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Abstract—Currently, most medical institutions face the chal-
lenge of training a unified model using fragmented and isolated
data to address disease prediction problems. Although federated
learning has become the recognized paradigm for privacy-
preserving model training, how to integrate federated learn-
ing with fMRI temporal characteristics to enhance predictive
performance remains an open question for functional disease
prediction. To address this challenging task, we propose a novel
Federated Graph Spatio-Temporal (FedGST) framework for
brain functional disease prediction. Specifically, anchor sampling
is used to process variable-length time series data on local clients.
Then dynamic functional connectivity graphs are generated via
sliding windows and Pearson correlation coefficients. Next, we
propose an InceptionTime model to extract temporal information
from the dynamic functional connectivity graphs on the local
clients. Finally, the hidden activation variables are sent to a global
server. We propose a UniteGCN model on the global server to
receive and process the hidden activation variables from clients.
Then, the global server returns gradient information to clients for
backpropagation and model parameter updating. Client models
aggregate model parameters on the local server and distribute
them to clients for the next round of training. We demonstrate
that FedGST outperforms other federated learning methods and
baselines on ABIDE-1 and ADHD200 datasets.

Index Terms—Spatio-Temporal, Federated Learning, Brain
Functional Disease, Graph Learing

I. INTRODUCTION

Brain function diseases such as Autism Spectrum Disor-
der (ASD) and Attention Deficit and Hyperactivity Disorder
(ADHD) significantly impair patients’ cognition, communica-
tion, and behavior, posing certain challenges to their families
and society [1]. Recently, the rapid development of Functional
Magnetic Resonance Imaging (fMRI) provides technical sup-
port for the diagnosis of functional brain diseases. Researchers
use similarity metrics between blood oxygen signals in brain
regions of fMRI to construct Functional Connectivity (FC)
[2]. The flattened FC are then used to explore brain network
abnormalities in patients.
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Since FC fluctuates over time, it is important to use dynamic
FC to predict functional brain disorders [3], [4]. Spatio-
temporal graph networks [4], due to their powerful modeling
ability for multivariate time series, make them effective for
time series forecasting and classification, even in medical-
related fields. So far, disease prediction based on spatio-
temporal networks has achieved significant progress [5]-[7].
For example, Campbell et al. [5] proposed a Dynamic Brain
Graph Structure Learning (DBGSL) network, which constructs
dynamic graph adjacency matrices based on spatial embed-
dings of brain regions learned from blood oxygen signals
using sliding windows. The classification performance and
interpretability are further improved by incorporating temporal
attention and learnable edge sparsity. Tiago et al. [7] proposed
a novel deep neural network architecture that combines Graph
Neural Network (GNN) and Temporal Convolutional Network
(TCN) to learn from spatial and temporal information in rs-
fMRI data in an end-to-end manner, which was validated
on the UK Biobank dataset. The research by Pati et al. [§]
demonstrates that training robust and accurate models requires
a large amount of data, and the diversity of the data affects
the model’s ability to generalize to “out-of-sample” cases. To
address this issue, data from many sites have to be collected
and trained together, a method called centralized learning.

However, the existing state-of-the-art spatio-temporal pre-
diction models are not applicable for real-world applications
as data are not always publicly accessible due to data privacy
issues. Instead, by sharing model parameters from different
sites, Federated Learning (FL) allow models to achieve perfor-
mance similar to those who trained with centralized learning.
Recently, some approaches w.r.t. FL. and Split Learning (SL)
[9] have been proposed. For example, Peng et al. [10] proposed
FedNI, a disease prediction model based on federated graph
neural network embeddings, which uses GAN to train and
generate missing nodes and edges to repair local networks,
then uses FL to train a global GCN node classifier, validated
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on ABIDE-1 and ADNI datasets. The accuracy reached 66.7%
and 75.8%, respectively. Meng et al. [11] proposed a model
of Cross-Node Federated Graph Neural Networks (CNFGNN)
for spatio-temporal data modeling based on SL, which de-
composes temporal and spatial dependencies using encoder-
decoder models on each client, extracts temporal features
locally using Gate Recurrent Unit (GRU), and captures spatial
dependencies across clients on the server using GNN. Thapa
et al. [12] combined FL and SL to propose SplitFed, which
first splits the ResNet18 model into two parts, with clients and
server holding one part each, clients learn hidden features of
input images and send to server model, server then returns
gradients to client models for parameter update, finally client
models perform one round of parameter aggregation and
dispatch to individual clients for next round of training.

