes waves are symmetrical about the wave
crest.

13



Chapter 3

Stream Function Theory

In order to get accurate values of wavelength and wave kinematics on shallow water,
h/L < 0.10, one has to apply the so called stream function theory. This theory is
based on an approximate numerical solution of the governing PDE together with
the exact BC’s fulfilled at z = η.

Because it is unnecessary to make assessments of terms and discard the small ones,
the theory makes no demands to H/L or h/L.

It is assumed that we have potential flow and ū = U = 0, i.e. the wave is propagating
on stagnant water. In chapter 4 it is shown how the problem can be solved if q = 0
or U 6= 0 is specified.

For the sake of convenience the wave is described in the (xr, zr)-system following
the wave. See Figure 3.1. Seen from this coordinate system the wave profile is not
moving, and the corresponding flow is consequently steady, which makes life easier!

The (xr, zr)-system has the velocity cr compared to the stagnant water and the
(x, z)-system fixed to the stagnant water body. So far this propagation velocity has
simply been denoted c. However, in chapter 4 we will look at waves propagating on
a body of water moving with the velocity U compared to the sea bottom. In this
case the wave will also propagate with the velocity cr compared to the water body,
but the velocity compared to the bottom will be ca = cr + U .

Notice that the bottom and the (x, z)-system are moving to the left with the velocity
cr seen from the (xr, zr)-system. See Figure 3.1. Notice that zr = z, and in the
following we will not distinguish between z and zr.

By introduction of the stream function ψ defined by the equations:

u = −
∂ψ

∂z
(3.1)

14



z

xr

r
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x

z

rc

rc

h

h

y = 0

y = Q (<0)

Figure 3.1: Sketch of the flow observed from a coordinate system
following the wave.

and

w =
∂ψ

∂xr
(3.2)

the continuity equation for an incompressible liquid

∂u

∂xr
+
∂w

∂z
= 0 (3.3)

is automatically fulfilled. The assumption of irrotational flow ⇒ curl~v = rot~v = ~0,
which for plane flow reads:

∂w

∂xr
−
∂u

∂z
= 0 (3.4)

If equation (3.1) and equation (3.2) are substituted into (3.4), the result reads:

∂2ψ

∂x2r
+
∂2ψ

∂z2
= 0 (3.5)

i.e. ψ must fulfill the Laplace equation. The flow is sketched in Figure 3.1. The
kinematic boundary conditions (no flow across a stream line) reads:

ψ = Q for z = −h (3.6)

15



and

ψ = 0 for z = η (3.7)

Here the discharge Q through a vertical section is given by

Q =
∫ η

−h
u dz (3.8)

The dynamic boundary condition at the free surface reads:

p = constant

and substitution into the generalized Bernoulli equation gives:

gη +
1

2
(u2 + w2) +

∂ϕ

∂t
= R for z = η (3.9)

where ∂ϕ
∂t
= 0 due to steady flow. R is named the Bernoulli constant.

The main idea in the theory is the assumption that the stream function may be
approximated by:

ψ(xr, z) = cr(z + h) +
N∑

j=1

Bj

sinh jk(z + h)

cosh jkh
cos jkxr +Q (3.10)

The right hand side of equation (3.10) may be interpreted as a truncated Fourier-
series of an even function. For waves symmetrical about the wave crest the stream
function must be an even function, and we may therefore expect that the equation
(3.10) will approximate ψ arbitrarily well if N is chosen big enough.

It is also seen that the expression for ψ fulfills both the bottom condition (3.6) and
the Laplace equation, because the individual terms all fulfills the two equations.
Notice also that an assumption of periodicity is hidden in equation (3.10), because
ψ(xr, z) = ψ(xr + L, z).

To calculate the stream function we therefore need to determine the N unknown
coefficients Bj, cr, k (or L) and Q ( in total N + 3 unknown).

This is done by exact fulfillment of the free surface conditions at N + 1 points.
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The kinematic BC (3.7) reads:

ψ(xr, η) = 0 = cr(η + h) +
N∑

j=1

Bj

sinh jk(η + h)

cosh jkh
cos jkxr +Q (3.11)

and the dynamic BC (3.9) reads

gη +
1

2

(

(−
∂ψ

∂z
)2 + (

∂ψ

∂xr
)2
)

= R

or

gη +
1

2



−cr − k
N∑

j=1

jBj

cosh jk(η + h)

cosh jkh
cos jkxr





2

+
1

2



−k
N∑

j=1

jBj

sinh jk(η + h)

cosh jkh
sin jkxr





2

= R (3.12)

In this way 2N + 2 equations are set up and apparently the system of equations
seems to be over-determined. However, the η-values at the N + 1 point are also
unknown, giving: ηj (N + 1 values), Bj (N values) plus cr, k, Q andR, in total
2N + 5 unknown.

