
                                                                    

University of Dundee

AI is a Viable Alternative to High Throughput Screening

Published in:
Scientific Reports

DOI:
10.1038/s41598-024-54655-z

Publication date:
2024

Licence:
CC BY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
(2024). AI is a Viable Alternative to High Throughput Screening: a 318-Target Study. Scientific Reports, 14,
Article 7526. https://doi.org/10.1038/s41598-024-54655-z

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.1038/s41598-024-54655-z
https://discovery.dundee.ac.uk/en/publications/e230a975-479c-4459-b8c7-ed37e282a746
https://doi.org/10.1038/s41598-024-54655-z


1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7526  | https://doi.org/10.1038/s41598-024-54655-z

www.nature.com/scientificreports

AI is a viable alternative to high 
throughput screening: a 318‑target 
study
The Atomwise AIMS Program 1**

High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires 
physical compounds, which limits coverage of accessible chemical space. Computational approaches 
combined with vast on‑demand chemical libraries can access far greater chemical space, provided that 
the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse 
virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our 
AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic 
area and protein class. We address historical limitations of computational screening by demonstrating 
success for target proteins without known binders, high‑quality X‑ray crystal structures, or manual 
cherry‑picking of compounds. We show that the molecules selected by the AtomNet® model are novel 
drug‑like scaffolds rather than minor modifications to known bioactive compounds. Our empirical 
results suggest that computational methods can substantially replace HTS as the first step of small‑
molecule drug discovery.

Despite present interest in AI/ML and thirty years of case  studies1–4, computational screening techniques have 
achieved limited adoption within the pharmaceutical industry. A recent investigation into the origins of 156 clini-
cal  candidates5 found that only 1% came from virtual screening; in contrast, over 90% of clinical candidates were 
derived from patent busting or high throughput screening (HTS). Unfortunately, these sources are increasingly 
challenged, given the pharmaceutical industry’s shift to novel target classes, such as proximity-induced protein 
 degradation6, protein–protein  interactions7, and RNA  targeting8.

Currently, HTS is the critical tool in drug discovery, providing most novel scaffolds of recent clinical 
 candidates5,9,10. These initial starting points crucially shape the course of downstream medicinal chemistry efforts, 
as most drugs preserve at least 80% of the scaffold of the initially identified  lead11. Despite these foundational 
contributions, HTS suffers from practical limitations. Principally, HTS, like all physical experiments, requires that 
the compounds exist. However, with the advent of synthesis-on-demand libraries, most commercially-available 
molecules have yet to be synthesized. Still, they can be made and delivered for testing in a matter of  weeks12–14. 
These libraries comprise trillions of  molecules14,15 that exemplify millions of otherwise-unavailable  scaffolds12, 
providing an opportunity to substantially expand the scope and diversity of available chemical space explored 
in the standard drug discovery process.

Computational approaches unlock this opportunity by reversing the requirement to make molecules before 
testing them. When computational experiments replace HTS as the primary screen, molecules are tested before 
they are made, and the results from these experiments can inform which molecules are worth synthesizing. Com-
putational experiments further promise to improve upon HTS in terms of cost, speed, need to produce significant 
quantities of  protein16, effort of miniaturizing assay formats while maintaining experimental  integrity17–19, and 
reducing false-positive and false-negative  rates16,20–23 including artifacts from aggregation, covalent modification 
of the target, autofluorescence, or interactions with the reporter rather than the  target20,24,25. Historical com-
putational techniques such as ligand-based  QSAR26–28, structure-based  docking29,30, and machine  learning31,32 
purport to address these limitations of physical screening methods. Unfortunately, these techniques have not 
replaced HTS; in fact, despite increasing interest in ML, the proportion of drugs discovered with computational 
techniques has remained steady over the past  decades5,10.

