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Abstract—The recently proposed MPI Sessions extensions to
the MPI standard present a new paradigm for applications
to use with MPI. MPI Sessions has the potential to address
several limitations of MPI’s current specification: MPI cannot
be initialized within an MPI process from different application
components without a priori knowledge or coordination; MPI
cannot be initialized more than once; and, MPI cannot be
reinitialized after MPI finalization. MPI Sessions also offers the
possibility for more flexible ways for individual components of
an application to express the capabilities they require from MPI
at a finer granularity than is presently possible.

At this time, MPI Sessions has reached sufficient maturity
for implementation and evaluation, which are the focuses of
this paper. This paper presents a prototype implementation of
MPI Sessions, discusses certain of its performance characteristics,
and describes its successful use in a large-scale production MPI
application. Overall, MPI Sessions is shown to be implementable,
integrable with key infrastructure, and effective, but with certain
overheads involving the initialization of MPI as well as communi-
cator construction. Small impacts on message-passing latency and
throughput are noted. Open MPI was used as the implementation
vehicle, but results here are also relevant to other middleware
stacks.

I. INTRODUCTION

The MPI Sessions proposal specifies well-defined extensions
to the MPI Standard. The proposal has reached a point of
sufficient maturity to warrant development and evaluation
of a prototype implementation. Interesting metrics for this
evaluation include the practicality of implementation, the
potential impact on basic MPI performance characteristics, as
well as the usability for existing, large-scale MPI applications.
This work has timely implications that impact standardization,
including potential changes to the specification, as well as the
establishment of community best practice for MPI-Sessions-
enabled applications. While the authors chose to utilize Open
MPI as the implementation vehicle for this prototype (due
to its widespread use and efficient implementation of MPI),

MPI_Session_init()

Query runtime for available Process Sets (Optional)

MPI_Group_from_session_pset()

MPI_Comm_create_from_group()

Fig. 1: Steps to create an MPI communicator from an MPI
session handle. An application must first acquire a sessions
handle, which can be used to query the runtime for available
process sets. A group can be created using the session handle
and one of the process set names defined by the runtime. This
group can, in turn, be used to create an MPI Communicator
using the MPI_Comm_from_group() function.

lessons learned here are nonetheless applicable to other MPI
middleware implementations.

The proposed MPI Sessions extensions to the MPI API have
been previously published [2]. There have been some changes
to the API additions since the time of that publication, but
the basic functionality of the MPI Sessions methods remain
unchanged. To help in understanding the discussions in the
following sections, we briefly review the key elements of the
proposed MPI Sessions API here.

To use MPI Sessions, an application or component of an
application must first obtain an MPI Session handle using the
MPI_Session_init() function. This function allows the
consumer software to specify the thread support level for MPI
objects associated with this MPI Session, as well as the default
MPI error handler to use for initialization of the Session and
associated MPI objects. The MPI implementation must ensure
that this method is thread-safe. Upon successful invocation of
MPI_Session_init(), an MPI Session handle is returned.
This function is intended to be local and light-weight. This MPI
Session handle may be optionally used to query the runtime978-1-7281-4734-5/19/$31.00 ©2019 IEEE



for available process sets. Process sets are identified by their
corresponding process set name. The proposal requires MPI
implementations to support two process sets: mpi://world
and mpi://self. There are proposed new functions to query
the runtime for additional implementation-specific or site-
specific process set names. An MPI Group object is obtained
using the MPI_Group_from_session_pset() function,
which takes as inputs an MPI Session handle and process
set name. This operation is also local and should be light-
weight. The resulting MPI group can then be used as input
to the MPI_Comm_Create_from_group() function to
obtain an MPI communicator. This call is collective over the
MPI processes in the supplied MPI Group. This sequence of
steps is illustrated in Figure 1.

The remainder of this paper is organized as follows:
Section II offers background and motivations for this work.
Section III describes our prototype implementation; changes
required for our prototype in PMIx, PRRTE, and Open MPI
are described. Next, Section IV evaluates the prototype and our
findings regarding MPI Sessions; in particular, this section
covers evaluation criteria, experimental setup, benchmark
results, and application results. Section V describes relevant
related work. Finally, we offer conclusions and outline future
work in Section VI.

II. BACKGROUND AND MOTIVATION

Conceptually, each MPI session identifies a stream of MPI
function calls, which manage a sequence of MPI operations.
Associating that stream of instructions/operations with a partic-
ular execution thread, or with a particular software component,
enables a new class of interface design opportunities, with
implications both for communication performance and for
programmer productivity.

A. Using Sessions as Parallel Regions

All current and previous versions of MPI require that MPI is
initialized before (and must not be finalized before) any other
MPI function calls can be made. There are a few exceptions
to this general rule: mostly, MPI functions aimed at avoiding
erroneous behavior when initializing MPI.

The MPI function MPI_Init_thread() was added in
MPI-2, along with definitions of four thread support levels,
to accommodate the expectation that OS processes were
increasingly multi-threaded. (Note that calling MPI_Init()
is equivalent to calling MPI_Init_thread() and requesting
MPI_THREAD_SINGLE.) However, this additional initializa-
tion route was still not thread-safe itself—it cannot be called
more than once in each MPI process, neither concurrently nor
sequentially, even if MPI_Finalize() is called in between.

