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Finite-time boundedness of impulsive delayed
reaction-diffusion stochastic neural networks

Qi Yao, Tengda Wei, Ping Lin, and Linshan Wang, Member, IEEE,

Abstract—Considering the impulsive delayed reaction-diffusion
stochastic neural networks (IDRDSNNs) with hybrid impulses,
the finite-time boundedness (FTB) and finite-time contractive
boundedness (FTCB) are investigated in this paper. First, a
novel delay integral inequality is presented. By integrating
this inequality with the comparison principle, some sufficient
conditions that ensure the FTB and FTCB of IDRDSNNs are
obtained. This study demonstrates that the FTB of neural
networks with hybrid impulses can be maintained, even in the
presence of impulsive perturbations. And for a system that
is not FTB due to impulsive perturbations, achieving FTB is
possible through the implementation of appropriate impulsive
control and optimization of the average impulsive intervals.
In addition, to validate the practicality of our results, three
illustrative examples are provided. In the end, these theoretical
findings are successfully applied to image encryption.

Index Terms—Finite-time boundedness, finite-time contractive
boundedness, reaction-diffusion stochastic neural networks, im-
pulses, delays

I. INTRODUCTION

F INITE-TIME boundedness (FTB) is a concept distinct
from the traditional Lyapunov asymptotic stability (LAS).

Lyapunov asymptotic stability evaluates the system’s behavior
as time towards infinity, which is crucial for systems designed
to operate indefinitely. However, FTB focuses on the state
bounds within specific finite-time intervals. This distinction
has real-world implications. Systems like aircraft controls,
neural networks, and others, often operate within defined
temporal parameters, so ensuring boundedness of states with-
in finite-time frames is imperative. For instance, failing to
ensure that an aircraft’s control state remains within specific
bounds over a defined period could have dire consequences.
Similarly, in neural networks, without FTB, there could be
significant deviations leading to erroneous outcomes. Hence,
many researchers have explored state bounds within finite-time
intervals [1–4].
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Recently, the FTB of various systems has garnered sig-
nificant research interest [5–8]. For example, Amato et al.
[6] studied the FTB of impulsive linear dynamical systems,
deriving the necessary and sufficient conditions based on
the solution of a coupled differential difference Lyapunov
equation. Li et al. [7] introduced the Lyapunov-Razumikhin
approach for the FTB of delayed systems and, using this
method, derived sufficient conditions for the FTB of linear
time-varying delayed systems. And [8] investigated the FTB
of delayed fractional-order fuzzy cellular neural networks in
terms of a new fractional-order Gronwall inequality with time
delay.

However, practical applications often present additional
complexity. For high-stakes systems such as chemical plants
and transportation systems, merely requiring state bounds
within finite-time intervals is insufficient. These systems, due
to their intrinsic complexities and high operational risks,
demand not just boundedness, but also considerations for state
contraction and other stringent conditions [9]. Recognizing this
requirement, researchers introduced the concept of finite-time
contractive boundedness (FTCB) [10]. Finite-time contractive
boundedness requires that the FTB states reside within a more
restrictive bound compared to the initial data’s bound prior to
the final time. Since then, numerous studies have investigated
both FTB and FTCB in various systems [7, 11, 12].

The delayed reaction-diffusion stochastic neural networks
(DRDSNNs) stand as a system of particular interest, high-
lighting the intricacies and potentialities of FTB and FTCB
research [13–15]. These networks, which consider time delays,
diffusion effects, and stochastic disturbances, reflect network
models prevalent in real-world scenarios. Integrating time
delays into the networks can lead to state instabilities and
oscillations, and can also diminish the inherent Markovian na-
ture of the networks [16]. Concurrently, while the introduction
of diffusions can modulate response speeds, it also broadens
the spatial dimensionality, further complicating the research
problem [17]. Additionally, stochastic perturbations present
challenges by necessitating the use of both deterministic
Lebesgue integration and uncertain Itô integration, and have
the potential to shift system states [18].

Moreover, impulses are a critical feature in various systems,
exerting significant influence on system behavior [19]. While
research typically categorizes these as either stabilizing or
destabilizing impulses, both types coexist in practical scenar-
ios, such as neural networks, adding an element of unpre-
dictability [17, 20–24]. To address this, our work integrates
both kinds of impulses for a more comprehensive study. This
dual-impulse approach provides several advantages, particu-
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larly in the context of neural networks. Stabilizing impulses
contribute to system stability and functionality, whereas desta-
bilizing impulses introduce necessary plasticity, allowing the
system to adapt to changing conditions and escape harmful
local minima [25].

In addition, the studies by Chen et al. [26] have considered
impulsive delayed reaction-diffusion neural networks, high-
lighting their practicality in image encryption applications.
Similarly, Ganesan et al. [27] have examined neural networks
with stochastic perturbations and time delays, further extend-
ing their results to image encryption as well. These studies
collectively underscore the practical viability of such neural
network models. Therefore, the neural network model, which
combines time delays, diffusions, stochastic perturbations, and
both kinds of impulses, offers a more realistic representation
of real-world systems, enhances robustness, and allows for
performance optimization.[28] Hitherto, there have been few
findings reported concerning the FTB and FTCB of impulsive
DRDSNNs (IDRDSNNs) with these two types of impulses.

Thus, this paper conducts an investigation into the FTB
and FTCB of IDRDSNNs with hybrid impulses. The main
contributions are summarized as follows: (1) A novel delay
integral inequality is derived for two cases. This inequality
generalizes the differential inequality in Theorem 3.1 in [29],
Lemma 5 in [30] and Theorem 1.3.1 in [31], and it effectively
handles the intrinsic characteristics of the time delays in our
systems. The tailored inequality is crucial for studying the FTB
and FTCB of IDRDSNNs. (2) The investigation encompasses
both stabilizing and destabilizing impulses. Notably, we elim-
inate the common threshold associated with hybrid impulses,
a limitation often encountered in existing research results,
such as [32–34]. (3) Several sufficient conditions for the FTB,
FTCB, and exponential stability of IDRDSNNs are presented
by the obtained inequality and comparison principle. This
analysis reveals that the FTB of neural networks with hybrid
impulses can be effectively retained, even in the presence of
impulsive perturbations. Additionally, in cases where the FTB
of networks is disrupted by impulsive perturbations, it can be
reestablished through careful regulation of impulsive controls
and the optimization of average impulsive intervals.