Considering the spatio-temporal dependence of multi-site
data, we propose Federated Graph Spatio-Temporal (FedGST)
framework, the main contributions of FedGST can be summa-
rized as follows:

1) We propose a novel FedGST framework. It introduces
a split learning mechanism to deploy a temporal model
on the client side and a spatial model on the server side,
which enhances the models’ decoupling capability.

2) We proposed to use the InceptionTime network to extract
the temporal information of dynamic FC.

3) We propose a United Graph Convolutional Network
(UniteGCN) which learns the differences between multi-
ple graph convolution methods through cross-layer atten-
tion, and fuses the output features for disease prediction.

II. METHODOLOGY
A. Overview

The framework of our proposal Federated Spatio-Temporal
Network (FedGST) is shown in Fig. 1. It is mainly divided into
a temporal model on the client side and a spatial model on
the server side. Specifically, various clients use the temporal
model InceptionTime to extract temporal information from
the subject’s dynamic brain functional networks and send the
latent variables to the server. The spatial model on the server
performs forward propagation and returns the gradients to the
client for updating the model parameters. The client aggregates
the model parameters on the local server and distributes them
to each client for the next training.

B. Client Temporal Model

1) Data Preprocessing: Since the length of fMRI data
collected at each site varies, we propose an anchor point
sampling algorithm. By specifying the number of anchor
points M, M will be uniformly distributed in the fMRI time
series. The sampling stride is automatically determined by the
ratio of time series length to M. Each sampling interval will
generate a mean value, so the time series will have a length of
M. Then multiple time series segments are extracted through
sliding window operations. Finally, dynamic FC is obtained
by calculating functional connections FC between brains using

Pearson Correlation. The formula for calculating the interval
length of anchor point sampling is as follows:

(D
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where Lgmple represents the sampling interval length, L
represents the length of the brain region time series, ||
represents the round down operation.

Let X; = {z1,%2,23,...2} be the brain region time
series with a length of M, we apply a sliding window to it to
generate dynamic FC. Let the window size be Liy, the step
size be Lgep, then the i-th window can be represented as:

W; = {xi—l * leep +1,... y Li—1 * Lstep + Linter} 3 (2)

where ¢ slides from 1 to [N — w)/Lgep| + 1. For the brain
region time series in each window W, we calculate the Pearson
correlation coefficients to obtain a FC graph:

EC (ri,r;) = E (rirj) — E(r;) E(r;) 3
- E(r}) — E*(r:) E(T?)_EQ(M)7

where FC (7, 7;) represents the FC between brain regions r;
and r;, r; and r; are the time series of brain regions ¢ and j,
respectively. £ is the mathematical expectation.

2) InceptionTime: For the dynamic FC Xy
obtained through preprocessing, where N is the number of
samples, 7" is the number of time points, and F' is the number
of FC. We input Xg. € RVXTXF into the InceptionTime
model. As shown in Fig. 1, the InceptionTime model consists
of three InceptionTime blocks, a global pooling layer, a
fully connected layer and a softmax layer. The InceptionTime
Blocks are connected in a residual manner.

