

Aalborg Universitet

Distance domination in partitioned graphs

Fu, Chin-Mei Kau; Vestergaard, Preben Dahl

Publication date: 2007

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Fu, C-M. K., & Vestergaard, P. D. (2007). Distance domination in partitioned graphs. Aalborg: Department of Mathematical Sciences, Aalborg University. (Research Report Series; No. R-2007-05).

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY

Distance domination in partitioned graphs by Chin-Mei Kau Fu and Preben Dahl Vestergaard R-2007-05 February 2007

DEPARTMENT OF MATHEMATICAL SCIENCES AALBORG UNIVERSITY Fredrik Bajers Vej 7 G • DK-9220 Aalborg Øst • Denmark Phone: +45 96 35 80 80 • Telefax: +45 98 15 81 29 URL: www.math.auc.dk/research/reports/reports.htm

Distance domination in partitioned graphs

Chin-Mei Kau Fu

Department of Mathematics, Tamkang University Tamsui Taipei Shien 25137, Taiwan. e-mail: cmfu@mail.tku.edu.tw

Preben Dahl Vestergaard

Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G, DK-9220 Aalborg Ø, Denmark email: pdv@math.auc.dk

To appear in Congressus Numerantium

Keywords: Domination, partition, tree.

AMS Mathematics Subject Classification: 05C75

Abstract For a graph G with its vertex set partitioned into, say two sets $V(G) = V_1 \cup V_2$, bounds for $\gamma(G) + \gamma_G(V_1) + \gamma_G(V_2)$ have earlier been considered. This is generalized. We define a vertex set to distance d dominate all vertices at distance at most d from it. For partitioned graphs and any $d \ge 2$ we generalize theorems about ordinary distance one domination to distance d domination. Further, we give bounds for distance 2 domination of a graph partitioned into three sets and state a conjecture.

Definitions For $d \ge 1$ the vertex x in a graph is said to *distance d dominate* itself and all vertices at distance at most d away from x. A set D of vertices *distance d dominate* D and all vertices having distance at most d to D. The *distance d domination number* $\gamma_{\le d}(G)$ of the graph G is the cardinality of a smallest set D which distance d dominates all vertices in G. For d = 1 we get the usual domination number $\gamma_{\le 1}(G) = \gamma(G) = |D|$.

Let $k \geq 2$ be an integer and V_1, V_2, \ldots, V_k a partition of V(G). For $i, 1 \leq i \leq k$, we shall by $\gamma_{\leq d}(G, V_i)$ denote the order of a smallest set of vertices in G which distance d dominates V_i . I.e. there exists $D_i \subseteq V(G)$ such that every vertex of V_i either belongs to D_i or in G has distance at most d to a vertex in D_i , and $\gamma_{\leq d}(G, V_i) = |D_i|$ for a smallest such D_i . Let $f_{\leq d}(k, G)$ denote the maximum taken over all partitions V_1, \ldots, V_k of V(G) of the sum $\gamma_{\leq d}(G) + \sum_{i=1}^k \gamma_{\leq d}(G, V_i)$. For d = 1 we write $\gamma(G, V_i)$ and f(k, G). When no misunderstanding is possible we may write $\gamma_{\leq d}(V_i)$, $f_{\leq d}(G)$ for short. Hartnell and Vestergaard gave upper bounds for $f_{\leq d}(k, G) = \gamma_{\leq d}(G) + \sum_{i=1}^{k} \gamma_{\leq d}(G, V_i)$, when d = 1. We shall generalize to $d \geq 1$.

For d = 1 and k = 2 we can slightly reformulate their result:

Theorem 1. [2] Let G be a graph with at least 3 vertices in each component and let V_1, V_2 be any partition of V(G). Then

$$\gamma(G) + \gamma(G, V_1) + \gamma(G, V_2) \le \frac{5}{4} |V(G)|, i.e. f(2, G) \le \frac{5}{4} |V(G)|.$$

Equality occurs if and only if each component of G satisfies

- (i) the number of vertices is a multiple of four.
- (ii) Every vertex has degree one or is adjacent to exactly one degree one vertex.
- (iii) Every vertex of degree three or more is adjacent to exactly one degree two vertex having a degree one neighbour.
- (iv) All degree one vertices are in one class V_1 , all degree two vertices in the other class V_2 and vertices of degree ≥ 3 can be in either class.

For $d \geq 2$ we have Theorem 2 below.

Theorem 2. Let $d \ge 2$ and let G be a graph with at least d + 2 vertices in each component. For any partition V_1 , V_2 of V(G) we have

$$\gamma_{\leq d}(G) + \gamma_{\leq d}(G, V_1) + \gamma_{\leq d}(G, V_2) \leq \frac{6}{2d+3} |V(G)|$$

and equality holds if and only if

- (i) the order of each component if G is a multiple of 2d + 3 and
- (ii) G can be constructed from a set of disjoint paths of lengths 2d + 2 by arbitrarily adding edges between their central vertices.