Therefore we must set up 3 extra equations in order to solve the system of equations.

Incompressible fluid corresponds to:

η̄ =
1

L

∫ L

0
η ∙ dxr = 0 (3.13)

and the two definitions

H = ηmax − ηmin (3.14)

L = crT (3.15)

gives the two last equations necessary to solve the system. Notice that the equations
are non-linear, but practice has shown that the non-linear equations can be solved
by use of a generalized Newton-Raphson iteration, see Appendix A.

After the solution of the system, the velocity potential ψ is calculated by (3.10) and
(u,w) by use of (3.1) og (3.2). It should be remembered that u in equation (3.1)
has to be adjusted with the velocity cr, when particle velocities with respect to the
bottom are calculated.
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At Appendix A expressions for u og w and corresponding accelerations are derived.
Notice that in non-linear wave theory accelerations must be total accelerations (see
e.g. du/dt, equation (2.27)), because the convective terms cannot be discarded as it
is done in 1. order theory.

The surface elevation η(x) at arbitrary x-values are found by use of a finite Fourier-
series based on the N + 1-values of η, giving:

η(xr) = 2
N−1∑

j=1

aj cos jkxr + aN cosNkxr (3.16)

Notice that the wave crest is situated at xr = 0 and that the missing factor 2 in the
last term is not a misprint, see Appendix A.
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Chapter 4

Waves propagating on a uniform
current (U 6= 0)

4.1 Introduction

We will look at waves propagating on a body of water moving with uniform velocity
U with respect to the sea bottom.

Only the mathematical description is given here. The effect from the current on
wave breaking, refraction and wave forces on structures will not considered.

Three different coordinate systems are used to describe the flow:

1) the (xa, za)-system fixed to the sea bottom
2) the (x, z)-system fixed to the water body
3) the (xr, zr)-system following the wave

On Figure 4.1 is sketched the flow situation seen from the system fixed to the sea
bottom.

z

x

fixed
wave gauge

bottom

U

x

z

U

z

xr

r

rU + c

a

a

Figure 4.1: Sketch of the flow observed from the (xa, za)-coordinate system
fixed to the bottom
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z

x

z

xr

rfixed
wave gauge

bottom

rU + c

rU + c

x

z

rc

a

a

Figure 4.2: Sketch of the flow observed from the (xr, zr)-coordinate system
following the wave

If the wave propagation velocity with respect to the fixed bottom is named ca, it
follows directly from Figure 4.1 that

ca = cr + U (4.1)

where cr is the wave propagation velocity with respect to the water body. Because
a wave with a given length and height cannot ”feel” if it is propagating on a fixed or
a moving water body, the description of the flow in the following (xr, zr)-system will
be the same whether U = 0 or U 6= 0. All equations derived earlier in this system
are consequently also valid when U 6= 0.

However, the wave period is normally measured at a fixed wave gauge. The equation
relating wavelength and wave period must therefore be rewritten to

L = ca ∙ T (4.2)

where T is the wave period measured at a fixed point and ca is the propagation
velocity of the wave with respect to the sea bottom.

It is also clear that different wave periods will be observed from the the fixed (x, z)-
system and the following (xr, zr)-system. The period observed from the (xr, zr)-
system is here denoted Tr. However, we will observe the same wavelength (and the
wave number) from both coordinate-systems, which leads the equations:

ca =
L

T
=
2π

k T
=
ωa

k
(4.3)

cr =
L

Tr
=
2π

k Tr
=
ωr

k
(4.4)

Substitution of equation (4.3) and (4.4) into equation (4.1) gives

ωa = ωr + k U (4.5)
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or

ωr = ωa − k U (4.6)

The period Tr can be found from this equation, and the shift in frequency due to
the current is named a Doppler shift.

4.2 Stokes Theory

In order to find the wavelength the dispersion equation is applied. The dispersion
equation reads:

1. and 2. order theory :

ω2r = g k tanhkh (4.7)

5. order theory :

ω2r = g k tanhkh ∙ (1 + λ
2C2 + λ

4C4) (4.8)

The two versions of the dispersion equation are seen to be very similar. Therefore
only the solution in case of 5. order theory is described in the following.