Fig. 2 illustrates the internal details of the InceptionTime
Block. The first major component of the Inception module is
called the bottleneck layer. This layer performs an operation
of sliding f filters of length 1 with a stride of 1. This will
convert the time series from X with F' dimensions to X with
f dimensions, thereby significantly reducing the dimension
of the time series as well as the complexity of the model
and alleviating the overfitting problem on small datasets. The
second major component of the Inception module is sliding
multiple filters of different lengths over the same input time
series simultaneously. For example, in Fig. 2, three different
convolutions with lengths [ € (4,8,16) are applied to the
input X. In addition, to make our model invariant to small
perturbations, we introduce another parallel MaxPooling oper-
ation, followed by a bottleneck layer to reduce the dimension.
Finally, the outputs of each independent parallel convolution
and max pooling are concatenated to form the output X.

c RNXTXF

3
X' « Softmax(W - GAP(Y ~ X + g(X))), S
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Fig. 1. The network architecture of the proposed FedGST. Client Temporal Model: the fMRI data are processed through anchor sampling, sliding window,
and Pearson Correlation to generate the dynamic FC. Activation X’ is then generated by the InceptionTIme model. Server Spatial Model: the server accepts
activations from each client and uses UniteGCN to extract spatial information from the samples for disease prediction.

where ¢(X) is the output of the InceptionTime Block,
X + g(X) represents the three residual networks, GAP is
global average pooling, W is the learnable parameter of the
fully connected layer. Finally, the fMRI temporal information
X' € RN*4 representing each sample is obtained from the
InceptionTime model outputs.

C. Server Spatial Model

1) UniteGCN: The central server receives the last layer
activation variables X’ from the client model, generates the
population graph G of the subjects through the following
formula,

(x)" X
= 105, (5)
2 [ {15

where X! represents the temporal information of the i-th
sample.

Then inputs population graph G and activation variables X’
into the spatial model UniteGCN. UniteGCN consists of two
UniteGCN Layers. The internal details of UniteGCN Layer
are shown in Fig. 1. Specifically, X’ first go through Dropout

= ;
&L L

Convolution

MaxPooling

Output
time series

Subject Bottleneck

Fig. 2. The network architecture of the InceptionTime block.

to enhance model generalization, and then uses three different
graph convolution methods, GraphConv [13], SAGEConv [14]
and TransformerConv [15], to aggregate and learn informa-
tion from X’ to obtain outputs 2y, Zo, Z3. Next, cross-layer



attention is used to calculate the attention scores between
71,25, 73 in pairs, and multiply them with Z;, 25, Z3 to
obtain 71, Z}, Z4. The formula for cross-layer attention can
be expressed as follows:

Q1,Q2,Q3 =Wy - (21,22, 7Z3), (6)
K1, Ko, K3 =Wy, - (21,25, Z3), @)
V17‘/27‘/3:WU'(Z17Z27Z3)' (8)

71, Zs, Z3 generate @, K,V through three learnable param-
eters Wy, Wy, W, respectively, and then calculate the attention
scores between each other. The formula is shown as follows:

b __ o®la - (5)T/7] ©
nij = - - )
7 exp g - (k) T/7]

where P, ;; indicates how much attention Z; pays to Z; in the
n-th sample, that is, their dependence relationship. 7 is a pro-
portional factor that controls the hardness of attention, usually
set to the square root of V/d. Then, after normalizing P, ;;
with sofamax, it is multiplied with V3, V5, V3 to obtain the
output results Z1, Z4, Z% after cross-layer attention of different
convolution methods. Finally, concat is used to concatenate
71, Z4, Z% and pass them through a fully connected layer to
learn features and obtain the output X”'.

The second UniteGCNLayer sets the output dimension of
X" to 2 to obtain the probability of disease prediction, and
then calculates the loss using cross-entropy loss, the formula
is shown below:

N
L==> (yiln (&) + (1 —y)In(1-2)),

=1

(10)

where y; is the label of the ¢-th sample, Z; is its corresponding
predicted probability score. Finally, the global server sends the
gradients to the client for backpropagation and executes model
parameter updates.