The subsequent sections of the paper are structured here-
after: Section II introduces the IDRDSNNs and covers prelimi-
naries. Section III presents a new delay integral inequality, and
studies FTB, FTCB and exponential stability of IDRDSNNs
via the presented inequality and comparison principle. Section
IV consists of a series of numerical simulations demonstrating
the efficacy of obtained results. And the final section summa-
rizes the paper and provides a discussion of the results.

II. PRELIMINARIES

Notations: Let Rl denote the l-dimensional real space
accompanied by the Euclidean norm | · |, Z+ represent the
positive integer set, and I symbolize the identity matrix.
The probability space (Ω,F ,P) is complete, with filtration
{Ft}t≥0. The Hilbert space L2(O)n is a vector space with
the inner product (u,v) =

∫
O u(t,x)v(t,x)dx, and the

norm ‖u‖ =
√

(u,u). Meanwhile, the norm of the Hilbert

space H1
0 (O) is given by |||u||| = ||∇u||. H2(O)n rep-

resents the space of vector-valued functions defined on O,
which have square-integrable derivatives up to the second
order. The Banach space PCbτ consists of all functions φ :
[−τ, 0] × O → L2(O)n that are piecewise left continuous,
with their norm ‖φ‖C defined as supθ∈[−τ,0] ‖φ(θ,x)‖. Let
PCbF0

represent the family of PCbτ -valued stochastic vari-
ables φ that are F0-measurable and satisfy E||φ||C < ∞.
The left sided limit of u(tk) is denoted by u(t−k ), and the
limit from the right is represented by u(t+k ). Regarding the
definition of the lower left Dini derivative for ϕ(t), it is
given by D−ϕ(t) , lim infMt→0−

ϕ(t+Mt)−ϕ(t)
Mt . The Frobe-

nius norm denoted as ||B||F , is calculated as
√

tr(BBT ),
with B being an n × m matrix, and tr representing the
trace operator. The set Mn,m

2 [0, t] comprises all the nonan-
ticipating functions G(t, ω) that yield n × m matrix-valued
outputs and almost surely satisfy

∫ t
0
|G(s, ω)|2ds < ∞.

Moreover, Mn,m
2 =

⋂
t>0M

n,m
2 [0, t]. Lastly, the space

L 0
2 (Q

1
2 (L2(O)m), L2(O)n) contains all Hilbert-Schmidt op-

erators Φ : Q
1
2 (L2(O)m) → L2(O)n, accompanied by the

norm ||Φ||∗ =
√

tr(ΦQΦ∗), where Q is a Hilbert-Schmidt
operator with a finite trace, which is positive definite and self-
adjoint, and Φ∗ denotes the adjoint of Φ.

In this paper, we consider the IDRDSNNs as follows.
du = (A u−Au+Bf(u) +Ch(u(t− τ,x)))dt

+G(u(t− τ,x))dW (t,x), t ∈ (tk−1, tk),
u(t+k ,x) = δku(tk,x), k ∈ Z+,
u(t,x) |x∈∂O= 0, t ≥ 0,
u(θ,x, ω) = φ(θ,x, ω) ∈ PCbF0

,
(1)

where θ ∈ [−τ, 0], x ∈ O, ω ∈ Ω, and u = (u1(t,x, ω), u2(t,
x, ω), · · · , un(t,x, ω))T . The linear operator A , defined as

A u = (
∑l
j=1

∂(D1j(x)
∂u1

∂xj
)

∂xj
,
∑l
j=1

∂(D2j(x)
∂u2

∂xj
)

∂xj
, · · · ,

∑l
j=1

∂(Dnj(x)
∂un
∂xj

)

∂xj
)T , has its domain D(A ) as the intersection

of H1
0 (O)n and H2(O)n, which is a subset of L2(O)n.

A is an n-dimensional diagonal matrix with all elements
greater than zero, while B and C are both n × n matrices.
f(u) = (f1(u1), f2(u2), · · · , fn(un))T , h(u(t − τ,x)) =
(h1(u1(t − τ,x)), h2(u2(t − τ,x)), · · · , hn(un(t − τ,x)))T ,
G = (Gij)n×m ∈ Mn,m

2 , and W (t,x) denotes an m-
dimensional Q-Wiener process [35]. The strength of impulses
is represented by δk ∈ R. To avoid accumulation points, we
assume that impulse time sequences satisfy 0 = t0 < t1 < · · ·
< tN(0,T ) ≤ T , denoted by set F0. For any given positive
constant η, F(η) represents the collection of impulse time
sequences from F0 that satisfy tk − tk−1 ≥ η for all k ∈ Z+.
In addition, the initial data is represented by φ(θ,x, ω), and
O ⊂ Rl is a bounded, open, and connected set featuring a
sufficiently smooth boundary ∂O.

Without loss of generality, we assume that the strengths
of the destabilizing and stabilizing impulses are selected
from ∆ = {δ1, δ2, · · · , δN} and ∆ = {δ1, δ2, · · · , δM},
respectively, over the interval (0, T ]. For these selections, we
ensure that |δi| > 1 for i = 1, 2, · · · , N , and 0 < |δj | < 1
for j = 1, 2, · · · ,M . We use tik↑ and tjk↓ which belong
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to the set {t1, t2, · · · , tN(0,T )}, to denote the activation time
of δi and δj , respectively. Furthermore, we suppose that
f(0) = h(0) = 0, and G(0) = 0.