Because there will always be individual targets for which one screening technique can identify more hits 
than another, the key question governing if computation is ready to be the default hit discovery technique is 
whether computational screens can identify hits successfully across a broad range of diverse targets. Unfortu-
nately, despite excellent benchmark  accuracies33–35, prospective discovery accuracy remains  modest33,36,37. For 
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example, Cerón-Carrasco38 reported over 700 virtual screens against the SARS-CoV-2 main protease. However, 
when the author sought to validate the computational predictions via physical experiments, the identified com-
pounds were barely active (800uM). Computational approaches have also been limited by a need for extensive 
target-specific training  data31,39–41, a requirement for high-quality X-ray crystal  structures42,43, dependence on 
human adjudication (so-called ‘cherry-picking’)12, or a limited domain of  applicability44–48. Even recent systems 
have demonstrated utility only in identifying minor variants of known molecules for well-studied proteins 
with tens of thousands of known binders in their training  data49,50. Figure 1 exemplifies the striking similarities 
between recently ML-developed compounds and their preceding published chemical matter. This is particularly 
concerning, as a myopic focus on well-studied proteins has been identified as a cause of low productivity in 
pharmaceutical  discovery51.

Nevertheless, we have observed that deep learning approaches are not as limited as these historical examples 
would imply. Using our  AtomNet52–54 screening system, we have previously reported success in finding novel 
scaffolds for targets without known  ligands55–57, X-ray crystal  structures56–60, or  both56,57, as well as challenging 
modulation via protein–protein  interaction59,61 or allosteric  binding60 (see Supplementary Table S1 for exam-
ples). However, individual examples do not demonstrate the overall success of such deep learning systems. We 
therefore report our internal discovery efforts against 22 targets of pharmaceutical interest. We then attempted 
to further assess the generalizability and robustness of deep learning predictive systems by identifying bioactive 
molecules for a diverse set of targets. We partnered with 482 academic labs and screening centers, from 257 
different academic institutions across 30 countries, through our academic collaboration program, the Artificial 
Intelligence Molecular Screen (AIMS). This collaboration afforded an opportunity to prospectively evaluate the 
utility of the AtomNet model as a primary screen across a broad range of diverse, challenging, and realistic tar-
gets. In aggregate, we report successes and failures from 318 prospective experiments and evaluate our AtomNet 
machine-learning technology’s ability to serve as a viable alternative to physical HTS campaigns.

Results
We investigated the ability of deep learning-based methods to identify novel bioactive chemotypes by apply-
ing the AtomNet model to identify hits for 22 internal targets of pharmaceutical interest. We also explored the 
breadth of applicability of this approach by attempting to identify drug-like hits in single-dose screens for 296 
academic targets, of which 49 were followed up with dose–response experiments, and 21 were further validated 
by exploring analogs of the initial hits. The average hit rate for our internal projects (6.7%) was comparable to 
the hit rate for our academic collaborations (7.6%).

Figure 1.  Pairs of representative compounds extracted from AI patents (right) and corresponding prior patents 
(left) for clinical-stage programs  (CDK792,93, A2Ar-antagonist94,95,  MALT196,97,  QPCTL98,99,  USP1100,101, and 
 3CLpro102,103). The identical atoms between the chemical structures are highlighted in red.
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Internal portfolio validation
As part of Atomwise’s internal drug discovery efforts, we used the AtomNet model instead of high-throughput or 
DNA-encoded library (DEL) screening. We screened a 16-billion synthesis-on-demand chemical  space62, which 
is several thousand times larger than HTS libraries and even exceeds the size of most DELs without suffering 
limitations of DNA-compatible  chemistry16,23. Each screen requires over 40,000 CPUs, 3,500 GPUs, 150 TB of 
main memory, and 55 TB of data transfers. We describe the protocol in detail in the Methods section; briefly, 
we computationally scored each catalog compound after removing molecules that were prone to interfere with 
the assays or were too similar to known binders of the target or its homologs. The neural network analyzes and 
scores the 3D coordinates of each generated protein–ligand co-complex, producing a list of ligands ranked by 
their predicted binding probability. Our workflow then clusters the top-ranked molecules to ensure diversity 
and algorithmically selects the highest-scoring exemplars from each cluster. At no point are compounds manu-
ally cherry-picked. The molecules were synthesized at Enamine (https:// enami ne. net) and quality controlled by 
LC–MS to purity > 90%, in agreement with HTS  standards63. Hits were further validated using NMR. We then 
physically tested, on average, 440 compounds per target at reputable contract research organizations (CROs), 
while attempting to mitigate assay interferences such as aggregation and oxidation with standard additives 
(e.g., Tween-20, Triton-X 100, and dithiothreitol (DTT)). We describe the assay protocols in detail in the Sup-
plementary Data S1.