There is a recent trend away from static applications,
with fixed allocation of resources throughout their execution,
towards more dynamic applications, which can grow and
shrink their resource usage depending on the computational
needs of each phase of the application. The wide range of
dynamic coding techniques includes task-based applications
comprising of many short-running serial tasks and ensemble

computations comprising of many long-running parallel sub-
jobs. A typical example application is an ensemble weather
simulation to investigate the effect of small perturbations in
initial conditions—the European Centre for Medium-Range
Weather Forecasts (ECMWF) has expressed a desire to initialize
and re-initialize MPI for the Integrated Forecast System
(IFS) [3].

There are also frameworks that offer higher programmer
productivity by hiding the detail of how the execution is
organized. For example, DASK-MPI [4] orchestrates concurrent
execution of many parallel tasks and thus wants to re-initialize
new MPI environments, each tailored to a different task.

MPI Sessions proposes a new function that initializes MPI:
MPI_Session_init(). In contrast to the existing functions,
this new function can be called multiple times and must always
be thread-safe. These requirements solve the multi-threaded
initialization problems [2] and enable succinct expression of
fork-join parallel regions similar to concepts for OpenMP
threads but applied to MPI processes, thereby supporting both
ensemble applications and parallel-task execution models.

B. Using Sessions as Resource Isolation Domains

The MPI Sessions proposal includes a restriction that
sessions must be isolated from each other. This is not strictly
required to fix the multi-threaded initialization problem de-
scribed in Section II-A. However, isolation offers interesting
opportunities and does not appear to be overly burdensome
for the intended usage models. MPI communicators already
provide some isolation guarantees (akin to separate virtual
communication fabrics). MPI sessions permit additional control
of the granularity of that isolation.

Specifically, several related communicators can be associated
together with the intention of sharing resources and, at the
same time, isolating those resources from interference or
contention from other MPI objects in other MPI sessions.
Also, isolating MPI sessions permits additional user freedom
while maintaining guarantees needed by MPI for performance
optimizations. In particular, the user has the freedom that MPI
objects from different sessions can be accessed concurrently
while maintaining the guarantee that no MPI object will be
accessed concurrently by multiple threads. That is, multiple
threads can access MPI concurrently (each using MPI objects
from a different session) even when the threading support level
for each session is set to funneled (exactly one thread) or
serialized (one thread at a time). If each session uses isolated
resources (a choice made by the MPI implementation), then
MPI does not need to protect against corruption caused by
concurrent accesses. MPI can use a higher performance non-
concurrent implementation even while the user is free to use
concurrent accesses.

C. Using Sessions as Fault Isolation Domains

Exploring all possibilities for using MPI sessions to assist
with fault tolerance is a work-in-progress. However, interesting
topics for future research include using MPI sessions to:



• re-initialize MPI after each failure, potentially with fewer
processes or including replacement processes;

• offer another possible option for limiting the scope of a
failure by containing a cascading fault within a session.
a) Re-Initialization After Failure: Current proposals for

MPI fault tolerance include global restart or re-init [5], [6],
which attempts to return MPI to the initial state (that is, the state
immediately after the call to MPI_Init() returns). However,
in the case of a process failure, the original state cannot be
recovered accurately, although the inclusion of replacement
processes may be sufficient for practical purposes. MPI Sessions
provide a new way to roll-forward in these circumstances—
the application can re-initialize MPI after a failure and use
whatever resources are available at the point of re-initialization.
Redistributing application data is then entirely under user
control, and the user has access to all information necessary
to decide how to continue the computation.

b) Limiting Failure Scope: In general, the impact of a
failure can be limited by identifying and removing anything
that causes a failure to cascade or cause consequential failures
in connected components.

In current MPI, the built-in MPI_COMM_WORLD communica-
tor is a global-state object that exposes a single-point-of-failure
for an entire MPI job. Using MPI sessions to initialize MPI
avoids the creation of this built-in communicator and removes
its single-point-of-failure.

In current MPI, connecting a client and server together
results in a single set of connected processes. If the client fails
while connected to the server, the default error handler for
MPI is required to terminate all processes in both the client
and the server. Other error handlers may be able to avert the
automatic termination of all connected processes, but MPI may
still be in a state that prevents further use as a communication
library. Using MPI sessions to isolate resources used for internal
coordination of server processes from resources used to manage
client connections offers the possibility of a clean separation
that avoids a cascade failure and permits the server to continue
serving other clients.

III. PROTOTYPE IMPLEMENTATION

Our prototype implementation of the proposed extensions
to MPI to support MPI Sessions functionality in Open MPI
involved enhancements to three software components:

1) PMIx, a reference implementation of the Process Man-
agement Interface for Exascale specification;

2) PRRTE, the PMIx reference runtime environment; and
3) Open MPI, an open-source MPI implementation [7].

This section describes the enhancements to these software
components required to implement our prototype of the MPI
Sessions proposal.