ITII. EXPERIMENTS AND RESULTS
A. Dataset and Experimental Settings

We evaluate our method FedGST using two datasets
(ABIDE-1 and ADHD200). For ABIDE-1, we use the identical
sample size as in the study [16], which consisted of a total
of 871 subjects, including 468 normal controls (NC) and 403
ASD patients. For ADHD200, there are a total of 775 subjects,
consisting of 491 normal controls and 284 ADHD patients.
We perform preprocessing operations using Dpabi [17]. The
main processes include time point correction, head motion
correction, skull stripping from structural images, alignment
between structural MRI (sMRI) and fMRI, normalization to
MNI space, etc.

We use four common metrics to evaluate the performance
of our model: accuracy (ACC), area under the curve (AUC),
specificity (SPE), and sensitivity (SEN). We use k-fold cross-
validation (k=5) and report the mean and standard deviation
of the experimental results after running 5 times.

The hyperparameter settings for the experiments are as
follows: learning rate = 0.001, weight decay = 0.0005, number
of epochs = 150, number of clients = 4.

B. Comparison with some existing methods

We compare our method with state-of-the-art federated
learning methods of the same type and some baseline methods.
Specifically, we include four advanced federated learning
methods: MoE [18], SFL [12], CNFGNN [11] and FedNI [10],
as well as four FL-based baseline methods: FedMLP, FedGCN,
FedSage, and LSTN+GCN.

The experimental results on the ABIDE-1 dataset are shown
in Table 1. It can be seen that FedGST outperforms on three
metrics: ACC, AUC, and SEN, with only FedSage surpassing
FedGST on SPE. However, FedGST has the smallest standard
deviation, indicating that FedGST is more stable than FedSage.

The experimental results on the ADHD200 dataset are
shown in Table 1. It can be seen that FedGST outperforms
on three metrics: ACC, AUC, and SPE, with only FedSage
surpassing FedGST on SEN. The accuracy performance of
the four advanced methods is generally higher than that of
the baseline methods, except for SFL. This may be because
SFL processes the brain functional networks into image inputs
and is unable to effectively extract features. In contrast, Table
1 shows that the accuracy of the four advanced methods is
generally weaker than the four baseline methods. We assume
this may be related to the distribution characteristics of the
data and the imbalance between the two datasets.

In Table 1, the four advanced methods generally outperform
the four baseline methods in terms of accuracy. This may be
because the hyperparameters used in the experiments happened
to be well-suited for the advanced methods. This interesting
phenomenon also indicates significant differences between
the ABIDE-1 and ADHD200 datasets. This could arise from
differences in biomarkers between the two disorders, including
variations in disease-related functional brain regions.

C. Ablation study

To assess the effectiveness of various modules in FedGST,
we performed ablation experiments on the InceptionTime and
UniteGCN modules.

The ablation results on ABIDE-1 are shown in Table 2.
LSTM+GCN is the backbone network, representing the basic
temporal model + spatial model, with an accuracy of 65.81%.
On the basis of backbone, we replace LSTM with Inception-
Time model, and the accuracy is improved by 0.7%. Then, we
replace GCN with UniteGCN, and the accuracy improved by
3.02% to 69.53%, proving that UniteGCN is more effective
than the standard GCN.

The ablation results on ADHD are shown in Table 3.
LSTM+GCN is the backbone network, with an accuracy of
67.76%. On the basis of backbone, we replace LSTM with
InceptionTime, resulting in an improvement in accuracy by
2.37%. Then, we replace GCN with UniteGCN, and the
accuracy is improved by 1.14% to 71.27%, also proving
UniteGCN is more effective than standard GCN.



TABLE I
THE PERFORMANCE COMPARISON OF SOTA METHODS.