We describe the results of the 22 experiments in Table 1. In 91% of the experiments, we identified single-dose 
(SD) hits that were reconfirmed in dose–response (DR) experiments. The average target DR hit rate was 6.7% 
compared to 8.8% from the SD screens. Only 16 of the 22 projects were structurally enabled with X-ray crystal-
lography; one used a cryo-EM structure, while five used homology models with an average sequence identity 
of 42% to their template protein. The DR hit rate for the cryo-EM project was 10.56%, while the average hit rate 
for the homology models was a similar 10.8%.

We then advanced 14 projects with at least one dose-responsive scaffold to a round of analog expansion. We 
found new bioactive analogs in the SD screen for all projects, with an average hit rate of 29.8%. Further validation 
with DR resulted in an average hit rate of 26% per project, which compares favorably with typical HTS hit rates 
ranging from 0.151 to 0.001%64,65. We note that the size and chemical diversity within and between  physical66 
and  virtual14 HTS libraries prevent an explicit evaluation of the methods over the same chemical space. The 
most potent analogs ranged from single-digit nanomolar, against a kinase, to double-digit micromolar, against a 
transcription factor (Supplementary Table S2). Additionally, we present two internal studies in detail. For Large 
Tumor Suppressor Kinase 1 (LATS1), we identified potent compounds despite the lack of a crystal structure or 
known active compounds. For ATP-driven chaperone Valosin Containing Protein (VCP) we identified novel 
allosteric and orthosteric modulators.

Table 1.  Results from 22 Atomwise internal programs. SD and DR denote single-dose and dose–response, 
respectively.

Gene name
# of compounds 
tested SD hit rate (%) DR hit rate (%)

Potency range 
(IC50/Ki, uM) # of analog tested

SD analog hit rate 
(%)

DR analog hit 
rate (%)

Analog potency 
range (IC50/Ki, 
uM)

ASAH1 376 10.64 7.71 0.3–102 – – – –

AXL 597 12.06 8.21 0.181–71 3200 35.59 33.56 0.079–86

BCL2 422 3.08 0.00 – – – – –

CBLB 422 1.66 0.00 – – – – –

CDK5 786 10.69 10.43 0.049–79 587 47.53 43.61 0.43–76

CDK7 786 10.69 10.56 0.099–60 735 28.44 27.35 0.191–10

GFPT1 384 6.51 2.34 31–86 734 24.93 24.11 1–194

KCNT1 416 9.62 7.69 1.1–30 – – – –

KDM6A 356 3.93 1.12 24–58 – – – –

LATS1 418 18.18 17.94 0.077–82 841 51.72 45.78 0.034–98

MC2R 208 11.54 9.62 16–68 419 39.38 38.42 2.4–97

MDM4 422 2.37 0.47 5.9–29.8 192 18.23 18.23 4.4–90

NT5E 335 1.49 0.30 176 221 9.95 1.81 8.3–65

PARG 334 7.78 7.78 15–250 – – – –

PARP14 576 5.38 2.95 3–96 616 26.46 26.30 0.2–95

POLQ 330 11.82 11.52 1.2–49 559 11.27 8.77 1.5–42

PPARA 422 4.03 0.24 131 211 14.22 3.79 59–95

PPM1D 530 11.89 6.98 4.5–98 – – – –

PRMT5 422 4.03 0.95 7.2–79 415 7.95 5.54 19–114

PRODH2 542 2.77 1.11 15–84 – – – –

TYK2 189 38.10 34.39 0.016–9 457 71.33 60.39 0.006–10

VCP 416 4.81 4.81 2.4–64 738 – – –

https://enamine.net
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Academic validation
In addition to our internal discovery efforts, we performed virtual screens for 296 targets, comprising more than 
20 billion individual neural network scores of generated protein–ligand co-complexes. We purchased, on average, 
85 off-the-shelf commercially available compounds, quality controlled by NMR and LC–MS to > 90%  purity63, 
and plated in a single 96-well plate. The compounds were then physically screened for activity against the target of 
interest in single-dose assays (see Supplemental Data S1 for assay protocols). As with HTS primary screens, addi-
tional characterization studies are required to validate the initially identified hits so, in 49 projects, we performed 
dose–response studies and analog expansion. We present a summary of our results in Supplementary Table S3.