A. PMIx Enhancements Facilitating MPI Sessions

PMIx [8], [9] defines a set of abstract interfaces that provide
mechanisms to allow applications to interact with system man-
agement software (SMS) for scalable workflow orchestration.
A reference implementation of the PMIx specification has been

developed to validate that the defined methods are meeting
the requirements of consumer applications. A reference PMIx
runtime implementation (PRRTE) has also been developed
to facilitate the development of PMIx-based applications on
systems lacking native PMIx support.

PMIx group functionality was recently introduced into the
upcoming version 4 of the PMIx specification [10]. PMIx
groups are defined to be a set of processes that, having
previously initialized PMIx as clients, wish to create a unique
identifier for purposes of PMIx event forwarding or PMIx fence
operations.

PMIx allows for both asynchronous and collective creation
and destruction of groups. Asynchronous construction is
based on an invite, join model that allows the initiator to
replace processes that refuse the invitation or fail to respond
within a specified time. Both construction methods provide
notification of process failures, including that of the initiator
so that survivors can either continue the operation, terminate
the operation, or replace the failed process. Regardless of
construction method, processes can depart the group at any
time (with remaining participants receiving asynchronous
notifications of the departure), or destroy the entire group
via a collective operation. For simplicity, the MPI Sessions
prototype used only the collective creation and destruction
APIs shown in Figure 2.

The constructor method allows for the calling application to
specify a string name for the group and the processes that are
participating in it, and to request additional functionality by
providing appropriate directives, including:

• specification of a leader process in the group,
• time-out duration for completion of the group constructor

operation,
• request a Process Group Context Identifier (PGCID)—a

unique 64-bit ID for the process group, assigned by the
resource manager, which can be used by MPI as the
communicator and/or session ID,

• request an event if a process in the group terminates
without first leaving the group, and

• indication of whether a process terminating before joining
the group is to be treated as an error.

The destructor method cleans up any PMIx/PRRTE internal
state associated with the PMIx group and invalidates the use
of the group identifier in any further PMIx operations. Both of
these functions are blocking across the set of PMIx processes
in the group and support a time-out feature to avoid deadlock
due to a non-responsive participant (e.g., a process that has
ceased to progress due to some internal error). Non-blocking
versions of these methods are also available.

The development of PMIx group functionality in the PMIx
reference implementation leveraged existing functionality in-
cluding the PMIx event notification mechanism and PMIx
server/client remote procedure call (RPC) mechanisms, as well
as a generalized all-to-all data exchange mechanism in PRRTE.
For scalability, the methods are implemented in a three-stage
hierarchical fashion. First, the local processes managed by a
single PMIx server each notify the server process that they



pmix_status_t PMIx_Group_construct(const char grp[],
const pmix_proc_t procs[], size_t nprocs,
const pmix_info_t directives[], size_t ndirs,
pmix_info_t **results, size_t *nresults);

pmix_status_t PMIx_Group_destruct(const char grp[],
const pmix_info_t info[], size_t ninfo);

Fig. 2: Collective creation and destruction PMIx APIs used in our MPI Sessions prototype.

are joining or leaving the group. Once all local processes that
intend to participate in the operation have notified the server, the
PMIx server initiates an all-to-all data exchange pattern with the
PMIx servers managing the remaining processes in the group.
Upon completion of the data exchange, each participating PMIx
server notifies its local participants so they can return from the
API call.

PMIx also defines two new query keys that can be
used as arguments to the PMIx PMIx_Query_info_nb()
API to discover both the number and names of exist-
ing PMIx groups, namely PMIX_QUERY_NUM_PSETS and
PMIX_QUERY_PSET_NAMES. This feature proved useful
in the development of supporting tools and for use in the
asynchronous forms of the operations.

B. Prototype Implementation in Open MPI

The MPI Sessions prototype is based on the master branch
of Open MPI available from the project’s GitHub repository.
To build the prototype, five major modifications and additions
were made to Open MPI:

• development and implementation of a new communicator
identifier (communication identifier (CID)) generator to
support the creation of MPI communicators not derived
from MPI_COMM_WORLD,

• update of point-to-point support (PML components) to
accommodate changes to the CID generator,

• restructuring required to support invocation of MPI info,
MPI error handling, and MPI Sessions attribute functions
before the invocation of MPI_Session_init(),

• restructuring of MPI resource tear-down to support the
ability for MPI Sessions to be initialized and finalized
multiple times within a single application execution
instance, and

• implementation of the interface extensions proposed for
the MPI Sessions API.

In this section, we describe these changes in detail.
1) Dynamic Process Discovery Support in Open MPI:

Historically, as part of the startup process in Open MPI, the
implementation of MPI_Init() would query the runtime
to discover all MPI processes in MPI_COMM_WORLD. This
process is known as add_procs. This led to large overheads
in memory and large startup costs. The developers of Open MPI
addressed these issues by modifying the discovery procedure
to call add_procs only for node-local processes. All other
processes are discovered on first communication. This support

was necessary to provide robust support for the Sessions Process
Model defined by the MPI Sessions proposal.

