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Abstract

Introduction:The primary objective of this paper is to (1) provide a summary of human

studies that have used brain derived neurotrophic factor (BDNF) as a biomarker, (2)

review animal studies that help to elucidate the mechanistic involvement of BDNF in

the development and maintenance of neuropathic pain (NP), and (3) provide a critique

of the existing measurement techniques to highlight the limitations of the methods

utilized to quantify BDNF in different biofluids in the blood (i.e., serum and plasma)

with the intention of presenting a case for themost reliable and valid technique. Lastly,

this review also explores potential moderators that can influence the measurement of

BDNF and provides recommendations to standardize its quantification to reduce the

inconsistencies across studies.

Methods: In this manuscript we examined the literature on BDNF, focusing on its role

as a biomarker, its mechanism of action in NP, and critically analyzed its measurement

in serum and plasma to identify factors that contribute to the discrepancy in results

between plasma and serumBDNF values.

Results: A large heterogenous literature was reviewed that detailed BDNF’s utility as

a potential biomarker in healthy volunteers, patients with chronic pain, and patients

with neuropsychiatric disorders but demonstrated inconsistent findings. The literature

provides insight into themechanism of action of BDNF at different levels of the central

nervous system using animal studies. We identified multiple factors that influence the

measurement of BDNF in serum and plasma and based on current evidence, we rec-

ommend assessing serum BDNF levels to quantify peripheral BDNF as they are more

stable and sensitive to changes than plasma BDNF.

Conclusion: Although mechanistic studies clearly explain the role of BDNF, results

from human studies are inconsistent. More studies are needed to evaluate the

methodological challenges in using serumBDNF as a biomarker in NP.
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The International Association for the Study of Pain defines neu-

ropathic pain (NP) as “pain caused by a lesion or disease of the

somatosensory nervous system” (Loeser & Treede, 2008). It can be ini-

tiated by nerve, brain, or spinal cord injury and represents a broad

category of pain syndromes encompassing a wide variety of peripheral

of central disorders. Previous epidemiological studies have revealed

that NP affects 7−10% of the general population (Bouhassira et al.,

2008; Colloca et al., 2017; Torrance et al., 2006; vanHecke et al., 2014),

accounting for almost 20–25% of patients with chronic pain (Bouhas-

sira et al., 2008; Dahlhamer et al., 2018). It is more frequent in older

individuals (> 60 years old), more common in women than in men

and characterized by unpleasant symptoms, such as shooting or burn-

ing pain, numbness, and allodynia (Bouhassira, 2019; Bouhassira et al.,

2008; Torrance et al., 2006). It is also associatedwith a high level of dis-

ability (Attal et al., 2011; Doth et al., 2010; Gálvez et al., 2007) and has

a high socioeconomic cost (Attal et al., 2011; Jensen et al., 2007; B. H.

Smith et al., 2007; van Hecke et al., 2014). Most importantly, current

drug treatment is inadequate due to both poor efficacy and tolerabil-

ity (Bannister et al., 2020; Cavalli et al., 2019; Taneja et al., 2017). A

recent report byMaher and colleagues using clinical trial data from the

last 20 years reported that theprobability of successful drug treatment

for NP was only 7.1% (Maher et al., 2022). Identifying effective treat-

ments to address the associated severe pain and disability is limited by

the lack of understanding of the underlying pathophysiological mech-

anisms (Cavalli et al., 2019; Finnerup et al., 2020; Price & Gold, 2018;

Szok et al., 2019). The identification of a biomarker that links the signs

and symptomsofNP to pathophysiologicalmechanisms,would provide

decisive information relevant to drug-discovery and development. This

review examines the literature on brain derived neurotrophic factor

(BDNF) to determine the physiological validity for utilizing BDNF as

a biomarker, and the possibility of a pragmatic approach to measuring

BDNF peripherally in the blood.

The subjective self-reporting of pain has played a key role in the

diagnosis and treatment of NP (Bouhassira, 2019;Mulvey et al., 2014).

However, this assessment is complicated by individual differences in

sensitivity (Coghill & Eisenach, 2003) and the lack of reliability in these

measures that often include the evaluation of the impact of NP on

activities of daily living and quality of life (S. M. Smith et al., 2016).