Figure 2 illustrates the distributions of projects across therapeutic areas, protein families, and assay types. 
Every major therapeutic area is represented, with the most frequent area being oncology, comprising 35% of 
projects, followed by infectious diseases and neurology, comprising 27% and 9% of projects, respectively. Break-
ing down the projects by protein families reveals that all major enzyme classes are represented, with enzymes 
comprising 59% of the targets and membrane proteins such as GPCR, transporters, and ion channels, repre-
senting 12% of the targets. Working on a large and diverse set of therapeutic targets requires a heterogeneous 
collection of biological assays; 20% of the assays measured direct binding, whereas 56% and 20% were functional 
and phenotypic.

In 215 projects, we identified at least one bioactive compound for the target in a biochemical or cell-based 
assay. This 73% success rate substantially improves over the ∼50% success rate for  HTS21,67. On average, we 
screened 85 compounds per project and discovered 4.6 active hits, with an average hit rate of 5.5%. For the subset 
of targets where we found any hits, the average was 6.4 hits per project. Thus, we achieved an average hit rate of 
7.6%, which again compares favorably with typical HTS hit rates. See Supplementary Material S1 for all assay 
definitions and conditions. Supplementary Table S4 shows a representative bioactive compound from each of the 
215 successful projects, and Supplementary Fig. S2 shows that the physicochemical properties of the identified 
hits are largely druglike and Lipinski-compliant.

The AtomNet technology robustly identified active molecules, even for targets that lacked prior on-target 
bioactivity data. This ability to identify hits for previously undrugged targets is critical if machine learning-based 
approaches are to replace HTS as the default primary screening approach. For 207 out of the 296 targets (70%), 
the training data available for AtomNet models lacked a single active molecule for that target or any closely 
related protein (i.e., proteins with sequence identity greater than 70%). We interpret this as evidence of the ability 
of properly-architected machine learning systems to extrapolate to novel biological space. Figure 3A illustrates 
the hit rate versus the number of training examples available to our model. Although previous computational 

Figure 2.  The distributions of 296 AIMS projects across assay types used in the primary screen, research areas, 
target classes, and further breakdown to enzyme classes when applicable.
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approaches typically require thousands of on-target training  examples31,39,42, the lack of correlation between train-
ing examples and hit rate  (R2 = 0.0021, p-value = 0.43) shows that our ML algorithm is agnostic to the availability 
of such data. We achieved an average success rate of 75% and hit rates of 5.3% when no training data was available, 
comparable to the 67% and 6.1% success and hit rates achieved when binding data was available in the training 
set. Interestingly, we also do not see a significant increase in hit rate attributable to the proportion of binding 
data available for a target  (R2 = 0.008, p-value = 0.39). This reflects the robustness of the screening protocol and 
the chemical dissimilarity of scaffolds identified by AtomNet models to previously known bioactive compounds.

Next, we assessed the ability of the AtomNet models to identify novel scaffolds. This is a critical capability 
for primary screens, as follow-up assays tend to work within the chemical space uncovered in the initial screen. 
The task of novel scaffold identification appears in two distinct scenarios: (1) when no scaffold is known for the 
target and we wish to identify the first scaffold, and (2) when some scaffolds are known but we wish to identify 
dissimilar scaffolds because novel chemical matter can yield improved selectivity, toxicity, pharmacokinetics, 
or patentability. Performance of AtomNet models for the first scenario, when no scaffolds for the target existed 
in the AtomNet model training data, was evaluated on 70% of the targets, where the training data contained no 
active molecules for the target or its homologs (vide supra). We achieved an average hit rate of 5.3% for targets 
with no training data. For the second scenario, we analyzed the similarity of the identified hits to known bioac-
tive compounds in our training data (Fig. 3B). Our screening protocol ensures that the compounds subjected to 
physical testing are not similar to known active compounds or close homologs (< 0.5 Tanimoto similarity using 
 ECFP468, 1024 bits). We interpret this as evidence of the ability of properly-architected machine learning systems 
to extrapolate to novel chemical space as well. For cases where training data was available (i.e., the Tanimoto 
similarity is above zero), the similarity distribution is close to the one expected by random compound  pairs69. 
The novelty of the small-molecule structures is striking because target-specific machine-learning algorithms 
tend to uncover highly similar analogs for known bioactive  molecules50,70,71. The superior performance of the 
AtomNet model is expected, considering the bias-variance  tradeoff72 in machine learning algorithms. Because 
the AtomNet convolutional neural network is a global model, concurrently trained on millions of bioactivities, 
hundreds of thousands of small molecules, and thousands of protein binding sites, it can reduce both bias and 
variance of the model compared to target-specific  ones33. Specifically, our global model can benefit from multiple 
levels of information captured in the structures of the small molecules, the sequences of the target proteins, and 
the three-dimensional interactions between the two.