2) Communicator Identifiers in Open MPI: The CID imple-
mentation for communicators in Open MPI uses a 16-bit integer
representing the index into a local array of communicator
objects. This representation was chosen to allow for fast
and efficient (i.e., constant time, constant space) lookup of a
communicator. The CID is used by the point-to-point messaging
implementations (known as PMLs) in different ways depending
on the underlying communication library. For the MPI Sessions
prototype, we focused on the most general-use PML component:
ob1. This component sends the CID as a part of a 14-byte
matching header attached to the user data. This header is used
by the receiving process to match the incoming message with
the correct communicator and receive request. The header was
designed to be as compact as possible to limit the overhead of
messaging.

The CID representation chosen by Open MPI requires the
CID to be consistent across every MPI process that participates
in a communicator. To guarantee this property, Open MPI
currently uses a consensus algorithm [7]. This algorithm
performs a series of reduction operations on the user-supplied
parent communicator. First, each MPI process attempts to store
the new communicator at the lowest available local array index.
An all-reduce is then performed to find the largest index across
the group of participating MPI processes. If every participating
process agrees on the same index, the algorithm terminates.
If not, then the algorithm continues with the largest index
determined in the previous round. Generally, the algorithm will
finish after a small number of rounds but may end up searching
the entire CID space if it becomes heavily fragmented.

As the above algorithm requires a parent communicator,
it could not be used as-is to support the communicator
constructors needed by the MPI Sessions prototype.

3) Changes to CID Generation to Support Sessions: One
of the most significant challenges in implementing the MPI
Sessions prototype was developing a fast method for generating
a unique CID for each communicator created. Two primary
factors motivated the development of a new CID generation
algorithm:

• the lack of a parent communicator (for example,
MPI_COMM_WORLD) to use for new CIDs generation;

• the use of the PMIx group APIs provides a robust (but
potentially slow) way to create a unique 64-bit ID within
an allocation.



The current MPI Sessions proposal provides
a single new object constructor function named
MPI_Comm_create_from_group(). Previous versions
included other constructors for other MPI objects, for example,
MPI_Win_allocate_from_group(). These functions
provide an MPI group and a string tag instead of a parent
communicator. No communicator is provided because no
predefined communicator exists in the Sessions Process Model.
For the prototype implementation, we chose to support these
constructor functions by using the runtime group constructor
support provide by PMIx. See Section III-A for more details
on the PMIx groups constructor.

The PMIx group constructor returns a 64-bit PGCID that
is guaranteed to be unique for the duration of an allocation
(in the case of a batch managed environment). This PGCID
could be used as a direct replacement for the existing CID.
However, there are two major problems with taking this
approach. First, if the prototype were to use this PGCID
directly as the communicator CID, the associated field in
the match header of ob1 would have to be expanded by at
least 48 bits. This would require a reworking of the existing,
optimized tag matching support, and likely lead to degradation
in performance for shorter MPI messages. Second, acquiring the
PGCID is a relatively expensive operation as it involves inter-
node messaging between PMIx servers to generate the PGCID.
Performance of existing MPI communicator constructors would
be significantly degraded were the PGCID to be adopted as a
direct replacement for the existing CID.

The prototype addresses both of these issues by introducing
the concept of a 128-bit extended CID (exCID) and removing
the constraint that a communicator’s CID (array index) be
consistent between all MPI processes in a communicator. The
original CID is left intact so the optimized matching support
in ob1 (and other PMLs) can be left intact.

Similar to the old CID, the exCID of a communicator is
consistent between all MPI processes that participate in the
communicator. We guarantee this property by careful construc-
tion of the exCID. The exCID is divided into two 64-bit fields.
The first field contains the PGCID returned from PMIx when
constructing a PMIx group. Since the PGCID is guaranteed to
be non-zero, this field is set to 0 for the built-in World Process
Model communicators. The second field is divided into eight
8-bit subfields. The subfields are used to generate exCIDs for
derived communicators. The exCID structure also contains
a field to keep track of the currently active subfield. When
allocating an exCID from a new PGCID, this field is initialized
to 7. When creating a derived communicator, for example, by
calling MPI_Comm_dup(), the value in the active subfield
of the parent communicator is incremented and assigned to
the new communicator. This can be done 28 times before a
new PGCID is needed. The active subfield field exCID of
the derived communicator is decremented to ensure that there
are no exCID collisions. If the active subfield of the parent
communicator is 0, or the active subfield value is 255, or not
all processes are participating in the communicator creation
(MPI_Comm_create_group()), then a new PGCID is

acquired and assigned to the new communicator.
For applications exclusively using the World Process Model,

the prototype can use either the new exCID generator or the
original consensus algorithm. The exCID generator is used
exclusively when using a version of PMIx that supports group
creation and the ob1 PML is in use. In all other cases, the
prototype falls back to the original consensus algorithm.

4) PML Modifications: Changing the way communicator
CIDs are generated required changes to the way the PML
components use the CID. For the prototype, the ob1 PML was
modified to support exCIDs. If a communicator has an exCID
when sending the first message to a peer MPI process, an
additional message header is generated and prepended to the
existing match header. This header includes both the exCID
and the sender’s local CID for the communicator. Upon receipt
of the first message, the receiver matches the exCID against
the exCIDs of locally known communicators. The sending
processes’ CID is stored locally and the tag match field is
updated to include the receiving processes’ local CID for
the communicator. The match is then processed normally. A
response message is generated and sent back to the sender
indicating the receiver’s local CID for the communicator.
This value is stored in existing space available in a per-
process structure associated with each MPI communicator. For
subsequent messages, the stored local CID for the remote
process is used, and the standard optimized tag matching
mechanism is employed.

