

Edinburgh Research Explorer

MPI Semantic Terms and Conventions Explained

Citation for published version:
Blaas-Schenner, C, Holmes, D, Rabenseifner, R, Skjellum, A, Mercier, G, Jaeger, J & Bangalore, PV 2019,
'MPI Semantic Terms and Conventions Explained: The Big Idea: Understanding Semantic Terms and
Conventions is Key to Using, Extending, and Implementing MPI Correctly', Proceedings of the 26th
European MPI Users' Group Meeting, Zürich, Switzerland, 11/09/19 - 13/09/19.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://www.research.ed.ac.uk/en/publications/40721949-f868-4437-b5dd-68f64a99efe4

MPI Semantic Terms and Conventions Explained
Claudia Blaas-Schenner1, Daniel J. Holmes2, Rolf Rabenseifner3, Anthony Skjellum4, Guillaume Mercier5, Julien Jaeger6, Purushotham V. Bangalore7

VSC/TU Wien1, EPCC2, HLRS/U. Stuttgart3, UTC4, BIT/INRIA5, CEA/DAM/DIF6, UAB7

The Big Idea: Understanding Semantic Terms and Conventions is Key to Using, Extending, and Implementing MPI Correctly

MPI-1 MPI-2 MPI-3 MPI-4

The Evolution of MPI Semantics Key Observations

Procedures
An MPI procedure is incomplete if it may return before
the associated operation has finished its completion stage,
which implies that the user is not allowed to reuse
parameters (such as buffers) specified when initializing
the operation. Therefore, an incomplete procedure only
includes the initialization and/or starting stages.
An MPI procedure is completing if return from the
procedure indicates that the associated operation has
finished its completion stage, which implies that the user
can rely on the content of the output message data buffers
and modify the content of input and output message data
buffers.

If a completing procedure is not also a freeing procedure
then the user is not permitted to deallocate the message
data buffers or to modify the array arguments. Procedures
not associated with an operation are also defined to be
completing.

An MPI procedure is freeing if return from the
procedure indicates that the associated operation has
finished its freeing stage, which implies that the user can
reuse all parameters specified when initializing the
associated operation.

An MPI procedure is local if it returns control to the
calling MPI process based only on the state of the local
MPI process that invoked it. Local procedures may be of
short or long duration, but their behavior is wholly
independent of the activity of other MPI processes or
procedure invocations.
An MPI procedure is non-local if returning may require
the execution of some MPI procedure on another MPI
process. Such procedures may require communication
occurring with another MPI process.

An MPI procedure is blocking if it is completing, and/or
freeing, and/or non-local.

An MPI procedure is nonblocking if it is incomplete
and local.

Operation Stages
Initialization: The initialization stage hands over the
argument list to the operation but not message data
buffer(s) contents. An operation’s specification may
state that array arguments must remain unchanged till
the operation is freed.
Starting: The starting stage hands over the control of
the message data buffer to the associated operation.

Note that the term initiating in MPI refers to the
combination in sequence of the initialization and
starting stages.

Completion: The completion stage returns control of
the content of the message data buffer(s) to the
application and indicates that any output buffers have
been updated.

Note that an MPI operation is complete when the
MPI procedure implementing the completion stage
returns.

Freeing: The freeing stage returns control of the rest
of the argument list (e.g., the buffer address and array
arguments).

 MPI Operation: Blocking Nonblocking Persistent

 1. Initialization

 MPI_SEND_INIT (Local)
 or
 MPI_RECV_INIT (Local)
 or
 MPI_BCAST_INIT (Non-local)

 (Incomplete)

 2. Starting
 MPI_START (Local)

 (Incomplete)

 3. Completion
 MPI_WAIT (Non-local)

 (Completing)

 4. Freeing
 MPI_REQUEST_FREE (Local)

 (Freeing)

 MPI_SEND (Non-local)
 or
 MPI_SSEND (Non-local)
 or
 MPI_BSEND (Local)
 or
 MPI_RSEND (Local)
 or
 MPI_RECV (Non-local)
 or
 MPI_BCAST (Non-local)

 (Completing + Freeing)

 MPI_ISEND (Local)
 or
 MPI_IRECV (Local)
 or
 MPI_IBCAST (Local)

 (Incomplete)

 MPI_WAIT (Non-local)

 (Completing + Freeing)

Types of Operation
Blocking Operation For a blocking operation, all four stages are
combined in a single procedure call as shown below:

Nonblocking Operation For a nonblocking operation, the initialization
and starting stages are combined into a single nonblocking procedure call
and the completion and freeing stages are combined into a separate, single
procedure call, which can be blocking or nonblocking as shown below:

Persistent Operation For a persistent operation, all four stages are
effected with separate procedure calls, each of which may be blocking or
nonblocking as shown below:

Initialization & Starting
&
Completion & Freeing

Active
(aka Initiated
aka Started)

Initialization & Starting
(aka Initiation)

Completion & Freeing
(aka Completing)

Initialized

Completed

InactiveInitialization
(aka Initializing)

Completion
(aka Completing)

Freeing

Starting
Active

(aka Started)

Future Work: Further Semantic
Terms and Conventions to Be

Studied and Refined
•  Why Persistent initialization calls are non-local

(and implications of changing to local)?

•  Why nonblocking constructors and destructors ~
“orthogonality” ~ are needed/useful standard-
wide?

•  Defining/Refining/Clarifying MPI Process,
Rank, and Thread: What’s valid, possible,
needed?

•  The MPI Standard states: two send (or receive)
operations on two different threads are “logically
concurrent even if one physically precedes” the
other. What does that mean in practice?

Why this all matters in practice
•  Users can be confused how MPI operations should behave and how to

use them.
•  Implementors can, in principle, make suboptimal decisions about the

meaning of MPI operations with regard to progress, resources, …
•  What’s really going on with resources in MPI operations, and scope of

resource ownership is important and must be clear (e.g., vectors of indices).
•  Holes in the MPI standard can/will be discovered and be addressed.
•  Proposed MPI operations can be categorized according to the semantic terms

and conventions… and be graded for compliance with these core concepts.
•  Opportunities to improve, orthogonalize, and extend MPI are key to its

future value in Exascale and beyond.

Surprisingly, important concepts remain insufficiently
specified, ambiguous, and in some cases, inconsistent or
conflicting despite 26 years of standardization,
implementation, and utilization.

This poster explains these concepts, and mentions some areas
still to be worked on, emphasizing understandability. It breaks
down, complements and supplements our EuroMPI 2019
paper on the same subject matter.
Up to MPI-3.1, a blocking MPI procedure might not actually
block in the traditional sense.

The MPI definitions of the term blocking only discuss usage
of parameters given to procedures, they do not include any
mention of delaying the return of the procedure until a
matching MPI procedure is called at another MPI process. A
blocking procedure is permitted to return as soon as the
supplied parameters can be reused.
Up to MPI-3.1, a nonblocking MPI procedure might actually
block in the traditional sense.
The term nonblocking is not formally a word in English, but
its meaning can be extrapolated as the opposite of blocking;
that is, it would seem reasonable to assume that nonblocking
means will not block or must not block. However, as with the
term blocking, these MPI definitions of the term nonblocking
only speak to the usage of parameters given to procedures;
they do not include any mention of delaying the return of the
procedure until a matching completing MPI procedure is
called at the same MPI process.

There is no such thing as a persistent MPI procedure; only
MPI operations can be persistent.

The concept of locality classifying an MPI procedure as local
or non-local has always meant what the English words suggested.