AtomNet also successfully identified active molecules when there was no X-ray crystal structure of the recep-
tor. Figure 4A compares the hit rates obtained with 3-dimensional crystal structures, cryo-EM, and homology 
modeling. We did not attempt to select targets based on the similarity to the template but rather used the best 
template available. We observe no substantial difference in success rate between the three, in contrast to the com-
mon challenges in using homology models or low-precision structures for structure-based  discovery42,43,73. We 
achieved average hit rates of 5.6%, 5.5%, and 5.1% for crystal structures, cryo-EM, and homology modeling. We 

Figure 3.  (A) An illustration of the hit rate versus the number of training examples available to our model. 
Each point represents a project, with the x-axis denoting the number of active molecules in our training for 
the target protein or homologs and the y-axis denoting the hit rate of the project (the percentage of molecules 
tested in the project that were active). The model shows no dependence on the availability of on-target training 
examples. For 70% of the targets, the AtomNet model training data lacked any active molecules for that target or 
any similar targets with greater than 70% sequence identity, yet the model achieved a hit rate of 5.3% compared 
to 6.1% when on-target data was available. (B) The distribution of similarities between hits and their most-
similar bioactive compounds in our training data. Our screening protocol ensures that the compounds subjected 
to physical testing are not similar to known active compounds or close homologs (< 0.5 Tanimoto similarity 
using ECFP4, 1024 bits). Because 70% of the AIMS targets had no annotated bioactivities in our training 
dataset, hits identified in these projects have a similarity value of zero.
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also successfully identified active compounds in projects with NMR structures, but the number of such targets 
is too small to make statistically-robust claims.

An interesting demonstration of the robustness of the AtomNet model to low data and poorly characterized 
protein structure is its ability to identify novel hits for traditionally challenging target classes such as protein–pro-
tein interaction (PPI) sites and allosteric binding sites (Fig. 3B). Of the 296 projects, 72 targeted PPIs and 58 
allosteric binding sites. We identified hits for 53 (74%) PPI sites and 46 (79%) allosteric sites, with 13 projects 
representing allosteric sites at PPI interfaces. The average hit rate was 6.4% and 5.8% for PPIs and allosteric bind-
ing sites, respectively. The algorithm’s success in these target classes, which often suffer from poorly characterized 
binding sites and a lack of bioactivity training data, is not surprising because Fig. 2A shows that our model is 
largely not dependent on the availability of on-target training data.

Finally, we investigated whether the algorithm exhibits domain of applicability limitations regarding dif-
ferent protein classes. Figures 4C and 3D illustrate the hit rate observed for each protein and enzyme class. No 
protein or enzyme class falls outside the domain of applicability of the algorithm, demonstrating that machine 
learning-based approaches are well-suited as a default technology for new scaffold identification. The hit rate 
for nuclear receptors is an outlier, with seemingly better accuracy than other classes, but a single data point is 
not statistically meaningful.