The ob1 PML was chosen because matching is handled
entirely within Open MPI. This is not the case for all the avail-
able PML components. In the future, we intend to implement
support for exCIDs for all available PML components.

5) Restructuring to Support Dynamic Initialization: The
MPI Sessions proposal allows for the creation of multiple MPI
Sessions throughout the lifetime of the MPI application. In ad-
dition, it also allows additional MPI functions to be invoked be-
fore a call to one of the initialization functions: MPI_Init(),
MPI_Init_thread(), or MPI_Session_init(). In
particular, before initialization, the proposal allows for:

• calls related to MPI_Info objects including object
creation, duplication, destruction, and the insertion and
deletion of key/value pairs from an MPI info object,

• calls to create/destroy MPI_Errhandler objects, and
• calls related to session attributes creation, destruction, and

value caching functions.
These functions must, additionally, all be thread safe as

they may be called before the thread safety level is set. To
support thread safety, the locks associated with MPI Info, error
handlers, and attributes are always enabled. None of these
code paths are on the critical path for MPI communication
operations.

To support the additional functionality needed before ini-
tialization, the prototype modifies Open MPI to use a differ-
ent approach to initializing and cleaning up different MPI
subsystems. Instead of initializing the entire MPI library on
initialization, as is done to support the World Process Model,
and relying on a carefully ordered series of cleanup calls to



various MPI subsystems as part of MPI_Finalize(), the
prototype leverages a new cleanup callback framework provided
by an Open MPI Open Platform Abstraction Layer—OPAL. As
the application creates MPI objects, the subsystems needed for
those objects are either initialized if not previously initialized,
or an internal reference count is incremented for previously
initialized subsystems. When a new subsystem is initialized,
it adds its cleanup callback to the framework. As calls to
MPI_Session_finalize() destroy MPI Sessions, these
reference counts are decremented. When the last MPI Session
has been finalized, the cleanup callbacks are invoked, and MPI-
internal resources are released. The cycle begins again if the
application creates a new MPI Session.

The legacy MPI-3 initialization and finalize functions
(MPI_Init() and MPI_Finalize()) were restructured to
create and finalize an internal MPI Session that also initializes
the World Process Model built-in MPI objects. This removes
the need for any duplicate code and allows the prototype to
support the use of the new Sessions Process Model alongside
the World Process Model.

6) Implementation of MPI Sessions Interfaces: The proto-
type implements the complete set of C interfaces that are
defined in the MPI Sessions proposal. This includes the
functions to create/finalize sessions, get info on process sets,
create groups from process sets, and create MPI objects
(communicators, windows, and files) from groups.

The implementation of the MPI_Session_init() func-
tion is required to be local-only. In the prototype, we ini-
tialize only the minimum set of MPI subsystems needed to
support the MPI Session object. This includes initializing
the Modular Component Architecture (MCA), info subsys-
tem, point-to-point support, etcetera. The implementation of
MPI_Session_finalize() releases all resources associ-
ated with the MPI Sessions object and tears down any resources
not still in use by another MPI object.

The MPI Sessions proposal introduces the concept of an
MPI process set. Process sets differ from MPI Groups in that
they are simply names for lists of MPI processes. These names
are either predefined (e.g., mpi://world, mpi://self) or
implementation-defined. The prototype implementation defines
three default process sets: mpi://world, which corresponds
the process set in the World Process Model communica-
tor MPI_COMM_WORLD; mpi://self (MPI_COMM_SELF);
and mpi://shared, which is defined as the set of processes
on the local node. Additional process sets are supported and
must be provided by PMIx. When a process set is used to
create an MPI Group, the prototype queries the underlying
PMIx implementation to discover the associated MPI processes.

No changes were made to how Open MPI supports or
represents MPI Groups. When requesting an MPI Group for
mpi://world, the returned MPI Group is equivalent to
calling MPI_Comm_group() on MPI_COMM_WORLD.

Support for creating MPI objects from MPI Groups is
handled using the exCID generation algorithm. In the case
of MPI Communicators, the exCID is used as the communi-
cator identifier. In all other cases, the prototype first creates

an intermediate communicator, then calls the MPI-3 object
creation function with a parent communicator, and finally the
intermediate communicator is freed. This was done to speed
up the development of the prototype. We are actively looking
at supporting MPI Window creation without the need for an
intermediate communicator.

IV. EVALUATION OF THE PROTOTYPE

In this section, we evaluate the performance of our MPI
Sessions prototype using micro-benchmarks and a real sci-
entific application. Our results show that the modifications
introduced to support MPI Sessions functionality do impose a
performance penalty over our baseline for MPI startup and MPI
communicator construction, but have a negligible performance
impact over the baseline for message latency and throughput.

