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Chapter 1

Wind structure

1.1 Introduction

The purpose of this note is to provide a short description of wind, i.e. of the flow
in the atmosphere of the Earth and the loading caused by wind on structures. The
description comprises

• causes to the generation of wind

• the interaction between wind and the surface of the Earth

• the stochastic nature of wind

• the interaction between wind and structures, where it is shown that wind
loading depends strongly on this interaction.

1.2 The cause to generation of wind

To describe the details of the weather, including wind, on this planet is a tough
job. However, it is possible to get some basic knowledge by doing a few, simple
considerations.

The driving force in the generation of wind is the non-uniform solar heating of the
Earth’ surface. The incident solar radiation per m2 is simply higher at Equator than
at the poles. See Figure 1.1.

If the Earth did not rotate, the heating at Equator would create a buoyancy causing
an air mass to ascend. Due to the equation of continuity this flow would cause
another flow from the poles towards Equator, and the resulting flow would be as
sketched in figure 1.2.
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Figure 1.1: Incident solar radiation and temperatures at Equinox
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Figure 1.2: Flow in the atmosphere of a non-rotating Earth

In practice this flow do not appear because the Earth actually is rotating. Normally
we describe motion in a coordinate system fixed to the Earth, i.e. it is rotating.
Seen from this coordinate system, the path of a particle is deflected to the right,
when looking in the direction of motion (on the northern hemisphere).

In order to describe this deflection by an ordinary application of Newton’s 2nd law,
it is necessary to include the fictive Coriolis’ force. However, if we had described
the motion in an inertial system, i.e. a non-rotating system fixed to the universe,
this fictive force would not be necessary.

Seen from a system fixed to the Earth the wind at a large height would blow to
the north after the ascent, but it is deflected to the east due to Coriolis’ force.
After some time the air is also cooled so much that it will descent due to a negative
buoyancy. In this way the most southern flow cell is formed, see Figure 1.3.

As cold air flows from the north pole in southerly direction close to the ground, one
might expect the formation of only one more flow cell. However, this is not possible,
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because formation of only two cells would yield simultaneous flow in two directions,
where the two cells would meet. Instead a third flow cell is formed, which makes
the flows interact correctly, see Figure 1.3.

In a similar way 3 flow cells are formed on the southern hemisphere, but there the
Coriolis’ force is acting to the left.

North pole, high pressure

Polar east wind

Polar front, low pressure

Warm west wind, tempered zone

Subtropic high pressure belt

NE trade wind

Equator, low pressure
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Figure 1.3: Sketch of the flow cell pattern in the atmosphere. The scale in radial
direction is strongly exaggerated. In reality the flow takes place under 10-15 km’s
height corresponding to less than 1/10 mm in the sketch.
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Figure 1.4: Motion described in the fixed x∗ y∗-system

1.3 Coriolis’ force

Coriolis’ force is the fictive external force, which it is necessary to include in Newton’s
2nd law on order to describe the motions correctly in a rotating coordinate system.
The reason why Coriolis’ force has to be introduced is shown below.

A particle is assumed to move at constant velocity ~v along a straight particle path
in the x∗ y∗-system, which is fixed to the universe. According to Newton’s 2nd law
no external forces are acting on this particle.

The particle is at point O at time t = 0, and it is moving along the y∗-axis. At time
t = 0 + dt it has moved the distance v dt up to point A. See Figure 1.4.

The same motion is now described in the x y-system, rotating at angular velocity
~ω. Seen from the x y-system, the x∗ y∗-system has been turned the angle ω dt clock
wise during the dt seconds, and in this period the particle has moved from point O
to point A.

Seen from the rotating system the particle is moving along the y-axis at t = 0, but
the particle path is deflected to the right in such a way that the particle ends up at
point A at the time dt. The path is thus curved even though no external forces has
acted on the particle. See Figure 1.5.

If we want to apply Newton’s 2nd law to describe the motion in the rotating system,
we have to introduce the fictive Coriolis’ force acting to the right, when looking in
the direction of the motion.

In e.g. Meriam and Kraige (1987) the Coriolis’ force, here denoted ~FC , reads:

~FC = −2m~ω × ~v (1.1)

where m is the mass of the particle.
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Figure 1.5: Motion described in the rotating x y-system

At latitude λ, it is natural to describe the motion in a rotating coordinate system,
where the x y-plane is the tangent plane to the ground and the x-axis is parallel to
the latitude, see Figure 1.6.