Dose–response validation studies
We performed additional validation studies for 49 AIMS projects with at least one reported hit. The objective 
of the validation studies was to establish dose–response (DR) relationships for the single-dose (SD) hits. We 
describe the protocol of the DR experiments in the Methods section. Briefly, we performed dose–response 
measurements for the reported hits from the single-dose primary screens. DR was determined using the same 
assay and screening protocol as the single-dose screens, at the same lab, and with the same personnel. Full dose 
response curves were obtained in most cases, however in some instances a full curve was not obtained, or con-
centration dependent activity was qualitatively determined by testing at concentrations other than that for the 

Figure 4.  Hit rates obtained for the 296 AIMS projects. (A) A comparison of hit rates using X-ray 
crystallography, NMR, Cryo-EM, and homology for modeling the structure of the proteins. Each point 
represents a project with the x-axis denoting the hit rate of the project (the percentage of molecules tested 
in the project that were active). The number of projects of each type is given in parentheses. We observed 
no substantial difference in success rate between the physical and the computationally inferred models. We 
achieved average hit rates of 5.6%, 5.5%, and 5.1% for crystal structures, cryo-EM, and homology modeling, 
respectively. The number of projects using NMR structures is too small to make statistically-robust claims. (B) A 
comparison of hit rates observed for traditionally challenging target classes such as protein–protein interactions 
(PPI) and allosteric binding. Of the 296 projects, 72 targeted PPIs and 58 allosteric binding sites. The average 
hit rates were 6.4% and 5.8% for PPIs and allosteric binding, respectively. (C) Comparison of hit rates observed 
for different target classes and (D) enzyme classes. No protein or enzyme class falls outside the domain of 
applicability of the algorithm.
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primary screen. The distribution of assay types and target classes for the projects selected for DR validation also 
was similar to that of the AIMS projects (Supplementary Fig. S3).

We describe the results of the DR experiments in Supplementary Table S5. In 84% of the experiments, we 
validated at least one SD hit and got a DR readout. The median activity for the total of 144 DR measurements 
was 15.4 µM (which compares favorably with  HTS25,74), of which 13% showed sub-µM potency. Overall, we 
achieved an average of 2.8 hits per validation study, resulting in a hit rate of 51%. The false positive rate of 49% 
observed in these experiments is favorably compared to HTS’ which can be as high as 95%20,75. This difference 
in false positive rates may stem from the comparative ease and robustness of the low-throughput assay format 
we employed versus high-throughput assay. Representative dose–response curves for each of the 49 projects are 
shown in Supplementary Table S6.

Analog validation studies
For a subset of 21 projects, we further validated hits with DR activity by testing analogs of the active compounds. 
In those cases, we used the AtomNet platform to search a purchasable space for additional bioactive compounds 
chemically analogous to the SD hits. We selected up to 35 additional compounds for testing, including the active 
compounds from the SD screens.

We describe the results of the analoging experiments in Supplementary Table S7. We identified additional 
analogs with DR readouts for 16 projects (76%). The median DR activity of the 154 validated analogs was 7.4 µM 
compared to the median of 15.4 µM of the parent compound (Supplementary Fig. S4).

Methods
Screening protocols
AIMS screening protocol
We began by evaluating screening libraries of millions of catalog compounds from commercial vendors MCule 
(10 M)76 and Enamine in-stock (2.5 M)77. We then selected a drug-like subset via algorithmic filtering by applying 
Eli Lilly medicinal chemistry  filters78 and removing likely false positives, such as aggregators, autofluorescers, 
and  PAINS79 (see Fig. 2 for the distributions of drug-like properties of the SD hits). The resulting library was 
virtually screened against the target of interest, removing any molecules with greater than 0.5 Tanimoto simi-
larity in ECFP4 space to any known binders of the target and its homologs within 70% sequence identity. For 
kinase targets, we extend the exclusion to the whole kinome. The binding site was defined using co-complexes, 
mutagenesis studies, co-complexes of homologs, or by identifying potential sites using ICM Pocket  Finder80 
or  Fpocket81. Some were orthosteric, while others were allosteric, or as yet unestablished biological functions. 
In 64 cases, we built homology models using the closest sequence, with an average sequence similarity of 54%. 
We clustered the top 30,000 molecules using the  Butina82 algorithm with a Tanimoto similarity cutoff of 0.35 in 
ECFP4 space, selecting the highest-scoring exemplars. Additional computed physico-chemical property filters 
were applied as needed. At no point were compounds cherry-picked. We purchased, on average, 85 compounds, 
quality controlled by LC–MS to > 90% purity, generally dispensed as 10 mM DMSO stocks plated in a single 
96-well plate. In addition, two vials of DMSO-only negative controls were included before scrambling the com-
pound locations on the plate, by the supplier, for blinded experimental testing. To further control for potential 
artifacts, we removed compounds that showed measurable activity toward more than one target from the analysis.