A. Evaluation Criteria

Some of the changes made to Open MPI to support MPI
Sessions functionality have the potential to impact performance.
Significant refactoring of constructor and destructor methods
for various Open MPI subsystems was required. These changes
could impact MPI initialization (either via MPI_Init() or
using new MPI Sessions procedures). Changes to MPI Commu-
nicator construction to support MPI_Comm_from_group()
likewise could have an effect on the overhead for creating and
using MPI Communicators. The exCID-based tag matching de-
scribed in Section III-B3 could also potentially affect Open MPI
performance. Although the initial connection setup between
two processes using the exCID-based tag matching occurs only
with the initial data exchange on a new communicator using the
local CID approach, it still may impact application performance.
Also, the additional level of indirection in generating the
local CID based on the receiving MPI process could affect
MPI message rate. The new procedure for creating MPI
Communicators using PMIx may also add additional overhead.
These concerns drove the selection of MPI benchmarks to
evaluate the performance impact of supporting MPI Sessions.

In addition to quantifying the potential overhead introduced
to support MPI Sessions in an MPI implementation, the ability
of the prototype to achieve some of the goals of the MPI
Sessions proposal described in Section II must be assessed.
As a first step in such an evaluation, a Department of Energy
(DOE) production multi-physics code was modified to make
use of MPI Sessions in one of its component libraries.

B. Experimental Setup

Performance results were gathered from the systems detailed
in Table I. Data were collected during regular operating hours,
so the systems were servicing other workloads alongside but
in isolation from our performance evaluation runs.

C. MPI Benchmark Results

The results obtained in this section were obtained using
PMIx [13] at Git SHA c4e1317b and PRRTE [14] at Git SHA
a967a246. The sessions-enabled MPI is also available on
Github [15]. Note the Sessions prototype is on the sessions-new



Trinity Jupiter

Model Cray XC40 Cray XC30

OS Cray Linux Environment Cray Linux Environment

CPU 2× 16-core Intel E5-2698 v3 2× 14-core Intel E5-2690 v4

RAM 128GB 64GB

Network Aries [11], [12] Aries

Compiler Intel 18.0.2 GCC 8.3

TABLE I: Hardware and software used for this study.

branch. For the baseline Open MPI, the master branch at Git
SHA ad29f70c was used. Unless otherwise noted, the prte
daemon and prun launcher were used to launch the applications.
See the Sessions tests README [16] for instructions on using
prun. This choice of software components and Open MPI
baseline was made to reduce to a minimum the difference
between the conditions under which the benchmarks were run.

1) MPI Startup Overhead: MPI initialization times
using MPI_Init() were measured with the OSU
osu_init benchmark [17]. Version 1.5.6 of the
OSU benchmark suite was used in this evaluation.
The benchmark was subsequently modified to time the
MPI_Session_init(), MPI_Group_from_pset(),
and MPI_Comm_from_group() sequence used to create a
communicator equivalent to MPI_COMM_WORLD as depicted
in Figure 1. These modified OSU MPI benchmarks and
others described in this section are available on GitHub [18].
Figure 3 presents the timing data using both approaches.
Results for the case of one MPI process per node and 28 MPI
processes per node is shown. The MPI Sessions approach
has some overhead (∼20%) compared to that used for MPI
initialization with our baseline Open MPI release. An analysis
of the time spent in sessions-related steps for creating an
MPI communicator equivalent to MPI_COMM_WORLD shows
that, for the case of 28 MPI ranks per node, about 30% of
the time is spent in initializing MPI resources associated
with the construction of the initial session handle, with the
remainder spent in constructing the communicator. When
using a single MPI process per node, the startup time using
the sessions approach is dominated by the MPI resource
initialization step which takes place when the first session is
initialized. Optimizing the PMIx group constructor method
should help in reducing the additional overhead currently
observed in constructing an initial MPI communicator using
MPI_Comm_create_from_group(). The relatively high
overhead for MPI initialization on the system is attributable to
the fact that the PMIx, PRRTE, and Open MPI components
were installed on a relatively slow NFS-mounted file system.
Tests with SLURM’s srun launcher yielded similar times for
the osu_init benchmark on Jupiter.

2) MPI Communicator Creation Overhead: Another area
where support for MPI Sessions could potentially impact
MPI performance is in overhead for MPI Communicator
construction. One of the most commonly used MPI Commu-
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Fig. 3: MPI initialization times using MPI_Init() and MPI
Sessions methods.

1 4 8 12 16 20 24 28 32
0

100
200
300
400
500
600

Number of Nodes

Ti
m

e
(µ
s)

MPI Init
Sessions

Fig. 4: MPI_Comm_dup() times using MPI_Init() and
MPI Sessions methods with 28 MPI processes per node.

nicator constructors is MPI_Comm_dup(). Timing overhead
for this operation was measured. For these measurements,
the osu_init benchmark was modified to measure the cost
of MPI_Comm_dup() using both MPI_Init() and the
equivalent set of operations when using MPI sessions. Figure 4
compares the time for the communicator duplication operation
when using the two approaches to MPI initialization. Note
the times reported are per iteration, not the time reported
in the benchmark output. The data indicate that support for
MPI Sessions does introduce some overhead compared to the
approach taken in the current Open MPI release. This overhead
is accounted for by the overhead of acquiring a PMIx group



context identifier. We note that a more complex series of
communicator constructor calls could take advantage of the
new approach to CID generation, as more communicators could
be created before needing to request a new PMIx group context
identifier. Such a pattern of communicator constructor would
negatively impact the performance of the current consensus
algorithm in Open MPI owing to fragmentation of the CID
space, while the exCID approach would not be suffer from
this CID space fragmentation problem.