For (1), we assume the subsequent conditions:
(A1) There exists a constant α > 0 ensuring Dij(x) ≥ α, for
i = 1, 2, · · · , n and j = 1, 2, · · · , l.
(A2) The functions f(u), h(u), and G(u) all satisfy the
Lipschitz condition, that is, a nonnegative constant ρ ex-
ists such that the following inequality holds: sup{||f(u) −
f(v)||, ||h(u)− h(v)||, ||G(u)−G(v)||∗} ≤ ρ||u− v||.

Based on Theorem 3.2 in [36] and Theorem 1 in [37], we
can establish the existence and uniqueness of the solution to
(1).

Definition 1 ([38]). For impulsive sequences {tik↑} and
{tjk↓}, the average impulsive intervals, denoted by TiA and
Tja respectively, are defined under the condition:

Ni(t, s) ≤
t− s
TiA

+N0, Nj(t, s) ≥
t− s
Tja

−N0, (2)

where N0 is an positive integer, and Ni(t, s) and Nj(t, s)
count the impulsive times in their sequences over (s, t).

Definition 2 ([6]). Provided with three positive numbers T ,
κ1, and κ2 such that κ2 > κ1, then (1) is FTB concern-
ing (T, κ1, κ2), if satisfying E||φ(θ)||2C ≤ κ1 results in
E||u(t)||2 ≤ κ2 for any t ∈ [0, T ].

Definition 3 ([6]). Provided with five positive numbers T , κ1,
κ2, κ3, and σ such that κ2 > κ1 > κ3, and σ ∈ (0, T ),
(1) is defined as FTCS with respect to (T, κ1, κ2, κ3, σ), if
E||φ(θ)||2C ≤ κ1 leads to E||u(t)||2 ≤ κ2 for any t ∈ [0, T ],
and in addition, E||u(t)||2 ≤ κ3 for any t ∈ [T − σ, T ].

Lemma 1 (Comparison Principle [39]). µ(t) and ν(t) are
supposed to be elements of PC([−τ, T ],R) and adhere to the
subsequent inequalities:{

D−µ(t) > Γ(t, µ(t), µ(t)), t ∈ (tk−1, tk),
µ(t+k ) ≥ Ik(µ(tk)), k ∈ Z+,

(3){
D−ν(t) ≤ Γ(t, ν(t), ν(t)), t ∈ (tk−1, tk),
ν(t+k ) ≤ Ik(ν(tk)), k ∈ Z+,

(4)

where the functions µ(t) = supθ∈[−τ,0] µ(t + θ), and ν(t) =
supθ∈[−τ,0] ν(t + θ). Γ(t, x, y) is continuous and is nonde-
creasing concerning y when (t, x) is fixed. Additionally, Ik(x)
is nondecreasing regarding x for k ∈ Z+. If µ(t) ≥ ν(t)
over the interval [−τ, 0], it follows that µ(t) ≥ ν(t) over the
interval [0, T ].

III. MAIN RESULTS

In the section herein, we obtain several sufficient conditions
ensuring the FTB and FTCB of (1). Additionally, our analysis
also contributes to the derivation of exponential stability.

Lemma 2. Consider v(t) ≥ 0, which fulfills the inequalities: v(t) ≤ k1v(0)ek2t +
∫ t
0
ek2(t−s)[k3v(s− τ)

+k4]ds, t ∈ (0, T ],
v(θ) ≥ 0, t ∈ [−τ, 0],

(5)

where k1 > 1, k3 > 0, k4 > 0, and v(0) = supθ∈[−τ,0] v(θ).
(1) If k2 < −k3 < 0, then v(t) ≤ k1v(0)eλt+ k4

−k2−k3 , where
λ < 0 satisfies that λ− k2 = k3e

−λτ ;
(2) If −k3e−k2τ ≤ k2, then v(t) ≤ [(k1 + k3τe

−k2τ )v(0) +

k4
∫ t
0
e−k2sds]e(k3e

−k2τ+k2)t.

Proof: (1) If k2 < −k3 < 0, then we define h(υ) =
−υ + k3e

−υτ + k2. It follows that h(0) = k3 + k2 < 0,
limυ→−∞ h(υ) = +∞. Notice that h′(υ) = −1− τk3e−υτ <
0, then there is a negative constant λ for which h(λ) = 0
holds, i.e.,

λ− k2 = k3e
−λτ . (6)

For t ∈ [−τ, 0], it can be derived that

v(t) < k1v(0) ≤ k1v(0)eλt +
k4

−k2 − k3
. (7)

Then, we assert that

v(t) ≤ k1v(0)eλt +
k4

−k2 − k3
, (8)

where t ∈ [0, T ]. In case this condition is not fulfilled, there
exists a constant t∗ ∈ (0, T ] that meets the inequalities:

v(t∗) > k1v(0)eλt
∗

+
k4

−k2 − k3
, (9)

v(t) ≤ k1v(0)eλt +
k4

−k2 − k3
, t ∈ [−τ, t∗). (10)

Based on (5) and (10), the computation can be made as:

v(t∗) ≤k1v(0)ek2t
∗

+

∫ t∗

0

ek2(t
∗−s)[k1k3v(0)eλ(s−τ)

+
k3k4

−k2 − k3
+ k4]ds

(11)

Using the above equation, and after calculating the definite
integral with the help of (6), we deduce that

v(t∗) ≤k1v(0)ek2t
∗

+
k1k3v(0)ek2t

∗−λτ

λ− k2
(e(λ−k2)t

∗
− 1)

+
k4(1− ek2t∗)
−k2 − k3

(12)

≤k1v(0)eλt
∗

+
k4

−k2 − k3
.