If ωr = ωa − k U is substituted into equation (4.8), the dispersion equation for 5.
order waves reads:

(ωa − k U)
2 = g k tanhkh ∙ (1 + λ2C2 + λ

4C4) (4.9)

which must be solved by iteration together with equation (2.19). Equation (4.9) is
rewritten to:

FU(k, λ) = (ωa − k U)
2 − gk tanh(kh) ∙ (1 + λ2C1 + λ

4C2) = 0 (4.10)

and equation (2.19) to:

f(λ, k) =
k H

2
−
(
λ+ λ3B33 + λ

5(B35 +B55)
)
= 0 (4.11)

Hereafter the iterative solution of FU(k, λ) = 0 and f(λ, k) = 0 proceeds as de-
scribed in chapter 2 to obtain values of k and λ.

Velocities and accelerations are calculated as described in chapter 2, but remember
to add U to the horizontal velocity calculated by equation (2.24)!

In order to simulate the conditions in a wave basin, the condition q̄ = 0 must be
fulfilled. In the following it is described how a solution with an arbitrary value of q̄

21



is obtained.

The average discharge is given, i.e. q̄ = q̄∗, where q̄∗ is a known value. No equation
describes directly the relation between q̄ and U for Stokes’ waves, but the problem
may be solved by iteration this way :

1) guess U = q̄∗/h

2) find u(z, t) (remember U !) and η(t) for 0 < t < T

3) calculate q(t) =
∫ η(t)
h u(z, t) dz for 0 < t < T

4) calculate q̄ = 1/T
∫ T
0 q(t)dt

5) if q̄ 6= q̄∗ re-calculate from step 2) with Unew = Uold − h (q̄ − q̄∗)

until e.g. | q̄ − q̄∗| < 0.001q̄∗.

The integrals in step 3) and 4) are calculated numerically.

4.3 Stream Function Theory

We have introduced the new variabel, ca, but also set up the new equation (4.1),
which makes it possible to solve the flow problem when U 6= 0. The system of 2N+6
equations are again solved by iteration.

In order to simulate the conditions in a wave basin, the condition q̄ = 0 must be
fulfilled. In the following it is described how a solution with an arbitrary value of q̄
is obtained.

First we note that q̄wave, which is the part of q̄ caused by the presence of waves,
must be

qwave = Q−QH=0 = Q− (−crh) = Q+ crh (4.12)

if observed from the (xr, zr)-system. It is so, because one would observe a discharge
of −crh in this system, when H is very small. The propagation velocity cr is nearly
independent of H.

As the (x, z)-system has the velocity U with respect to the fixed (xa, za)-system, we
would in the latter system observe the average discharge

q̄ = qcurrent + q̄wave = Uh+Q+ crh (4.13)

Substitution of equation (4.1) into equation (4.13) gives:

q̄ = Uh+Q+ (ca − U)h
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or

q̄ = Q+ cah (4.14)

Equation (4.14) is the extra equation necessary due to the extra unknown ca in case
q̄ is specified. Again iteration is used to solve the system of 2N + 6 equations.

Notice that the actual value of U can be found by equation (4.1) because both cr
and ca are known after the solution of the system of equations.
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Appendix A

A.1 Solution of a system of non-linear equations

by means of

Newton-Raphson’s method

The extended Newton-Raphson’s method is first explained by means of this simple
system of equations:

F (x, y) = 0 (A.1)

og

G(x, y) = 0 (A.2)

It is assumed that F (x, y) and G(x, y) are known functions of x and y. We also
assume that (x0, y0) is an approximate solution to equation (A.1) and (A.2). This
means that

F (x0 + dx, y0 + dy) = 0 (A.3)

and

G(x0 + dx, y0 + dy) = 0 (A.4)

where dx og dy are “small” quantities.

If F and G are expanded into Taylor series, where only 1. order terms are kept,
equation (A.3) and (A.4) can be rewritten to

F (x0, y0) + dx(
∂F

∂x
)0 + dy(

∂F

∂y
)0 = 0 (A.5)
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and

G(x0, y0) + dx(
∂G

∂x
)0 + dy(

∂G

∂y
)0 = 0 (A.6)

Equation (A.5) and (A.6) can be solved with respect to dx og dy by means of a
standard method, e.g. Gauss-elimination, because the equations are linear with
respect to (dx, dy). The matrix






(∂F
∂x
)0 (

∂F
∂y
)0

(∂G
∂x
)0 (

∂G
∂y
)0




 (A.7)

is named the Jacobi matrix and its elements may be calculated either analytically
or numerically. When (dx, dy) are known, an improved solution, (x1, y1), reads:

x1 = x0 + dx (A.8)

and

y1 = y0 + dy (A.9)

If the ”correction” (dx, dy) is small enough, i.e. if

Δ =
√
(dx2 + dy2) < ε (A.10)

where ε is an appropriate small number, we accept (x1, y1) as the solution to the
system of equations. Else the calulations are repeated (x1, y1) as the approximate
solution.