In the x y-system the expressions for the angular velocity of the Earth, ~ω, and the
velocity of the particle,~v, reads:

~ω = (ωx, ωy, ωz) = (0, ω cosλ, ω sinλ) (1.2)

and

~v = (vx, vy, vz) (1.3)

If the motion is horizontal, vz = 0, one finds:

~ω × ~v =

∣
∣
∣
∣
∣
∣
∣

~ex ~ey ~ez
0 ω cosλ ω sinλ
vx vy 0

∣
∣
∣
∣
∣
∣
∣

= (−vy ω sinλ , vx ω sinλ ,−vx ω cosλ) (1.4)

The horizontal component of Coriolis’ force on the particle reads:

~FC,h = −2mω sinλ (−vy, vx) = m 2ω sinλ v̂ (1.5)

where v̂ is ~v rotated 90◦ clockwise. Substitution of the so called Coriolis’ parameter :

fC = 2ω sinλ (1.6)
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Figure 1.6: Placement of the rotating coordinate system

yields:

~FC,h = mfC v̂ = mfC (vy,−vx) (1.7)

The size of the horizontal Coriolis’ force reads:

FC,h = mfc v

The value of the Coriolis’ parameter is small everywhere, and e.g. in Denmark at
latitude λ = 56◦ the size of fC is:

fC = 2 (2π)/(24 ∙ 3600) sin 56◦ = 1.21 ∙ 10
−4 rad/sek

In the following it is shown that the Coriolis’ force is very important in the descrip-
tion of flow in the atmosphere, even though it is a very small force.
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1.4 Weather maps

The pressure at a point is actually the weight of the mass of the air column above
the point. Today the unit for pressure is named hektoPascal (hPa), where 1 hPa =
100 Pa = 100 N/m2. This unit is the same as millibar (mbar), because 1 millibar
= 10−3 bar = 10−3 ∙ 105 Pa = 100 Pa = 1 hPa. The unit atmosphere (atm) is also
seen, where 1 atm = 1013 hPa = 1.013∙105 Pa.

If the atmospheric pressure is measured at a large number of points at the ground,
it is possible to draw curves through points with the same pressure. These curves
are named isobars.

The isobars are closed curves situated around areas with either high or low pressure.

Figure 1.7: Weather map with isobars

A typical course of isobars at winter time is sketched in Figure 1.7. By intuition we
expect a flow (wind) that tries to reduce these differences in pressure, i.e. flow from
high pressure towards low pressure. See Figure 1.8.

Figure 1.8: Expected directions of wind

This is also attempted by nature, but the Coriolis’ force deflects the wind to the
right on the northern hemisphere. In practice the deflection is so large that the wind
direction is nearly parallel with the isobars. See Figure 1.9.
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Figure 1.9: Sketch of actual wind directions

Figure 1.10: Weather map over Denmark, date: 01.10.77, time: 01 am
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Figure 1.11: Pressure and precipitation forecast for Northern Europe

pressure and wind

Figure 1.12: Pressure and wind forecast for Northern Europe
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It is a bit surprising, but it is clearly seen on weather maps showing both isobars
and observed wind directions. Normally the wind direction at a point is shown by
a bar pointing in the opposite direction of the wind velocity. The strength of the
wind is marked by flags on the bar. One whole flag is equivalent to 10 knots = 5
m/s, and half a flag is equivalent to 5 knots = 2.5 m/s. Figure 1.10 is an example
of such a weather map, and it shows pressures and winds over Denmark at the first
of october 1977 at 01 am.

Notice also that the largest wind velocities occur, where the isobars are closest to
each other. The reason for this is explained in the next section.

Today observations and forecasts of weather maps may be downloaded from many
web-sites. In Figure 1.12 are shown a wind forecast from Danish Meteorological In-
stitute. Notice that on this map the wind directions are shown with arrows pointing
in the direction of the wind and the strength is indicated by a color.
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1.5 Geostrophic wind

In a storm situation it is natural to divide the flow into a boundary layer close to
the ground and a potential flow above this layer. Inside the boundary layer we have
substantial shear forces, but the shear forces are so small in the potential flow that
we shall neglect them.

The thickness of the boundary layer depends mainly on the roughness of the ground
and the wind velocity outside the boundary layer, see section 1.6.