This result is in contradiction with (9), thereby corroborating
the validity of our claim in (8). Therefore, for any t ∈ [−τ, T ],

v(t) ≤ k1v(0)eλt +
k4

−k2 − k3
. (13)

(2) If −k3e−k2τ ≤ k2, then define v∗(t) = v(t)e−k2t. In terms
of (5), we can infer that

v∗(t) ≤k1v(0) + k3

∫ t

0

e−k2sv(s− τ)ds+ k4

∫ t

0

e−k2sds

≤k3e−k2τ
∫ t

0

v∗(s)ds+ k4

∫ t

0

e−k2sds (14)

+ (k1 + k3τe
−k2τ )v(0).
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Subsequently, it can be inferred from the Gronwall-Bellman
inequality that

v∗(t) ≤ [(k1 + k3τe
−k2τ )v(0) + k4

∫ t

0

e−k2sds]ek3e
−k2τ t,

that is,

v(t) ≤ [(k1 +k3τe
−k2τ )v(0)+k4

∫ t

0

e−k2sds]e(k3e
−k2τ+k2)t.

This completes the proof.

Remark 1. The delay integral inequalities in the existing
literature were not sufficient to address the issues encountered
in our research due to the intrinsic characteristics of time
delays in the networks, which may bring essential changes
to the dynamics of systems. Therefore, to facilitate our study,
we introduced a new delay integral inequality by categorizing
and examining different cases. From the inequality, we can
deduce that if −k3e−k2τ > k2, then k2 < 0, leading to the
conclusion that k2 < −k3e−k2τ < −k3 < 0. As a result,
all possible cases for the coefficient k2 in (5) are covered in
Lemma 2. For a given time T , Lemma 2 indicates the FTB
of system (5) under certain conditions. Moreover, if k2 = 0,
Lemma 2 reduces to the classical delay integral inequality,
which has been considered in [31].

Theorem 1. Let (A1) and (A2) hold, then (1) is FTB con-
cerning (T, κ1, κ2) over the class F(η) under either of the
ensuing circumstances:
(1) z < −ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
, 2N0

∑N
i=1 ln |δi|−2N0

∑M
j=1 ln |δj | ≤

lnκ2 − lnκ1;
(2) z ≥ −ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
, 2N0

∑N
i=1 ln |δi|−2N0

∑M
j=1 ln |δj |+

ln(1 + ζτe−zτ ) + (ζ
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
e−zτ + z)T ≤ lnκ2 − lnκ1,

where z = 2
∑N
i=1

ln |δi|
TiA

+2
∑M
j=1

ln |δj |
Tja

+2−2αβ2−2amin+

ρ2||B||2F , ζ = (||C||2F + 1)ρ2, amin = min{a1, a2, · · · , an},
and β is the Poincaré constant.

Proof: We introduce an auxiliary function V (t) =
||u(t,x)||2. For t ∈ (tk−1, tk), the following expression is
obtained:

dV (t) =2(u,A u)dt− 2(u,Au)dt+ 2(u,Bf(u))dt

+ 2(u,Ch(u(t− τ,x)))dt

+ tr(G(u(t− τ,x))QG∗(u(t− τ,x)))dt

+ 2(u,G(u(t− τ,x)))dW (t,x),

(15)

which is obtained by the Itô formula as discussed in [40]. By
integrating both sides of (15), one can obtain:

EV (t) =EV (tk−1) +

∫ t

tk−1

E

[
2(u,A u)− 2(u,Au)

+ 2(u,Bf(u)) + 2(u,Ch(u(s− τ,x)))

+ ||G(u(s− τ,x))||2∗
]
ds,

(16)

which yields that

D−EV (t)

=2E(u,A u)− 2E(u,Au) + 2E(u,Bf(u))

+ 2E(u,Ch(u(t− τ,x))) + E||G(u(t− τ,x))||2∗.
(17)

Using the Poincaré Inequality, the Gauss formula and (A1),
we can infer that

E(u,A u) ≤ −αE|||u|||2 ≤ −αβ2EV (t), (18)

Noting that ai > 0, we have

− E(u,Au) ≤ −aminEV (t). (19)

Integrating the Young inequality and (A2) may lead to

2E(u,Bf(u)) ≤EV (t) + ρ2||B||2F ||u||2

=(ρ2||B||2F + 1)EV (t).
(20)

Similarly, we can ascertain that

2E(u,Ch(u(t− τ,x)))

≤EV (t) + ρ2||C||2FEV (t− τ),
(21)

E||G(u(t− τ,x))||2∗ ≤ ρ2EV (t− τ). (22)

Hence, the expression can be deduced as follows:

D−EV (t) ≤(2− 2αβ2 − 2amin + ρ2||B||2F )EV (t)

+ ζEV (t− τ),
(23)

where t ∈ (tk−1, tk), and ζ = (||C||2F + 1)ρ2. At t = tk, it
holds that EV (t+k ) = δ2kEV (tk). Then,

D−EV (t) ≤ (2− 2αβ2 − 2amin + ρ2||B||2F )EV (t)
+ζEV (t− τ), t ∈ (tk−1, tk),

EV (t+k ) = δ2kEV (tk),
EV (θ) = E||φ(θ,x, ω)||2, θ ∈ [−τ, 0].

For any given ε > 0, we assume that v(t) satisfies the
conditions defined by the following equations:

D−v(t) = (2− 2αβ2 − 2amin + ρ2||B||2F )v(t)
+ζv(t− τ) + ε, t ∈ (tk−1, tk),

v(t+k ) = δ2kv(tk),
v(θ) = E||φ(θ,x, ω)||2, θ ∈ [−τ, 0].