Proof of inequality.

It suffices to prove the inequality of Theorem 2 for trees. We shall use induction on n = |V(G)|.

The inequality is true for n = d + 2, for consider, in fact, any tree T on $n \ge d + 2$ vertices and with diameter at most 2d; then $f_{\le d}(2,T) \le 3$, as we can place 3 dominators in the central vertex, when the diameter is an even number, and in an end vertex of the central edge when the diameter of T is an odd number. Obviously $3 \le \frac{6}{2d+3}(d+2) \le \frac{6}{2d+3}n$, so the inequality holds for small values of n.

Assume the inequality to be true for trees with fewer than n vertices. If T has diameter $\geq 2d + 3$ there is an edge e in T such that T - e consists of two trees each having at least d + 2 vertices and the inequality holds. So we may assume T has diameter 2d + 1 or 2d + 2.

Case 1. Diam (T) = 2d + 1.

Let $P = v_1 v_2 \dots v_{2d+2}$ be a diametrical path in T. If T = P, let $D = \{v_{d+1}, v_{2d+2}\}$, let D_1, D_2 both contain v_{d+1} and place v_{d+2} in D_i if $v_{d+2} \in V_i$, i = 1, 2.

Then D dominates V(T), D_i dominates V_i for i = 1, 2, and $f_{\leq d}(T) \leq 5$. That satisfies the inequality as $d \geq 2$ implies $5 \leq \frac{6}{2d+3}(2d+2)$.

Otherwise, $n \ge 2d + 3$ and with $D = D_1 = D_2 = \{v_{d+1}, v_{d+2}\}$ we obtain

$$f_{\leq d}(2,T) \leq 6 \leq \frac{6}{2d+3}n.$$

Case 2. Diam (T) = 2d + 2.

Let $P = v_1 v_2 \dots v_{2d+3}$ be a diametrical path of T. If $\deg(v_i) \geq 3$ for any $i \neq d+2$ there is in T an edge e such that the two trees of T-e both have $\geq d+2$ vertices and the inequality holds.

So we may assume that on P no other vertex than v_{d+2} has degree more than two. Assume T - E(P) contains a path $v_{d+2}x_1x_2...x_{d+1}$. If $\deg(x_j) \ge 3$ for any $j, 1 \le j \le d$, the two trees in $T - v_{d+2}x_1$ both have $\ge d+2$ vertices and the inequality holds. So we may assume that $\deg(x_j) = 2$ for $1 \le i \le d$.

Thus T contains α paths, $\alpha \geq 2$, each of length d + 1 and pendent from the central vertex v_{d+2} and possibly T also has other vertices, they all are within distance d from v_{d+2} .

Case 2A. Assume T consists of α paths of length d+1 pendent from v_{d+2} . Then $n = |V(T)| = 1 + \alpha(d+1)$ and we see that $f_{\leq d}(2,T) \leq 2\alpha+2$ by placing α vertices adjacent to v_{d+2} in D, placing v_{d+2} in both D_1 and D_2 and placing the α vertices at distance d+1 from v_{d+2} in D_i when they belong to V_i , i = 1, 2. We certainly have $2\alpha + 2 \leq \frac{6}{2d+3}(\alpha d + \alpha + 1)$ as $\alpha \geq 2$.

Case 2B. Assume T consists of α paths of length d + 1 pendent from v_{d+2} and also of vertices y_1, y_2, \ldots, y_t , $1 \leq t$, such that for $1 \leq i \leq t$, y_i has distance $\leq d$ from v_{d+2} .

Note that those of $y_1, y_2, \ldots, y_t, 1 \leq t$ which are within distance d-1 from v_{d+2} are dominated by the D-dominators already chosen in Case 2A. For the remaining vertices y_i at distance d from v_{d+2} there exists in T a path $v_{d+2}y_1y_2\ldots y_d$ and we have $n \geq 1 + \alpha(d+1) + d$. Taking the dominators from case 2A together with v_{d+2} added to D we obtain

$$f_{\leq d}(2,T) \leq 2\alpha + 3 \leq \frac{6}{2d+3}(1+\alpha(d+1)+d) \leq \frac{6}{2d+3}n.$$

This proves the inequality of Theorem 2. Finally, let $f_{\leq d}(2, G) = \frac{6}{2d+3}|V(G)|$. Then deletion of edges from G to obtain a tree and smaller trees in the process of proving the inequality of Theorem 2 must at every stage preserve equality, therefore the final components are paths P_{2d+3} and if additional edges have ends at other vertices than centers of these paths, we get inequality. This proves Theorem 2.