Air behaves like an incompressible newtonian fluid at velocities up to at least 100
m/s, so the ordinary methods from fluid dynamics are applicable to set up equations
of motion for an air particle in the atmosphere.

The horizontal external forces on an air particle are a pressure force, ~FP , Coriolis’
force, ~FC,h and a shear force ~FT .

Figure 1.13: External forces acting on an air particle

The pressure gradient, grad p, varies very slowly (the scale is normally many kilome-
ters) and consequently it is a good approximation to consider the gradient constant
within the volume,X, occupied by the particle. It is then easy to find the pressure
force, ~FP , by means of the so called gradient-theorem :

~FP =
∫

A
−p ~dA =

∫

X
(− grad p) dX = −grad p ∙X (1.8)

where A is the surface of the particle, and ~dA is the outward normal to the surface.
Coriolis’ force is calculated by means of equation (1.7). The shear force is directed
against the direction of motion, and in principle it may be expressed as:

~FT = f(v) (−~v) (1.9)

Normally the analytical expression for f(v) is not known, but in practice shear forces
are small compared to pressure forces.
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The orientation of the forces is sketched in figure 1.13. With these external forces
Newton’s 2nd law reads:

m
d~v

dt
=

∑
~Fexternal

⇔ ρX
d~v

dt
= ~FP + ~FC,h + ~FT

⇔ ρX
d~v

dt
= − grad p ∙X + ρX fC v̂ − f(v)~v

After division by X the equation of motion reads:

ρ
d~v

dt
= − grad p+ ρ fC v̂ −

f(v)

X
~v (1.10)

Due to very slow variation in time of the pressure field, the speed, v, of a particle
rather quickly becomes constant. There might be an acceleration, but it is nor-
mal to the velocity. The acceleration vector is easy to find, if the particle path is
approximated to a circle with radius R equal to the local radius of curvature.

Figure 1.14: External forces acting on an air particle with a straight particle path
(R =∞)

In many cases the particle path is nearly straight, and in that situation no accel-
eration is present i.e. d~v/dt = ~0. See Figure 1.14. In such a case the equation of
motion reads:

~0 = − grad p+ ρ fC v̂ −
f(v)

X
~v (1.11)

Due to the presence of the shear force, ~FT , fulfillment of force equilibrium requires
that ~v forms the angle α with the isobars, because grad p is perpendicular to the
isobars. The angle is variable, and from Figure 1.14 is seen that the angle is increas-
ing, when the shear force is increasing. Therefore we see the greatest angles near
the ground, but normally αo < 25

o, where αo denotes the angle near the ground.
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Outside the boundary layer no shear forces are present, i.e. ~FT = ~0. Here force
equilibrium is reached, if Coriolis’ force and the pressure force are equal and acting
in opposite directions. As the pressure force is perpendicular to the isobars, also
Coriolis’ force must be perpendicular to the isobars. Therefore the velocity must be
parallel to the isobars. The equation of motion reads:

grad p = ρ fC v̂ (1.12)

yielding:

| grad p | = ρ fC v (1.13)

In case of straight isobars the wind velocity outside the boundary layer is named
geostrophic wind velocity and denoted UG.

The pressure gradient is assessed by

| grad p | =

∣
∣
∣
∣
∣

∂p

∂n

∣
∣
∣
∣
∣
≈
∣
∣
∣
∣
Δp

Δn

∣
∣
∣
∣ (1.14)

where ~n is perpendicular to the isobars and Δn is the distance between these.

Substitution of these expressions into equation (1.13), yields:

UG = | grad p |
1

ρ fC
≈
∣
∣
∣
∣
Δp

Δn

∣
∣
∣
∣

1

ρ 2ω sinλ
(1.15)

If the radius of curvature of the isobars (and the particle trajectories) is less than
500-1000 km, it is necessary to include the centripetal acceleration in equation (1.10).
The wind velocity from such a calculation is named the gradient wind velocity.