In light of Lemma 1, it can be obtained that EV (t) ≤ v(t).
The employment of the method of variation of parameters
leads to the derivation that

v(t) =q(t, 0)v(0) +

∫ t

0

q(t, s)(ζv(s− τ) + ε)ds, (24)

where q(t, s) = exp((2 − 2αβ2 − 2amin + ρ2||B||2F )(t −
s))
∏
ti∈[s,t) δ

2
i . Thus, from Definition 1, it can be deduced

that

q(t, s) ≤ exp
(
(2− 2αβ2 − 2amin + ρ2||B||2F )(t− s)

)
N∏
i=1

δi
2(t−s)
TiA

+2N0

M∏
j=1

δj
2(t−s)
Tja

−2N0

=

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
ez(t−s),
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where z = 2
∑N
i=1

ln |δi|
TiA

+2
∑M
j=1

ln |δj |
Tja

+2−2αβ2−2amin+

ρ2||B||2F , which implies that

v(t)

≤
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
eztv(0) + ε

∏N
i=1 δi

2N0∏M
j=1 δj

2N0

∫ t

0

ez(t−s)ds

+ ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0

∫ t

0

ez(t−s)v(s− τ)ds

≤
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
eztE||φ||2C + ε

∏N
i=1 δi

2N0∏M
j=1 δj

2N0

∫ t

0

ez(t−s)ds

+ ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0

∫ t

0

ez(t−s)v(s− τ)ds.

(25)
Next, we will consider the following two cases.
Case 1: If z < −ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
< 0, then in accordance with

Lemma 2, it can be derived that

v(t) ≤
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
E||φ||2Ceλt +

ε

−z
∏M
j=1 δj

2N0∏N
i=1 δi

2N0
− ζ

, (26)

where the constant λ < 0 meets the equation λ − z =

ζ
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
e−λτ . Let ε → 0, then we have EV (t) ≤ v(t) ≤∏N

i=1 δi
2N0∏M

j=1 δj
2N0

E||φ||2Ceλt. Therefore,

E||u(t)||2 ≤
∏N
i=1 δi

2N0
eλtE||φ||2C∏M

j=1 δj
2N0

≤
κ1
∏N
i=1 δi

2N0
eλt∏M

j=1 δj
2N0

≤ κ2.

Case 2: If −ζ
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
≤ z, then we claim that the following

inequality also holds:

− ζe−zτ
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
≤ z. (27)

Indeed, for the case where z ≤ 0, we have e−zτ ≥ 1.
Consequently, we can deduce that −ζe−zτ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
≤

−ζ
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
≤ z. On the other hand, when z > 0, it is

evident that −ζe−zτ
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
≤ 0 < z.

Thus, applying Lemma 2, we have

v(t)

≤
∏N
i=1 δi

2N0∏M
j=1 δj

2N0

{
E||φ||2C

(
1 + ζτe−zτ

)
+ (28)

ε

∫ t

0

e−zsds
}

exp
{(
ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
e−zτ + z

)
t
}
.

Let ε→ 0, and t ∈ [0, T ], it then follows that

E||u(t)||2

≤
κ1
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
(1 + ζτe−zτ ) exp

{(
ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
e−zτ + z

)
T
}

≤κ2.

This completes the proof.

Remark 2. It can be inferred from Theorem 1 that the
domain O, the constant α, activation functions, impulses,
and time delay τ may have an impact on the FTB of (1).
More specifically, the Poincaré constant β in the criteria is
influenced by the geometry of the domainO, while the constant
α depends on the reaction-diffusion matrix D(x). Addition-
ally, the Lipschitz constant ρ is determined by the activation
functions, and the impulsive strength δk and impulsive interval
are affected by the impulses. It can also be deduced that, given
z ≥ −ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
, the time delays negatively affect the FTB

of systems for z ≤ 0, but positively influence it for z > 0.

Remark 3. Several studies on the FTB of impulsive systems
have been conducted [17, 32–34]. In particular, in [32], the
criteria of FTB on stabilizing impulses are established to be
below a common threshold. Furthermore, [17] investigates the
FTB of deterministic systems with stabilizing impulses and
destabilizing impulses separately. However, systems with the
stabilizing and destabilizing impulses concurrently, such as (1)
have seldom been considered. We take these two kinds of im-
pulses into account when modelling the neural networks, and
avoid imposing the threshold on impulses, thereby extending
some of the existing results. Theorem 1 further demonstrates
that neural networks with hybrid impulses can robustly main-
tain their FTB, even in the presence of impulsive perturbations.
Moreover, for networks where FTB is compromised due to such
perturbations, restoration of FTB can be achievable through
meticulous regulation of impulsive control strategies.

Remark 4. The parameter κ2 serves as a predetermined
threshold in our analysis, reflecting specific system require-
ments. Its value is not arbitrary, but instead, it is chosen based
on the nature of the problem at hand and the system’s intrinsic
requirement. Within our current research context, the state
is expected to remain below this threshold within a certain
finite-time interval. While the selection of an optimal κ2 value
can indeed offer further insights into the system’s behavior
and possibly improve the method’s performance, our study
primarily focuses on validating the theoretical underpinnings
of our proposed approach with a given κ2. Future work might
delve deeper into the optimization of κ2 for various cases,
ensuring the applicability and efficiency of the results in real-
world scenarios.

From the proof of Theorem 1, it is possible to establish
the exponential stability of (1), although the concept of FTS
differs from that of LAS.

Corollary 1. Suppose that (A1) and (A2) hold, then (1) is
exponentially stable in the mean-square sense over the class
F(η) if z < −ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
, where z = 2

∑N
i=1

ln |δi|
TiA

+

2
∑M
j=1

ln |δj |
Tja

+ 2 − 2αβ2 − 2amin + ρ2||B||2F , and ζ =

(||C||2F + 1)ρ2.

Remark 5. It is worth noting that Zhang et al. discussed
the exponential stability of deterministic neural networks with
impulses and time delays in [25]. When D(x) = 0 in (1),
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the conditions in our Corollary 1 align with those in [25],
which implies that we extend some of their results. According
to Theorem 1 and Corollary 1, if z < −ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
, then (1)

is exponentially stable, but not necessarily FTB. Furthermore,
if Condition (2) in Theorem 1 is met, (1) will be FTB but
not necessarily exponentially stable. Consequently, a system,
which is exponentially stable may not satisfy the conditions of
FTB, and vice versa, indicating that FTB and LAS are exactly
distinct concepts. This can also be confirmed by Example 2(i)
and Example 3(ii) in Section IV.