Dose–response and analoging validation screening protocol
We considered advancing AIMS projects to additional validation studies based on the ability to reorder at least 
some of the initial SD hits, the availability of chemical analogs in the screening library to the initial hits, the 
capability to perform dose–response experiments, and the ability of the collaborators to perform additional 
screens and return results promptly.

We performed two sets of experiments: DR validation of the SD hits from AIMS and analoging with DR 
readouts. We performed DR measurements using the same assays and protocols as SD.

We performed an analoging round by identifying, for each AIMS hit, its 1000 nearest neighbors from the 
Mcule  library76, using molecular fingerprints  similarity68. We augmented the set with additional analogs using 
 substructure83 or  FTrees84 searches, if needed. We used an AtomNet regression model, trained to predict quantita-
tive bioactivities (e.g., IC50 or Ki), to score and rank the analogs. A set of 20—35 compounds from the analogs 
space of an initial hit were then obtained based on similarity and top scores from the AtomNet model for testing.

Internal portfolio screening protocol
We followed a protocol similar to the AIMS screen with a few deviations. First, we used the Enamine REAL 
library of over 16 billion  compounds62. Second, we used an ensemble of six AtomNet models for the screens. 
Last, on average, we selected a set of 440 compounds for testing.

The analoging protocol is similar to the AIMS validation studies, with the following deviations. First, we 
used the Enamine REAL library for analog search. Second, we selected an average of 676 analogs per project. 
Third, the analog search protocol was more complex, pulling nearest neighbors based on maximum common 
substructure and graph edit distance in addition to the ECFP4-based one.

AtomNet® model architecture
We previously published in  detail52,53,55,58,59,61,85,86 during the course of the AIMS program, and we described the 
most recent version of the AtomNet model architecture in detail  elsewhere53. We provide a brief description 
below.
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The AtomNet model is a Graph Convolution Network architecture with atoms represented as vertices and 
pair-wise, distance-dependent, edges representing atom proximities. The input is a graph network of features 
characterizing the atom types and topologies of an ensemble of protein–ligand complexes. Receptor atoms more 
than 7 Å away from any ligand atom are excluded from the complexes, and each node in the graph is associated 
with a feature vector representing the atom type using Sybyl  typing87.

The network has five graph convolutional blocks. In the first two graph convolution blocks, all ligand and 
receptor atoms 5 Å apart from each other are considered, and 64 filters per block are used. In the third block, the 
cutoff radius and filters are increased to 7 Å and 128, respectively. Only ligand features in the last two blocks are 
considered without changing the threshold cutoff or the number of filters. Finally, the sum-pool of the ligand-
only layer creates a 3-task layer on top of the network. That multi-task layer predicts three endpoints: bioactivity, 
pose quality, and a physics-based docking  score88.

We trained an ensemble of 6 models, splitting the training data into sixfold cross-validation sets based on a 
protein sequence similarity cutoff of 70%. Then, each model in the ensemble was trained on a different fold for 10 
epochs, using the ADAM  optimizer89 with a learning rate of 0.001, and targets were sampled with replacement, 
proportional to the number of active compounds associated with that target.

Data
All data generated or analyzed during this study are included in this published article (and its supplementary 
information S1 files). Boxplots illustrations show the quartiles (Q1 and Q3) of the dataset while the whiskers 
extend to show the rest of the distribution, except for points that are determined to be “outliers” (1.5 × of the 
inter-quartile range, as implemented in the Seaborn and Matplotlib  toolboxes90,91).

Conclusion
HTS is the most widely-used tool for hit discovery for new targets. Unfortunately, all physical screening methods 
share the critical limitation that a molecule must exist to be screened. Computational methods enable a funda-
mental shift to a test-then-make paradigm. In this work, we report on 318 projects (22 internal projects and 296 
collaborations) where we used the AtomNet platform as the primary screening tool coupled with low-throughput 
physical screens as validation. The AtomNet technology can identify bioactive scaffolds across a wide range of 
proteins, even without known binders, X-ray structures, or manual cherry-picking of compounds. Our empirical 
results suggest that machine learning approaches have reached a computational accuracy that can replace HTS 
as the first step of small-molecule drug discovery.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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