A.2 Example: Stream Function Theory. Set up

and solution of the system of equations

In this example it is shown how the equations are set up and solved for N = 2, i.e.
the BC’s are fulfilled at 3 points on the free surface. Notice that N = 2 is chosen
only to reduce the amount of writing. Normally that few points will not provide a
solution with proper accuracy.

Because it assumed that the wave is symmetrical about the wave crest, it is sufficient
to place the 3 points on half a wave length only. See Figure A.1.
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The points are normally placed equidistant yielding

Δx =
0.5 ∙ L
N

(A.11)

One might believe that the accuracy would be improved, if the concentration of
points was largest near the crest, but test calculations has shown that this is not
the case, see Fenton (1980).

Given : h, T,H, q̄

Calculate : cr, ca, B1, B2, η1, η2, η3, Q,R, L (= 2N + 6 = 10 unknown) (A.12)

Figure A.1: Definition sketch, N = 2.

The kinematic BC, equation (3.11), at point (x1, η1) reads:

cr(η1 + h) + B1
sinh k(η1 + h)

cosh kh
cos kx1

+ B2
sinh 2k(η1 + h)

cosh 2kh
cos 2kx1 +Q = 0 (A.13)

Similar expressions are set up at (x2, η2) and (x3, η3).
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The dynamic BC, equation (3.12), at point (x1, η1) reads:

gη1

+
1

2

(

−cr − kB1
cosh k(η1 + h)

cosh kh
cos kx1 − 2kB2

cosh 2k(η1 + h)

cosh 2kh
cos 2kx1

)2

+
1

2

(

−kB1
sinh k(η1 + h)

cosh kh
sin kx1 − 2kB2

sinh 2k(η1 + h)

cosh 2kh
sin 2kx1

)2

− R = 0 (A.14)

Similar expressions are set up at (x2, η2) and (x3, η3).

Equation (3.13), i.e. η̄ = 0, is approximated by:

N+1∑

i=1

ηiΔxi = 0

where Δxi = Δx for i = 2, . . . , N and Δxi = 0.5Δx for i = 1 and i = N +1. In this
case Δx = L

4
yields:

L

8
η1 +

L

4
η2 +

L

8
η3 = 0 (A.15)

The condition H = ηmax − ηmin, i.e. equation (3.14), reads

H − (η1 − η3) = 0 (A.16)

L = ca ∙ T , i.e. equation (4.2), is rewritten to

L− ca ∙ T = 0 (A.17)

and finally q̄ = Q+ cah, i.e. equation (4.14), is rewritten to

Q+ cah− q̄ = 0 (A.18)

In this way we have 10 equations, which are solved by means of Newton-Raphson’s
method.

The Jacobi matrix (A.7) is calculated by means of a straightforward numerical
differentiation.

Initial guesses in the iteration reads:

L = L(1), i.e. the 1. order value
cr = L/T
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ca = cr
Q = −crh
R = 0.5 c2r
ηi = H

2
cos(kxi) for i = 1, 2 and 3

plus
B1 = − πH

kT tanh(kh)

and B2 = 0

The guess of B1 is found by setting w
(1), equation (1.10), equal to w = ∂ψ

∂x
, equation

(3.2), and B2 = 0 is assumed because the size of Fourier coefficients normally are
decreasing when the frequency is increasing.

In case of large values of H/h a step wise calculation is necessary to obtain conver-
gence of the iteration. The reason is that the initial guesses corresponds to 1. order
values. In each step the actual wave height is increased until the correct wave height
is reached. The wave height is normally increased by ΔH = H

8
or less, and in each

step the start guesses in the iteration are the values obtained in the previous step.
Notice that only one calculation of the Jacobi matrix is necessary in each step.

A.3 Calculation of η(x) by means of Stream Func-

tion Theory

When the flow problem is solved, we know

(xi, ηi) i = 1, 2, . . . , N + 1

However, we often want to calculate an η(x)-value at an arbitrary x-value. This
can be done by either interpolation of η-values or by an expansion of η-values in
a truncated Fourier series. Here the Fourier series is applied, because this method
also gives information about the accuracy of the calculalation.