In addition, the inequality (26) in the proof of Theorem 1
can also be used to derive the FTCB of (1).

Theorem 2. Let (A1) and (A2) hold, then (1) is FTCB
with respect to (T, κ1, κ2, κ3, σ) over the class F(η), if the
first condition in Theorem 1 holds, and 2N0

∑N
i=1 ln |δi| −

2N0

∑M
j=1 ln |δj | + λ(T − σ) ≤ lnκ3 − lnκ1, where λ is a

negative constant such that λ = z + ζ
∏N
i=1 δi

2N0∏M
j=1 δj

2N0
e−λτ , z =

2
∑N
i=1

ln |δi|
TiA

+2
∑M
j=1

ln |δj |
Tja

+2−2αβ2−2amin +ρ2||B||2F ,
and ζ = (||C||2F + 1)ρ2.

Particularly, when we let δk = 1 in (1), the following results
are obtained for the DRDSNNs without impulses.

Corollary 2. When (A1) and (A2) are assumed to hold, (1)
is FTB concerning (T, κ1, κ2) under either of the ensuing
circumstances:
(1) z′ < −ζ;
(2) −ζ ≤ z′, ln(1+ζτe−z

′τ )+(ζe−z
′τ+z′)T ≤ lnκ2−lnκ1,

where z′ = 2− 2αβ2− 2amin + ρ2||B||2F , and ζ = (||C||2F +
1)ρ2.
Moreover, (1) is FTCB with respect to (T, κ1, κ2, κ3, σ), if the
first condition in this corollary holds, and λ(T −σ) ≤ lnκ3−
lnκ1, where λ < 0 satisfies the equation λ = z′ + ζe−λτ .

Remark 6. Notice that the neural networks considered in
Corollary 2 pertain to DRDSNNs without impulses, and the
FTB has already been studied in [15]. Thus, the obtained
results are more general, which would be further demonstrated
by simulations of Example 2(ii) in Section IV.

IV. EXAMPLE

In this part of the paper, we provide a series of examples
to validate the efficacy and practical applicability of the
conclusions drawn from the above discussion.

Example 1. We investigate the IDRDSNNs presented below.

du1 = [0.954u1 + 0.25(|u1(t− 0.1, x) + 1|
− |u1(t− 0.1, x)− 1|)− 0.3u1 + 0.5u2]dt
+0.5 tanh(u1(t− 0.1, x))dW, t ∈ (tk−1, tk),

u1(t+k ) = pku1(tk), u1(θ) = 0.5 sin(0.5πx) cos(1.4θ),
du2 = [0.954u2 + 0.25(|u1(t− 0.1, x) + 1|

− |u1(t− 0.1, x)− 1|)− 0.3u2 + 0.5u1]dt
+0.5 tanh(u2(t− 0.1, x))dW, t ∈ (tk−1, tk),

u2(t+k ) = pku2(tk), u2(θ) = 0.5 sin(0.5πx) exp(π6 θ),
u1(t)|x∈∂O = u2(t)|x∈∂O = 0, t ≥ 0,

(29)

where θ ∈ [−0.1, 0], x ∈ (−1, 1). Take the impulsive sequence
with {tk} = {0.4, 0.7, 0.8, 1.2, 1.4}, p1 = p3 = p4 = 0.8,
and p2 = p5 = 1.3, then the average impulsive intervals are
determined as TiA = 0.7, and Tja = 0.4. Let β = 1, and W =∑∞
n=1

1
nen(x)Bn(t), with en(x) =

√
0.5 sin(0.5nπx), and

{Bn(t)}∞n=1 representing a sequence of mutually independent
standard Brownian motions. We specifically consider the case
where κ1 = 0.5, κ2 = 7, and T = 2. This results in specific
values for z = 2 ln(1.3)

0.7 + 2 ln(0.8)
0.4 −2×0.95−2×0.3+0.52+2 =

−0.6161 < 0, ζ = 0.5, and 2 ln(1.3) − 2 ln(0.8) + ln(1 +

0.5× 0.1× e−0.1z) + (0.5× 1.32

0.82 e
−0.1z + z)× 2 = 2.5990 <

ln(7) − ln(0.5) = 2.6391. These values satisfy the Condition
(2) in Theorem 1. Based on the aforementioned parameters
and initial conditions, we utilize Theorem 1 to demonstrate
that (29) exhibits FTB regarding (2, 0.5, 7). Then, we proceed
by applying numerical discretization to (29) employing the
method described in [41], which aids in deriving the solution
to the neural network as specified in (29). The methodology
for discretizing this differential equation is outlined below:

ui,k+1
1 = ui,k1 + 0.95

ui+1,k
1 −2ui,k1 +ui−1,k

1

(4x)2 4t+ 0.25·
(|ui,k−0.1/4t1 + 1| − |ui,k−0.1/4t1 − 1|)4t
−0.3ui,k1 4t+ 0.5ui,k2 4t+ 0.5 tanh(u

i,k−0.1/4t
1 )∑∞

n=1
1
nen(i)[

√
4tξn + 0.54t(ξ2n − 1)],

ui,k+1
2 = ui,k2 + 0.95

ui+1,k
2 −2ui,k2 +ui−1,k

2

(4x)2 4t+ 0.25·
(|ui,k−0.1/4t1 + 1| − |ui,k−0.1/4t1 − 1|)4t
−0.3ui,k2 4t+ 0.5ui,k1 4t+ 0.5 tanh(u

i,k−0.1/4t
2 )∑∞

n=1
1
nen(i)[

√
4tξn + 0.54t(ξ2n − 1)],

(30)
where 4x = xi+1 − xi, 4t = tk+1 − tk, and ξn are the
Gaussian random variables N(0, 1). Fig. 1 offers a visual
representation of these findings, and depicts how the simulated
behavior of (29) corroborates our theoretical results. Due to
the stochastic perturbations, each simulation does not yield
exactly the same results. To make the simulations more con-
vincing, we conducted 1000 individual runs (the simulations
presented in Fig. 3 and Fig. 4 are obtained in a similar
manner). The state trajectories of ||u||2 from these simulations
are comprehensively presented, providing clear evidence for
the FTB of (29), as illustrated in Fig. 2. It is worth noting that
existing literature results cannot determine the FTB for (29),
highlighting the significance of our novel approach. And it also
demonstrates that the FTB of networks with impulsive control
is maintained, even when subjected to impulsive perturbations.