13



1.6 Wind in the boundary layer near the ground

In the following only storm conditions are considered. This means that the air mass
is fully mixed, i.e. no differences in density exists and no stratification between cold
and hot air is present. As mentioned in the previous section, the air flow can be
divided into a boundary layer flow close to the ground and a potential flow outside
the boundary layer. The geostrophic velocity, UG, outside the boundary layer is
driving the flow in the boundary layer.

level  25.5 m

level  14.7 m

level  43.1 m

Minutes

V
in

d 
ve

lo
ci

ty
   

( 
m

/s
 )

Figure 1.15: Wind velocities measured at Stigsnæs at three differents levels (Dyrbye
og Hansen, 1989)

Based on measurements the following is known about the flow in the boundary layer:

• The flow in the boundary layer is strongly turbulent, and the turbulence is
created by the passage of the air over the rough surface of the ground. If we
denote instantaneous values, v, time averaged values, U , and fluctuations, u,
we have:

v(z, t) = U(z) + u(z, t) (1.16)

U(z) =
1

T

∫ T

0
v(z, t) dt (1.17)

If nothing else is stated T = 10 minutes is applied.

• In practice the values of U also vary in time, but normally very slowly. On
the other hand U is strongly dependent of the level, z.

• The standard deviation, σu, of time series of the fluctuations u(z, t) is nearly
independent of z in the lower part of the boundary layer.

• Short-period variations of u(z, t) do not appear simultaneously along a vertical.

• Long-period variations of u(z, t) do appear nearly simultaneously along a ver-
tical.
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1.6.1 Wind profile

Measurements of natural wind profiles shows that close to the ground the wind
profile approaches that of an ordinary boundary layer over a rough surface. If τo
denotes the shear stress between the air and the ground, and the so called friction
velocity, UF , is defined as:

UF =

√
τo

ρ
(1.18)

the expression for the velocity profile reads:

U(z) =
1

κ
UF ln

z

zo
= 2.45UF ln

z

zo
(1.19)

Here κ = 0.4 is named Kármáns’ coefficient, z is the distance from the ground and zo
is the roughness length characterizing the size and spacing of the roughness elements
on the ground. See Figure 1.16.

Figure 1.16: Sketch of wind velocity profile

The roughness length for a given surface is assessed from measured values of U(z).
U(z) is plotted against ln z, and equation (1.19) is fitted to the data. Because
U(z) = 0 for z = zo, the zo-value is found from the intersection between the fitted
straight line and the z-axis. Subsequently UF is calculated by equation (1.19), where
known values zo and (z, U(z)) are substituted.

Normally the log-profile, equation (1.19), is valid for z < 50 m. For 50 < z < 300
m a modified log-profile can be used, see e.g. Dyrbye and Hansen (1989).

Characteristic values of zo are shown in Table 1.1. Normally it can be assumed that
zo ' kN/30, where kN is the Nikuradse grain roughness known from flow in pipes.
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Comparison of measured values of UF and σu yields typically:

σu ≈ 2.5 ∙ UF (1.20)

where σu is the standard deviation of the fluctuations.

The intensity of turbulence, Iu(z), is defined as

Iu(z) =
σu

U(z)
(1.21)

and substitution of the equations (1.20) and (1.19) into this expression yields:

Iu(z) =
σu

U(z)
=

2.5 ∙ UF
2.45UF ln

z
zo

=
2.5

2.45 ln z
zo

or

Iu(z) ≈
1

ln z
zo

(1.22)

The velocity profile is determined, when UF is known. From historic weather maps
long time series of UG at many places can be calculated, and to utilize this informa-
tion we need a relation between UF and UG. Davenport (1977) showed that UF and
UG are related through the expression:

UF ≈ UG ∙ 0.16

(
UG

fC zo

)−0.09

(1.23)

where fC is Coriolis’ parameter. Substitution of this expression into equation (1.19)
yields:

U(z) = 2.45 UG ∙ 0.16

(
UG

fC zo

)−0.09

∙ ln
z

zo
(1.24)

In this way U(z) can be determined on basis of values of UG and zo.

In Figure 1.17 are shown velocity profiles corresponding to a storm occurring in
average every 50 year. The corresponding value of the geostrophic velocity, UG, is
the same for all profiles, but it is clearly seen that the roughness of the ground has
great influence on the profiles.
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Figure 1.17: Velocity profiles in 50 year storm

terrain zo (m) β (-) zG (m)

rough sea 0.005 - 0.010 0.12 250
open grass land 0.010 - 0.10 0.16 300
forest / suburban area 0.30 - 1.00 0.28 400
center of large city 1.00 - 5.00 0.40 500

Table 1.1: Typical values of the roughness length

According to Simiu (1978) og Davenport (1977) the thickness of the boundary layer,
δ, can be assessed by:

δ ≈ 0.3 ∙
UF

fC
(1.25)

Often the velocity profile is approximated by this power-expression:

U(z)

UG
=
(
z

zG

)β
(1.26)

where the parameters β and zG are determined by fitting the power-expression to
the logarithmic profile. Normally we find zG ≈ δ/10. At this height U(z) ≈ 0.90∙UG,
and the flow is nearly free of turbulence. In Table 1.1 are shown characteristic values
of β and zG.