In general we know that the Fourier series of an even function , i.e. η(−x) = η(x),
with the period L reads:

η(x) = a0 + 2
∞∑

j=1

(aj cos jkx+ bj sin jkx)

hvor k =
2π

L

aj =
1

L

∫ L
2

−L
2

η(x) cos(jkx)dx =
2

L

∫ L
2

0
η(x) cos jkx dx

og bj =
1

L

∫ L
2

−L
2

η(x) sin jkx dx = 0
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The coefficients aj are calculated by

a0 = 0 see equation (3.13) or (A.15)

og aj =
2

L

N+1∑

i=1

ηi cos jkxiΔxi j = 1, 2, . . . , N

In the series for η the maximum value of j isN . This is so because only 2N points are
available to describe the entire wave length. Consequently the shortest wave length
in the Fourier series corresponds to cos(Nkx). See e.g. Newland (1975), where it
is shown that at least two data points per oscillation are necessary to describe an
oscillation properly.

Hereby the expression for η(x) reads

η(x) = 2
N−1∑

j=1

aj cos jkx+ aN cosNkx (A.19)

Notice that the factor 2 is missing on the last term. This is necessary to obtain
that (A.19) correctly gives η(xi) = ηi, i.e. the graph of the Fourier series matches
exactly the N +1 values of η on which it is based. The accuracy of the results from
the Stream Function Theory is considered adequate if aN � a1, because this gives
a free surface without tendency to secondary crests. If this requirement is not met,
all calculations must be repeated with an increased value of N .

A.4 Calculation of particle velocity and accelera-

tion by means of Stream Function Theory

The expression for the stream function described in the (xr, zr)-system, equation
(3.10), reads

ψ(xr, z) = cr(z + h) +
N∑

j=1

Bj

sinh jk(z + h)

cosh jkh
cos jkxr +Q

Using u = −∂ψ
∂z
yields

u(xr, z) = −cr −
N∑

j=1

jkBj

cosh jk(z + h)

cosh jkh
cos jkxr (A.20)

As cr is the propagation velocity of the wave with respect to the water body, the
particle velocity with respect to the water body ( or described in the (x, z)-system)
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reads:

u(x, z) = −
N∑

j=1

jkBj

cosh jk(z + h)

cosh jkh
cos jk(x− crt) (A.21)

In equation (A.21) it is used that

xr = x− crt (A.22)

If the water body has the velocity U with respect to the bottom the expression for
u described in the fixed (xa, za)-system reads

u(xa, z) = U −
N∑

j=1

jkBj

cosh jk(z + h)

cosh jkh
cos jk(xa − cat) (A.23)

because

xr = xa − cat (A.24)

In a similar way it is found that

w(xa, z) = −
N∑

j=1

jkBj

sinh jk(z + h)

cosh jkh
sin jk(xa − cat) (A.25)

The expression for horizontal particle accelerations reads

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
(A.26)

As ∂u
∂t
= (−ca) ∙ ∂u∂x because the wave propagates with constant form, equation (A.26)

may be rewritten to

du

dt
= (−ca + u)

∂u

∂x
+ w

∂u

∂z
(A.27)

Here u and w are given by equation (A.23) and (A.25). The derivatives ∂x
∂x
and ∂x

∂z

reads:

∂u

∂x
=

N∑

j=1

(jk)2Bj

cosh jk(z + h)

cosh jkh
sin jk(xa − cat) (A.28)
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and

∂u

∂z
= −

N∑

j=1

(jk)2Bj

sinh jk(z + h)

cosh jkh
cos jk(xa − cat) (A.29)

The vertical particle acceleration reads

dw

dt
=
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
(A.30)

Insertion of ∂w
∂t
= (−ca) ∙ ∂w∂x (the wave propagates with constant form) gives

dw

dt
= (−ca + u)

∂w

∂x
+ w

∂w

∂z
(A.31)

Here u and w are given by equation (A.23) and (A.25). The derivatives ∂w
∂x
and ∂w

∂z

reads:

∂w

∂x
= −

N∑

j=1

(jk)2Bj

sinh jk(z + h)

cosh jkh
cos jk(xa − cat) (A.32)

∂w

∂z
= −

N∑

j=1

(jk)2Bj

cosh jk(z + h)

cosh jkh
sin jk(xa − cat) (A.33)
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