Method ASD vs NC \ ADHD vs NC
ACC (%) AUC (%) SEN (%) SPE (%) ACC (%) AUC (%) SEN (%) SPE (%)
FedMLP 66.63 + 3.24 68.60 &394 7281 + 1049 5947 + 11.23 66.05 + 3.83 64.04 £2.59 56.88 £ 1049 7541 £5.71
FedGCN 6593 + 348 67.59 + 4.17 73.71 £ 643 56.65 + 5.21 66.84 + 1.53 62.75 £398 40.79 + 11.96 8241 + 7.58
FedSage 66.51 £ 3.65 67.92 &+ 4.00 67.93 £+ 6.04 65.00 + 8.33 66.18 £ 4.21 69.24 393 63.38 + 9.88 67.05 £ 12.03
LSTM+GCN  63.84 4+ 1.74  66.20 4+ 2.82 69.83 £+ 6.19 56.85 + 9.34 67.11 £3.79 69.80 £ 4.56 49.69 + 1031 77.36 &+ 1.76
MoE 65.70 £ 3.87 67.89 4+ 4.03 74.51 £ 8.07 55.53 £ 7.59 68.42 +£220 6693 £297 4924 +11.82 78.82 &+ 7.80
SFL 62.67 £ 2.64  60.31 &+ 3.69 70.68 £+ 9.80 53.57 £ 10.03 6421 £0.89 54.60 £ 6.15 8.62 £+ 7.79 95.55 + 4.21
CNFGNN 63.95 +£ 1.84  63.88 &+ 3.60 69.75 £+ 3.38 57.46 £ 5.33 68.82 +£ 234 66.89 £ 4.31 48.34 £+ 5.19 80.59 £+ 1.22
FedNI 65.81 £6.97 6585+ 890 7893 + 11.87 51.20 +26.29 69.74 + 3.09 66.89 + 2.44  50.23 £+ 7.47 80.83 £ 3.33
FedGST 69.53 + 145 7335 + 2.17 74.89 £ 6.65 63.32 £+ 8.35 71.27 =+ 1.75  70.79 + 7.92  60.80 + 8.58 79.31 £ 5.52
TABLE II
THE PERFORMANCE OF MODULE ABLATION OF FEDGST oN ABIDE-1.
InceptionTime  UniteGCN ACC (%) AUC (%) SEN (%) SPE (%) F1 (%)
65.81 £ 3.44  65.16 &+ 2.85 74.03 £+ 4.19 56.28 + 4.89 69.92 + 3.13
v 66.51 £ 248 70.07 £ 3.01 7091 £ 10.06 61.27 &£ 11.55 69.21 + 3.55
v v 69.53 + 145 7335 + 2.17 74.89 + 6.65 63.32 + 8.35 72.43 + 2.09
TABLE III
THE PERFORMANCE OF MODULE ABLATION OF FEDGST oN ADHD200.
InceptionTime  UniteGCN ACC (%) AUC (%) SEN (%) SPE (%) F1 (%)
67.76 £ 2.73  69.64 + 439 4798 + 1022 79.33 +3.72 51.87 £+ 6.84
v 70.13 £ 2.59 70.214+ 3.36 48.74 £ 10.79 8246 + 6.75 5395 + 6.82
v v 71.27 £ 1.75  70.79 + 3.92 60.80 + 8.58 79.31 £552 6145 + 7.89

From the ablation results on both datasets, we can see that
the two proposed modules are all effective, and can be com-
bined together nicely to produce good results. Additionally, on
ABIDE-1, the performance improvements from InceptionTime
are limited to only 0.7%, suggesting that InceptionTime is
slightly better than LSTM. The improvements from UniteGCN
on ABIDE-1 are much higher than on ADHD200, differing by
1.88%. This not only demonstrates the efficacy of UniteGCN
but also further validates the differences between the ABIDE-1
and ADHD200 datasets.

IV. CONCLUSION

In this study, we propose a novel framework called Fed-
erated Graph Spatio-Temporal (FedGST) for brain func-
tional diseases. The experimental results demonstrate that our
method outperforms existing approaches, and ablation studies
validate the effectiveness of each component. There is a
limitation in this study. Since the sample sizes vary across
sites, models cannot be trained independently using each site’s
data. Therefore, we mix and average data from all sites when
assigning it to clients for training, which does not accurately
simulate real-world conditions.
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