Because the boundary layer is very thin compared to the horizontal scale of the flow,
the approximations from ordinary boundary theory are applicable. In particular we
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use that the pressure field within the boundary layer is determined by the pressure
field outside the layer, or, to be more specific, we use it the other way round. Pressure
gradients outside the boundary layer are assessed by the pressures measured at the
ground (weather maps).

The presence of the shear force on an air particle in the boundary layer is the reason
to the observed angle between ~v and the isobars, see Figure 1.14. As the shear
force increases towards the ground, ~v is turned more and more counter clock-wise.
Measurements show that the expression for αo, defined as the angle between UG and
U(10m) , reads:

sin αo = 1.7 ∙

(
UG

fC zo

)−0.09

(1.27)

For UG = 30 m/s is found:

αo =






25◦ over land (zo = 0.050 m)

20◦ over water (zo = 0.005 m)
(1.28)

1.6.2 Wind spectrum

50 year storm, z=10 m
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Figure 1.18: Variance spectrum of wind velocity. Linear plot.

The fluctuation u(t) of the wind velocity may be considered a stochastic variable.
It has earlier been shown that the standard deviation, σu, and therefore also the
variance , σ2u, depends on terrain roughness and the friction velocity.

The following describes how the variance of u(t) depends on the frequency, f , of
the fluctuations. A graph showing this dependence is named a variance spectrum.
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50 year storm, z=10 m
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Figure 1.19: Variance spectrum of wind velocity. Logarithmic plot.

The variance spectrum is here denoted Suu(f). The relation between the variance
spectrum (sometimes also named auto spectrum) and the variance are per definition:

σ2u =
∫ ∞

0
Suu(f) df (1.29)

and because σu ≈ 2.5UF in the lower part of the boundary layer, the area under the
variance spectrum varies only negligible with z.

Typical results from Fourier analysis of a u(t) time series are seen in Fig. 1.18.
From these spectra it is seen that substantial part of the variance is located at low
frequencies. We also apply variance spectra to describe irregular water waves, but
only negligible part of their variance is located at low frequencies.

In order to get a better description of the variance distribution at low frequencies,
we use the identity:

∫ f2

f1

Suu(f) df =
∫ f2

f1

f Suu(f) d(ln f) (1.30)

A plot of f Suu against ln f therefore improves the resolution at the low frequencies,
but the variance is still the area under the curve. See Fig. 1.19.

From theoretical considerations and measurements it is found that variance spectra
for wind reads:

f Suu(z, f)

σ2u
= 6.8 ∙

f L(z)

U(z)
∙

(

1 + 10.2 ∙
f L(z)

U(z)

)−5/3

(1.31)
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where L(z) is a length scale, which according to DS 410 is given by:

L(z) =






100
(
z
10

)0.3
hvis z > zmin

L(zmin) hvis z ≤ zmin

(1.32)

Values of zmin are given in Table 1.2.
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1.6.3 Distribution of geostrophic wind, UG

The wind conditions near the ground are governed by the geostrophic wind, UG,
which can be found on basis of weather maps. The probability distribution of UG
at a given place can therefore be determined by analysis of weather maps covering
a longer period. This method was applied in ”Vindatlas for Danmark” (1980). The
agreement with available distributions based on anemometer measurements was ex-
cellent. It turned out that the wind speed is following a Weibull-distribution and
nearly the same distribution was found in different parts of the country. Based on
this parent probability distribution it is possible to find the extreme value distribu-
tion for the geostrophic wind speeds, see e.g. Davenport (1977).

In the Danish Building Code DS 409 it is laid down that buildings should be be
dimensioned for the 50-year event, which is the event that appears or is exceeded
every 50 year.

If we know the 50-year value of the geostrophic wind, U50G , the corresponding value
close to the ground, U(10)50, can be determined, see section 1.6.1.

From the extreme value distribution of UG above Denmark one finds U
50
G ≈ 49 m/s.

Notice that this is an average value and over the North Sea and the west coast of
Jutland somewhat higher values are observed.