3) MPI Message Latency and Message Rate: The OSU
osu_latency and osu_mbw_mr message rate benchmarks
were also modified to use MPI Sessions for MPI initialization.
These tests were carried out on a single node of Jupiter (Table I),
as on-node message latency and message rate are often more
sensitive to changes in the code path because the overhead
for data exchange between processes using shared-memory
approaches is much lower than the overhead involved for inter-
node data exchange.

Figure 5 presents relative MPI latency (5a) and mes-
sage throughput (5b, 5c) when using MPI_Init() and
MPI_Session_init() to initialize MPI. As discussed in
Section III-B3, the use of exCIDs and local CIDs could have
a performance impact on the handling of MPI messages at
both the sender and receiver. The results indicate that use
of the exCID approach has a small effect on latency—in
some cases showing an improvement over Open MPI’s current
message matching algorithm. The osu_mbw_mr results are
more complicated. The test makes a call to MPI_Barrier()
prior to entering the timing loop. In the case of two MPI
processes, this barrier suffices to switch tag matching from
using exCIDs to local CIDs prior to entering the timing loop.
Thus the message throughputs presented in Figure 5b using
MPI_Init() and MPI_Session_init() using only two
processes are very similar. In the case of multiple MPI processes
(Figure 5c), the MPI_Barrier() does not suffice for the
paired MPI ranks to switch from exCID to the local CID tag
matching scheme before entering the send/receive timing loop.
This results in multiple sends being issued before the receiver’s
ACK is received by the sender, resulting in the switch over to
using the faster local CID algorithm. When the OSU benchmark
is modified to synchronize the process pairs prior to entering the
timing loop, for example with a MPI_Sendrecv() operation,
the message rates for both approaches to MPI initialization is
essentially identical.

D. HPC Challenge Results

The High Performance Computing Challenge (HPCC)
benchmark has a bandwidth and latency test which gives
information about MPI latency when used in a more complex
communication pattern than the OSU benchmarks. For this
evaluation, we are particularly interested in the 8-byte Random
and Natural order ring measurements. The observed latencies
could be impacted by the exCID/local CID approach to MPI
tag matching when using MPI Communicators derived from
MPI Sessions.
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Fig. 5: Relative performance results from the OSU latency and
multiple bandwidth/multiple message rate micro-benchmarks.

2 4 6 8
0

1.0
2.0
3.0
4.0

Number of Nodes

Ti
m

e
(µ
s)

MPI Init Sessions

(a) HPCC 8-byte random order ring latency.

2 4 6 8
0

1.0
2.0
3.0
4.0

Number of Nodes

Ti
m

e
(µ
s)

MPI Init Sessions

(b) HPCC 8-byte natural order ring latency.

Fig. 6: HPCC 8-byte random and natural order ring latency
results using MPI_Init() and MPI Sessions with 28 MPI
processes per node.



Version 1.5.0 of the HPCC benchmark was modified to use
MPI Sessions. Rather than replace the existing MPI_Init()
and MPI_Finalize() usage in the benchmark’s main()
function, the main_bench_lat_bw() routine was modified
to create its own MPI Session and use the resulting MPI
Communicator for the bandwidth and latency component of the
test. This serves to demonstrate the compartmentalization and
backwards-compatible aspects of the MPI Sessions proposal.
The rest of the benchmark could be left unmodified, yet still
demonstrate the use of MPI Sessions within a subcomponent
of the application.

Figures 6a and 6b present MPI 8-byte latencies for the
random and natural order rings, respectively. The results
reported for the modified HPC challenge uses sessions for
the bandwidth and latency component of the benchmark. The
baseline Open MPI was used with the unmodified application.
In both cases, the latencies obtained using sessions are
practically identical to what is achieved using the unmodified
application and the baseline Open MPI.

E. Multi-Physics Application Results

We conclude this section with an evaluation of our prototype
integrated into a production multi-physics application used at
Los Alamos National Laboratory (LANL) named 2MESH.
2MESH comprises two libraries, L0 and L1. L0 simulates
one type of physics on an adaptive structured mesh, and
L1 simulates a different physics on a separate, structured
mesh. L0 phases are MPI-everywhere and are interleaved with
MPI+OpenMP phases—the parallelization strategy used by L1.
For each computational phase, task schedules for MPI processes
and OpenMP threads are optimized through the application’s
use of an open-source run-time library named QUO [19], [20].

QUO (as in “status quo”) is both a model and a correspond-
ing implementation that facilitates the dynamically varying
requirements of computational phases in coupled multithreaded
message-passing programs. Specifically, QUO provides pro-
grammable facilities with modest overheads to dynamically
reconfigure run-time environments for compute phases with
differing MPI process counts, threading factors, and affinities.
While the model is general, the current implementation focuses
on Pthread-based MPI+X applications [20], [21].