Example 2. Taking the following DRDSNNs as an example
du = (0.24u+ 0.75u)dt+ u(t− 0.5, x))dW,

t ∈ (tk−1, tk)
u(t+k ) = pu(tk), tk = 0.2k, k ∈ Z+,
u|x∈∂O = 0, t ≥ 0,
u(θ) = sin(0.5πx) cos θ,

(31)

where θ ∈ [−0.5, 0], x ∈ (0, 20), and W is the same as the
one in Example 1 except en(x) =

√
0.05 sin(0.05nπx). Take

β = 0.05, and T = 2.
(i) For p = 0.5, our computations yield z = 2 ln(0.5)/0.2 +
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Fig. 1: State trajectories and simulations of u1 and u2 in Example 1.

Fig. 2: State trajectory of ||u||2 in Example 1.

2 − 2 × 0.2 × 0.052 + 0.752 = −4.3700 < 0, and − ζ
p2 =

−4 > −4.3700. By applying Corollary 1, one can derive
that (31) is exponentially stable. Refer to Fig. 3(a) where the
convergence of the state is clearly depicted over time. How-
ever, a peculiar observation is that ||u(0.19, x)||2 = 13.1696,
which exceeds 12. This indicates that (31) does not meet the
FTB criteria for the parameter set (2, 10, 12). But we have
−2 ln(pk) = 1.3863 < 1.4110 = ln(41) − ln(10), which
meet condition (1) in Theorem 1. One can also compute by
MATLAB that λ = −0.1208, and −2 ln 0.5− λ× (2− 0.5) =
−1.5675 < ln(3) − ln(10) = −1.2040. Utilizing Theorem 1
and Theorem 2, following calculations leads us to a conclusion
that both FTB for (2, 10, 41) and FTCB for (2, 10, 41, 3, 0.5)
are achievable. These results are in line with the visual
representation in Fig. 3(a), which showcases the systems’s
trajectory and convergence behavior.
(ii) When setting p = 1, then (31) transform into the reaction-
diffusion stochastic neural networks without impulses, and we
observe a different behavior. A visual examination of Fig. 3(b)
reveals a non-converging state as time progresses. This di-
verging behavior signifies that the system no longer adheres
to the FTB conditions for (2, 10, 41). This also indicates
that systems not initially exhibiting FTB (including those that
become non-FTB due to impulsive disturbances) can achieve
FTB by carefully designing impulsive control mechanisms.

(a) (b)

Fig. 3: State trajectories of ||u||2 in Example 2

Example 3. Examining the following DRDSNNs
du = (D4u− u+ 1.5u(t− τ, x))dt

+G tanhu(t− τ, x))dW, t ∈ (tk−1, tk),
u(t+k ) = pu(tk), tk = 0.32k, k ∈ Z+,
u|x∈∂O = 0, t ≥ 0,
u(θ) = sin(0.5πx) cos θ,

(32)

where θ ∈ [−τ, 0], x ∈ (0, 20), and W is identical to the one
in Example 2.
(i) Given D = 0.3, G = 1.5, and T = 2.3. For p = 1.16,
we examine two distinct scenarios. With τ = 5, we can
calculate that z = 0.9261 > 0, ζ = 4.5 and 2 ln 1.16 +
ln(1 + 4.5 × 5 × e−0.9261×5) + (4.5 × 1.162 × e−0.9261×5 +
0.9261)× 2.3 = 2.7610 < ln(160)− ln(10) = 2.7726. These
calculations suggest that (31) would be FTB with respect
to (2.3, 10, 160). Supporting this claim, the red trajectory in
Fig. 4(a) does not exhibit significant divergence, and aligns
with our theoretical predictions. On the other hand, when
τ = 0.1, the conditions for FTB concerning (2.3, 10, 160)
are not satisfied. This is visually evident in Fig. 4(a), where
the black trajectory demonstrates a pronounced divergence,
deviating significantly from a stable state. These findings
indicate that for z > 0, time delays have a positive effect
on the FTB of networks. Switching to p = 0.8, one can easily
validate that the inequality −ζ

∏N
i=1 δi

2N0∏M
j=1 δj

2N0
< z < 0 is satisfied.

Fig. 4(b) displays the time trajectory of ||u||2 for both τ = 0.1
and τ = 5. The graph clearly demonstrates the negative effect
of time delays on the FTB of neural networks, particularly
noticeable after being subjected to stabilizing impulses which
result in z < 0. In conclusion, this examination provides a
detailed insight into the FTB dynamics of neural networks
subjected to different time delays and further strengthens the
assertions made in Remark 2.
(ii) With D = 0.3, G = 1.5, τ = 5 and T = 20, Fig. 4(c)
presents the trajectories of ||u(t)||2 for different values of p.
For p = 1.16, the trajectory is notably unstable, signifying that
the system is not FTB with respect to (20, 10, 20). For p = 1
and p = 0.5, both trajectories appear relatively steadier and
less divergent, indicating that they meet the FTB conditions for
(20, 10, 20). However, it is interesting to note that the network
with p = 1 does not exhibit the LAS behavior.
(iii) With parameters set at τ = 5, p = 1.16 and T = 10,
we explored the effects of the reaction-diffusion term and
stochastic perturbations on the system’s dynamics, as depicted
in Fig. 4(d). Distinct dynamical characteristics emerge from
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(a) (b)