Comment. The bound of Theorem 2 is best possible, but only slightly better than the crude evaluation $f_{\leq d}(2,G) \leq 3 \cdot \gamma_{\leq d}(G) \leq 3\frac{1}{d+1}|V(G)|$. (cf. [4])

For partition into 3 classes, a best possible inequality is given by Hartnell and Vestergaard [2].

Theorem 3. [Hartnell, Vestergaard 2003] Let $n \ge 3$ be an integer. Let T be a tree on n vertices such that $T \notin \{P_4, P_7\}$ and let $\{V_1, V_2, V_3\}$ be a partition of V(T). Then

$$\gamma(T) + \gamma_T(V_1) + \gamma_T(V_2) + \gamma_T(V_3) \le \frac{7n}{5}.$$

For distance 2 domination of a tree T with its vertex set partitioned into 3 sets we shall prove.

Theorem 4. Let $n \ge 4$ be an integer. Let T be a tree on n vertices and let $\{V_1, V_2, V_3\}$ be a partition of V(T). Then

$$\gamma_{\leq 2}(T) + \gamma_{\leq 2}(V_1) + \gamma_{\leq 2}(V_2) + \gamma_{\leq 2}(V_3) \le n.$$

Proof. It is enough to prove the theorem for trees. By induction on n it is enough to prove the theorem for trees T with diameter ≤ 6 , since otherwise, Thas an edge e such that both trees in T - e have ≥ 4 vertices. If T has diameter 2 or 4 it suffices to place its central vertex in each of D, D_1 , D_2 , D_3 . Similarly, if T has diameter 3 we can place an end vertex of the central edge in each of the four dominating sets. In these cases we have $f_{\leq 2}(3,T) \leq 4 \leq n$.

If T has diameter 5, let $v_1 \ldots v_6$ be a diametrical path. Place 4 dominators in v_4 and for each vertex x at distance 3 from v_4 , $x \in V_i$, place a D_i -dominator in x and a D-dominator in b, the second last vertex on the unique path $xabv_4$ from x to v_4 . In all cases we obtain $f_{\leq 2}(3,T) \leq n$.

Assume T has diameter 6. Let $P = v_1 v_2 \dots v_7$ be a diametrical path in T. If $\deg(v_i) \geq 3$ for $i \neq 4$ there is an edge e in T such that the two trees in T - e have at least 4 vertices and by induction the result follows. So we may assume that $\deg(v_2) = \deg(v_3) = \deg(v_5) = \deg(v_6) = 2$. We easily see that a path P_7 on seven vertices has $f_{\leq 2}(3, P_7) = 7$, i.e. P_7 satisfies Theorem 4, so assume $\deg(v_4) \geq 3$.

Let l denote the length of a longest path emanating from v_4 in T - E(P), $l \leq 3$. For l = 1 we place 4 dominators in each of v_3 , v_5 . For l = 2, 3 we place 4 dominators in v_4 and each vertex x at distance 3 from v_4 is chosen to class-dominate itself, while we on $xabv_4$, the unique path from x to v_4 choose b for D-domination. That gives $f_{\leq 2}(3,T) \leq n$. This proves Theorem 4.

The inequality of Theorem 4 is best possible as shown by the following examples.

$$f_{<2}(3, P_7) = 7, f_{<2}(3, P_8) = 8.$$

A path on 9 vertices with a pendent edge from its central vertex has $f_{<2}(3,T) = 10 = n$.

However, it can be proven that $f_{\leq 2}(3, T_{11}) \leq 10$ for any tree on *n* vertices and $f_{\leq 2}(3, T_{12}) \leq 11$ for any tree on 12 vertices. For any tree T_{13} on 13 vertices we have $f_{\leq 2}(3, T_{13}) \leq 12$. So possibly there is a stronger inequality for trees with sufficiently many vertices. Some references to domination in partitioned graphs are given below.

References

- [1] B.L. Hartnell & P.D. Vestergaard: "Dominating sets with at most k components", Ars Combinatoria 74 (2005), 223-229.
- [2] B.L. Hartnell & P.D. Vestergaard: "Partitions and domination in a graph", JCMCC, Journal of Combinatorial Mathematics and Combinatorial Computing 46 (2003), 113-128.
- [3] B.L. Hartnell & D.F. Rall: "Improving some bounds for dominating cartesian products", Discussiones Mathematicae Graph Theory, 23 (2003), 261-272.
- [4] M.A. Henning: "Distance domination in graphs", chapter 12 pp. 321-349 in T.W. Haynes, S.T. Hedetniemi, P.J. Slater: "Domination in graphs, advanced topics", Marcel Dekker, Inc. New York 1998.
- [5] S. Seager: "Partition domination of graphs of minimum degree two". Congressus Numerantium 132, 1998, 85–91.
- [6] Zs. Tuza & P.D. Vestergaard: "Domination in partitioned graphs", Discussiones Mathematicae Graph Theory 22 (2002), 199-210.