Our MPI Sessions prototype was integrated into 2MESH
through QUO, thereby obviating the need to modify the
scientific application directly for our evaluation—an ap-
proach solely chosen for convenience. In particular, we
modified QUO_create(), which is called only by L1,
to include all relevant MPI session initialization logic
that would otherwise be embedded directly into the tar-
get library. For our experiments, the application initial-
izes MPI via MPI_Init_thread() before L1 calls
MPI_Session_init() through QUO_create().

To evaluate the performance of our prototype, we study two
performance-critical operations: message-passing and process
quiescence. For the former, we compare the performance of
our MPI Sessions prototype implementation to that of Open
MPI version 4.0.1, our performance baseline. For the latter, we
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Fig. 7: Normalized 2MESH execution times.

focus on the characteristics of a performance-critical operation
used to quiesce sets of MPI processes during QUO-enabled
MPI+X phases: QUO_barrier(). In particular, we study the
relative overheads of mechanisms provided by our prototype
implementation (replacing those used by QUO_barrier()
with a sessions-aware MPI_Barrier()) to the low-overhead
ones used by QUO version 1.3 [20], which serve as our
performance baseline.

Results were gathered from the Trinity system located at
LANL (Table I). All experimental data were generated by
executables built on top of the same software infrastructure,
except for the differences already mentioned. For the three
problems tested, two job sizes were chosen: 256 processes
(P1, P2) and 1,024 processes (P3)—all fully subscribing the
32-core compute nodes detailed in Table I.

Our application results show for the three problems tested
that our prototype imposes minimal (≤3%) overhead over
the baseline without MPI Sessions support. Figure 7 shows
the normalized execution times calculated from averaged wall-
clock times reported by the two 2MESH executables (Baseline
and Sessions). The modest performance deltas observed are
attributable primarily to the sub-optimal process quiescence
mechanisms used in our prototype. In particular, we emulated
a low-perturbation MPI_Barrier() by looping over alter-
nating calls to MPI_Ibarrier() and nanosleep() until
completion. Even so, our MPI Sessions prototype can replace
QUO_barrier()—a key mechanism required to support
efficient process quiescence in coupled, thread-heterogeneous
MPI applications—through a standard interface requiring
modest application source code perturbation (∼20 source lines
of code (SLOC)).

V. RELATED WORK

PMIx groups has some similarity to PVM dynamic
groups [22]. As with PVM groups, a process can belong to
multiple PMIx groups, and PMIx also supports the notion of
processes joining and leaving groups. PMIx does not support
the PVM concept of instance numbers in a group. It does,
however, offer an invite operation to invite a process to join
a PMIx group asynchronously. The PMIx event subsystem
provides support for asynchronous notification of changes in
group membership.

As discussed in Section II-C, MPI Sessions offers support
for allocating and deallocating MPI resources within a process
and generally strives to eliminate the notion of global state



of MPI. Coupled with the dynamic nature of PMIx groups,
MPI Sessions provides infrastructure that may simplify the
implementation of MPI global restart [5], [6] and MPI
stages [23] failure recovery schemes.

MPI Sessions offers the potential for MPI applications to
express their resource requirements better than is available
using MPI_Init(), thereby avoiding certain resource issues
associated with MPI internal state and the implicit all-to-all
connectivity required to support MPI_COMM_WORLD. Other
approaches to improving the scalability for managing state
required by MPI_COMM_WORLD have focused on reducing
memory requirements for MPI Communicators and groups by
optimizing associated data structures [24] and handling MPI
processes as threads (proclets) within a single OS process [25]
to reduce the memory requirements for MPI Communicators
and MPI Groups. These approaches to MPI scalability are
complementary to the MPI Sessions approach; indeed, our
prototype can make use of the sparse group representation
implemented in Open MPI.

Work such as [26] (older system named ‘Legion’) have group
concepts for HPC in grid settings.

The 0MQ system [27] represents a cross-over between
distributed computing and parallel computing and includes
collective patterns of communication.

The Object Management Group’s Data Distributed Service
(DDS) [28] has aspects of dynamic groups and group-oriented
communication used in distributed systems, defense-oriented
applications, and also, recently, in IoT applications.

The authors are aware of an expansive literature of multicast
and other group-oriented communication and group structures
in distributed computing, networking, grid computing, and IoT,
including fault-tolerant and dynamic approaches that do not
directly relate to MPI, PVM, or PMIx-type applications and are
apart in concept, performance, and functionality requirements
from parallel middleware in HPC and scientific computing. For
brevity, we omit references to such prior work.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a prototype of the MPI Sessions proposal
and evaluated its performance against a baseline Open MPI
release. This evaluation shows that support for MPI Sessions
currently does impact the performance of MPI initialization
and communicator construction, but has little impact on MPI
latency or message throughput performance. The prototype
also demonstrates the compartmentalization feature of MPI
Sessions via its use in a multi-physics application and the HPC
Challenge benchmark.

Follow-on work includes investigating some of the observed
performance issues revealed by this evaluation. The Fortran
Sessions API interfaces will be implemented. We also plan to
expand the range of Open MPI PMLs and MTLs that can be
used with the prototype’s exCID approach to tag matching, in
particular the OFI libfabric MTL and Open UCX PML. We also
plan to explore using MPI Sessions in additional applications,
including incorporating it in a task scheduling framework such
as DASK and the Integrated Forecast System (IFS).
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