(c) (d)

Fig. 4: State trajectories of ||u||2 in Example 3

the trajectories based on the chosen values of D and G. For
D = 0.3 and G = 1.5, the red trajectory exhibits noticeable
oscillations and fluctuations. Notably, the network maintains
FTB concerning (10, 10, 50). In contrast, with D = 3 and
G = 1.5, the black trajectory stabilizes markedly quicker than
its counterpart with D = 0.3 and G = 1.5. The behavior
indicates the network is FTB with respect to both (10, 10, 50)
and (10, 10, 15). However, when we set D = 0.3 and G = 10,
the network deviates from the previously mentioned FTBs,
and shows greater fluctuations. This pronounced oscillation
suggests a compromised FTB for the neural networks due to
the influence of stronger stochastic perturbations, represented
by the increased value of G. In essence, these observations
reveal the significant impact of the reaction-diffusion term and
stochastic disturbances on the FTB of neural networks, which
stresses the importance of considering such perturbations
when analyzing the FTB.

Remark 7. Example 2(i) implies that we cannot obtain
the FTB of systems from LAS. Additionally, Example 3(ii)
demonstrates that an FTB system may not necessarily be
LAS. Consequently, FTB and LAS are independent concepts.
Furthermore, Example 3 illustrates the impacts of delays,
impulses, reaction-diffusion terms and stochastic perturbations
on the FTB, respectively.

Example 4. We apply our theoretical results to image encryp-
tion to demonstrate their applicability. In order to generate
signals for image encryption, we investigate the following
neural network as the driving system:

du =[D4u−Au+Bf(u) +Ch(u(t− τ, x))]dt

+G(u(t− τ, x))dW ,
(33)
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Fig. 5: The original, encrypted and decrypted Lena images (left) and corresponding
histogram (right).

and the associated response system is as follows:
dû = [D4û−Aû+Bf(û) +Ch(û(t− τ, x))]dt

+G(û(t− τ, x))dW , t ∈ (tk−1, tk),
û(t+k , x) = δkû(tk, x), k ∈ Z+,

(34)

where x ∈ (0, 20), D = 10−4I , A = I , B =

(
2 −0.1
−5 4.5

)
,

C =

(
−1.5 −0.1
−0.2 −4

)
, f(u) = h(u) = tanhu, G(u) =(

u1 0
0 u2

)
, and W is the same as the one in Example 1. It

follows from Theorem 1 and Theorem 2 that the error system
is FTB and FTCB with certain parameters.

Then the results are applied to the image encryption algo-
rithm proposed in [26]. Specifically, we first generate a chaotic
decimal sequence as

Sij = mod(round(||u|| × 108), 256). (35)

where mod denotes the remained after the division operation.
Then, each pixel of the original image is combined with
the corresponding value in the Sij matrix using an XOR
operation to produce the encrypted image. The process for
decryption is analogous to the encryption process, but the
XOR operation is applied to each pixel of the encrypted image
using the same Sij matrix to retrieve the original image.
To demonstrate the validity of the algorithm, we apply the
encryption algorithm to two typical images: a gray image of
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Fig. 6: The original, encrypted and decrypted Lady images (left) and corresponding
histogram (right).

Fig. 7: The correlation map of adjacent pixels of original (top row) and encrypted (bottom
row) Lady image from B channel in horizontal (left column), vertical (mid column) and
diagonal (right column) directions.

Lena (512×512 pixels) and a color image of Lady (256×256
pixels), both of which are commonly used for validating image
encryption [26, 30, 42]. Fig. 5 and Fig. 6 display the original
images, encrypted images and decrypted images of the two
images, accompanied by their corresponding histograms. It is
evident that the encrypted images and their histograms differ
significantly from the original images, while the decrypted
images closely resemble their respective original images. To
further substantiate the effectiveness of the encryption, the
correlation map of the adjacent pixels of Lady image (B
channel) before and after encryption in horizontal, vertical
and diagonal directions are presented in Fig. 7. This illustrates

that the adjacent pixels shift from a high correlation to a
minimal correlation upon encryption.

Remark 8. The example of image encryption given here is
merely one instance of the numerous applications that can
benefit from FTB. In fact, FTB has potential implications in
various areas. For example, the application of FTB ensures
that the position of the robotic arm remains stable within
prescribed limits within a finite time, thereby enhancing both
accuracy and reliability. Similarly, in the context of lane-
keeping or collision-avoidance systems, FTB can set a strict
timeframe within which the vehicle must return to a safe state,
effectively reducing the risk of accidents.

V. CONCLUSION

In this paper, a novel delay integral inequality has been
established and used to derive sufficient criteria for the FTB
and FTCB of IDRDSNNs. The effectiveness of our theoretical
conclusions has been demonstrated through simulations of
several numerical examples and applications in image encryp-
tion. It is worth noting that extending our results to systems
with local Lipschitz conditions could yield more refined and
nuanced insights. Such an extension might reflect real-world
scenarios more accurately. We plan to delve into this in our
subsequent studies, viewing it as a significant progression from
our current work. Separately, we recognize that finite-time
stability has been addressed in prior studies, which diverge
from our current investigation and explore the asymptotic
behavior of trajectories within a finite-time interval, as seen in
[43–47]. Examining the finite-time stability for IDRDSNNs
would indeed be a valuable direction for future research.
Moreover, in the realm of neural networks, the importance of
universal approximation capabilities is paramount. This aspect,
involving rigorous theoretical analysis and simulations, will
help us understand how IDRDSNNs can be effectively applied
in a broader range of complex scenarios. Acknowledging this,
our future work will also aim to investigate the universal
approximation capabilities of IDRDSNNs, thereby expanding
the scope of our research to encompass both the practical and
theoretical dimensions of these networks.
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