In Table 1.2 is shown the 50-year values of UG and U(10) for the 4 types of terrain
mentioned in DS 410.

terrain zo UF
50 U(10)50 kt zmin

m m/s m/s - m

sea 0.01 1.7 28 0.17 2
grass land 0.05 1.9 24 0.19 4
suburb 0.3 2.2 19 0.22 6
center of large city 1.0 2.4 13 0.24 8

Table 1.2: 50-year velocities from DS 410

U50F is calculated by equation (1.23) and U(10)
50 is calculated by equation (1.19),

i.e.

U(z)50 = 2.45U50F ln
z

zo
(1.33)

In Table 1.2 is also found the terrain factor, kt, applied in DS 410’s expression for
the 50-year value of U(10), which reads:

U(z)50 = U(10)50zo=0.05 ∙ kt ∙ ln
z

zo
(1.34)
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In DS 410 the velocity U(10)50zo=0.05 is named the basic wind velocity. Comparison of
equation (1.33) and (1.34) and substitution of equation (1.20) yields:

kt =
2.45U50F
U(10)50zo=0.05

≈
σ50u

U(10)50zo=0.05
= Iu(10)

50
zo=0.05 (1.35)

The terrain factor is therefore the same as the intensity of the turbulence, but this
is not mentioned in DS 410! It is also seen that the expression for the standard
deviation of the fluctuations reads:

σ50u ≈ kt ∙ U(10)
50
zo=0.05 (1.36)

1.6.4 Distribution of wind velocity, v(z, t)

Having determined the 50-year event of geostrophic wind and the 10 min. wind at
10 meters height, U(10)50, the next issue is to assess the expected maximum value
of the wind velocity v(z, t) = U(z) + u(z, t) averaged over another time interval.
Such a value is denoted E(v(z)50max), and the value depends in the length of the time
interval, in which v(t) is observed and averaged over.

From measurements it is known that the fluctuations u(t) follow a normal dis-
tribution closely. For a normal distribution the expression for the expectation of
max-values, see e.g. Dyrbye and Hansen (1989), reads:

E(v(z)50max) = U(z)
50 + kp ∙ σ

50
u (1.37)

where the peak-factor kp is:

kp =
√
2 ln(Tobs ∙ f02) +

0.577
√
2 ln(Tobs ∙ f02)

(1.38)

and f02 is the frequency for zero-upcrossings of of u(z, t). Just like in wave hydraulics
the expression for this variable reads:

f02 =

√
m2

m0
(1.39)

where m0 og m2 are moments of the variance spectra defined by

mn =
∫ ∞

0
fn ∙ Suu(f) df (1.40)
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average time 1 hour 10 min 1 min 15 sec 5 sec 3 sec
conversion factor 0.94 1.00 1.11 1.19 1.24 1.25

Table 1.3: Conversion factors between 50-year values of velocities at 10 m’s height
averaged over different time periods, zo = 0.01 m.
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Figure 1.20: Probability density function for v at sea, zo = 0.01 m, and an approxi-
mate (see the text) density function for vmax corresponding to Tobs = 10 minutes.

In Fig. 1.20 are shown the probability density function for u and an approximation
to the density function for vmax corresponding to Tobs = 10 minutes. The den-
sity function for vmax has here been approximated by a normal distribution with
E(vmax) = 41 m/s and σvmax ≈ σu/2.

Normally we find f02 ≈ 0.1 Hz for wind. If the average time is Tobs = 10 minutes,
the expression for kp reads:

kp =
√
2 ln(600 ∙ 0.1) +

0.577
√
2 ln(600 ∙ 0.1)

≈ 3.1 (1.41)

If the terrain type is sea, or zo = 0.01 m, the expectation of E(v(10)
50
max) reads:

E(v(10)50max) = U(10)50 + 3.1 ∙ σ50u
= U(10)50 + 3.1 ∙ (2.5U50F )

= 28 + 3.1 ∙ 2.5 ∙ 1.7 = 41 m/s (1.42)

Averaging over a time interval always results in an average value lower than the
maximum value as can be seen from Table 1.3 showing 50-year values corresponding
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to different averaging intervals. Table 1.3 is published in DS 449 dealing with loads
on off shore structures. In principle this table is valid for zo = 0.01 m only, but is
probably usable for values of zo also.

The base is U(10)50, i.e. the 50-year value of the velocity at 10 m’s height averaged
over 10 minutes. Normally the velocity averaged over 3 seconds is named the short-
time average. It is seen that the ratio between the expectation of vmax and the
short-time average is 41/(28 ∙ 1.25) = 41/35 = 1.17.
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Chapter 2

Wind loading

2.1 Introduction

In the assessment of the effect of wind loading on a structure, it is very important
to distinguish between stiff and flexible structures.

Normally it is simple to calculate the wind loading on a stiff structure and compli-
cated to calculate the effect of wind loading on a flexible structure.

In both cases it should be noticed that peak velocities corresponding to very high
frequent fluctuations do not appear simultaneous over large areas. This is due to
the fact that high frequent fluctuations corresponds to small eddies. Normally the
dimensioning wind load is therefore overestimated, if the wind load is based on
E(vmax) over the entire construction.

2.2 Static wind load

If the construction is very stiff, it is allowable to assume the wind load to be static.
The wind load, F , on the area, A, is calculated as

F = c ∙
1

2
ρ v(zr)

2A (2.1)

where c is a shape factor (mainly depending on the shape of the structure), ρ is the
density of the air, zr is a reference height, which for small structures is chosen to be
the height of the construction.

By defining the velocity pressure, q, as:

q(z) =
1

2
ρ v(z)2 (2.2)
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the expression for wind load reads:

F = c ∙ q(zr)A (2.3)

In order to derive the expression for the maximum velocity pressure stated by DS410,
the maximum value of the fluctuations, umax = kp ∙ σu, is substituted into the
expression for the velocity pressure. This yields:

qmax(z) =
1

2
ρ (U(z) + umax)

2

=
1

2
ρ (U(z)2 + 2U(z) umax + u

2
max)

≈
1

2
ρ (U(z)2 + 2U(z) umax)

=
1

2
ρ (U(z)2 + 2U(z) kp ∙ σu)

=
1

2
ρU(z)2

(

1 + 2 kp
σu

U(z)

)

=
1

2
ρU(z)2 (1 + 2 kp Iu(z)) (2.4)

Here the definition of turbulence intensity has been applied, and it has been assumed
that u2max � U(z)

2. This assumption reduces the velocity pressure approximately
6 %. Normally it is unwise to reduce a driving load, but here it is justified by the
fact that umax do not occur simultaneously over the entire structure.

For the 50-year event equation (2.4) yields (as stated in DS410) :

qmax(z)
50 =

1

2
ρ (U(z)50)2(1 + 2 kpIu(z)) (2.5)
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2.3 Dynamic wind load

For a flexible structure it is necessary to consider the wind load as a dynamic load
in order to capture possible resonance problems. Notice that important dynamic
loads can exist in both the flow direction and perpendicular to that. However, the
present notes treats only the dynamic loads in the flow direction.

Often Morison’s equation is chosen as the load model, and for slender structures the
inertial force can be neglected. In that case the extended Morison’s equation reads:

F (t) = cD ∙
1

2
ρ
(
v(t)− ẋ

)2
A (2.6)

where
F (t) is the wind load acting on the area, A
x is the displacement of the construction
ẋ is the velocity of the construction
cD is a form factor
ρ is the density of the air.

The most straightforward dynamic model for a slender konstruction is sketched in
Figure 2.1.

x

c

kroad sign
v F(t)

m

side view

dynamic model

Figure 2.1: Dynamic model of a road sign, 1 degree of freedom (1 DOF)

Newton’s 2. law for this system reads:

mẍ =
∑
Fexternal = −k x− c ẋ+ F (t) (2.7)

where x is displacement, k is the stiffness, and c is the damping constant. This
equation is rewritten to:

mẍ+ c ẋ+ k x = F (t) (2.8)
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The expression for the wind force, F (t), is rewritten by substitution of v(t) = U+u(t)
yielding:

F (t) = cD
1

2
ρ [v − ẋ]2A

= cD
1

2
ρ [v2 + ẋ2 − 2 v ẋ]A

= cD
1

2
ρ
[
(U + u)2 + ẋ2 − 2(U + u) ẋ

]
A

≈ cD
1

2
ρ
(
U2 + 2U u− 2U ẋ

)
A

= cD A
1

2
ρU 2 + cD AρU u− cD AρU ẋ

= F + cD AρU u− cD AρU ẋ (2.9)

where F = cD A
1
2
ρU2 is the 10 minutes average of the wind load. Substitution of

equation (2.9) into equation (2.8) gives:

mẍ+ c ẋ+ k x = F + cD AρU u(t)− cD AρU ẋ (2.10)

Notice that a term is proportional to ẋ in the dynamic part of the load. If this term
is moved to the left-hand side of the equation, it may formally be considered as a
damping term, as equation (2.8) now reads:

mẍ+
(
c+ cD AρU

)
ẋ+ k x = F + cD AρU u(t) (2.11)

The extra damping term in equation 2.11 is named aerodynamic damping due to the
dependence of U . In practice it is a very important term, because an increase in the
damping gives a reduction of the motions (and thereby in the strains and stresses
in the construction).

Time averaging of all terms of equation (2.11) gives:

k x = F (2.12)

as u = 0, and one necessarily must have ẍ = ẋ = 0. Otherwise the road sign would
move to another place! Consequently the road sign is oscillating around the average
position x.

The easiest course is taken if we define y as the deviation in displacement from the
average position, i.e.

x = x+ y (2.13)

and denote the dynamic part of the load Fy(t), i.e.

Fy(t) = cD AρU u(t) (2.14)
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Substitution of these expressions into equation (2.11) gives:

m ÿ +
(
c+ cD AρU

)
ẏ + k y = Fy(t) (2.15)

Due to the linear relation between u(t) and Fy(t), it is known that

σF = cD AρU ∙ σu (2.16)

and that the expression for the variance spectrum for Fy reads:

SFF (f) = (cD AρU)
2 ∙ Suu(f) (2.17)

where the expression for Suu(f) e.g. can be found in DS410. Notice that this
simple conversion from wind spectrum to load spectrum is based on the assumption
that u(t) has the same value over A, which in general is not true. The velocity
fluctuations are caused by eddies, and the highest frequencies corresponds to the
smallest eddies. Above a certain frequency the eddies are small compared to A
causing the u(t)-value to vary over A. The loading of the road sign is therefore
overestimated by equation (2.17). In practice this problem is solved by introduction
of a reduction factor depending of the frequency, see e.g. Dyrbye og Hansen (1989).

Equation (2.15) is thoroughly discussed in all standard textbooks on vibration theory
and below is mentioned a few results.

For a linear system a harmonic load

Fy(t) = aF ∙ sin(2 π f t) (2.18)

causes a harmonic displacement

y(t) = ay ∙ sin(2 π f t+ ϕ(f)) (2.19)

where f = 1/T and ϕ(f) is a phase shift (unimportant here!). The relation be-
tween the amplitudes is named the frequency response-function for the system. It
is normally denoted |H(f)|, and from vibration theory is we have:

|H(f)|2 =

(
ay(f)

aF (f)

)2

=
1

[k −m(2 π f)2]2 + [(c+ cD AρU)(2 π f)]2
(2.20)

As the system is linear, the variance spectrum for the displacement y reads:

Syy(f) = |H(f)|
2 ∙ SFF (f) (2.21)

Substitution of equation (2.17) into equation (2.21) yields:

Syy(f) = |H(f)|
2 ∙ (cD AρU)

2 ∙ Suu(f) (2.22)
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Figure 2.2: Relation between variance spectra for force and displacement

It is seen that the variance spectrum for the displacement from the average position
can be calculated directly from the wind spectrum, and the variance, σ2y , is equal to
the area below Syy(f).

If y(t) is normally distributed, we can assess the maximum displacement ymax by

ymax = kp ∙ σy (2.23)

where the expression of kp is given by equation (1.38). In fact y(t) follows a nor-
mal distribution, as we know that the normal distribution of u(t) causes normal
distribution of Fy(t). It is known also that a linear system loaded by a normally dis-
tributed force force has a normally distributed response. Therefore, y(t) is normally
distributed.

The peak factor, kp, depends on the time of observation Tobs, the zero-upcrossing
frequency f02 of the y-time series. See e.g. DS410 how to calculate f02 for different
types of constructions. DS410 also states that it is on the safe side to assume
kp = 3.5 in the assessment of ymax.

Finally the expectation of total displacement of the road sign reads:

xmax = x+ 3.5 ∙ σy (2.24)

From Figure 2.2 is seen that the size of σy depends on the shape of |H(f)|2, and we
know that |H(f)| depends on the design of the construction via the variables m, k
og c.

Therefore, in practice it is essential to strive for a design, which places the peak of
|H(f)| at frequencies, where only small values of Suu(f) (and SFF (f) ) are present.
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