This highlights the critical need for objective data to assess pain and

support the management of pain perception. The identification of a

biomarker(s) that could complement patient reporting and serve as a

correlate to the neurobiological processes underlying painful condi-

tions would be an important tool in identifying effective treatments.

This could also support the aim of reliably diagnosingNP. Furthermore,

biomarkers that are directly related to the presence and severity of NP

could lead to (a) successfulmechanism-based treatment approaches to

alleviate the need for long-term use of opioids, (b) significant reduction

in the healthcare costs worldwide, and (c) improvements in the quality

of life of NP patients.

The FDA (FDA-NIH Biomarker Working Group, 2016) describes a

biomarker as a “defined characteristic that is measured as an indica-

tor of normal biological processes, pathogenic processes, or responses

to an exposure or intervention, including therapeutic interventions.”

Biomarkers that have been studied in NP include plasma and cere-

brospinal fluid biomarkers (lipidmediators, nerve growth factor, BDNF,

tumor necrosis factor alpha, interleukins, and neurotransmitters like

gamma-aminobutyric acid and glutamate) (Bönhof et al., 2018; Gunn

et al., 2020), skin biopsy (Bönhof et al., 2018; Sisignano et al., 2019; S.

M. Smith et al., 2017), genetic biomarkers (point mutations in the gene

encoding of TRPV1 and TRPA1, SCN10A and SCN11A), (Bönhof et al.,

2018; Sisignano et al., 2019), sensory biomarkers (quantitative sensory

testing) (Sisignano et al., 2019; S. M. Smith et al., 2017), and imaging

biomarkers (resting-state brain activity, evoked activity with ongoing

clinical pain) (Miesen et al., 2019; Sisignano et al., 2019; S. M. Smith

et al., 2017).

For approximately two decades, BDNF has attracted attention as

a potential biomarker for NP because it promotes neuronal growth,

maintenance, survival, and neurogenesis (Barde et al., 1982; Binder

& Scharfman, 2004; Leibrock et al., 1989; Park & Poo, 2012; H. Zhao

et al., 2017). BDNF is a member of the neurotrophic factor family (H.

Zhao et al., 2017), has been identified as an important pain modula-

tor (Merighi et al., 2008; Pezet et al., 2002; Vanelderen et al., 2010)

and it regulates central and peripheral synaptic plasticity (Binder &

Scharfman, 2004; Panja & Bramham, 2014; Park & Poo, 2012; H. Zhao

et al., 2017). BDNF synthesis is initiated from pre-pro-BDNF, which

is cleaved to mature BDNF, and is secreted both by presynaptic and

postsynaptic terminals with its secretion dependent on neuronal activ-

ity (Autry & Monteggia, 2012; Binder & Scharfman, 2004; Park &

Poo, 2012). It has also been implicated in neuropathic (Ding et al.,

2015; Pezet & McMahon, 2006; Pezet et al., 2002; Tateiwa et al.,

2018; Wu et al., 2021; H. Zhang et al., 2017; X. Zhang et al., 2011)

and inflammatory pain mechanisms (Ishikawa et al., 2015; Sikandar

et al., 2018; J. Zhao et al., 2006) because of its important role in

sensory neurotransmission in spinal and supraspinal level nociceptive

pathways.

It is plausible that BDNF initiates compensatory processes that

facilitate recovery or alleviate the adverse chronic effects of injury or

disease to the central and peripheral nervous system. Furthermore,

BDNF can act as a pain mediator and modulator at different sites

in the central nervous system including dorsal root ganglion, spinal

cord, and supra-spinal sites. Lastly, because of its involvement at the

dorsal horn level, previous studies have also implicated its role in cen-

tral sensitization (Alles et al., 2021; Biggs et al., 2010; Sikandar et al.,

2018; Vanelderen et al., 2010). Furthermore, long-term BDNF expo-

sure increases the excitability of the dorsal horn and mediates central

sensitization of the dorsal horn, which initiates changes in synaptic

functioning thatmaybe responsible for thegenerationofNP (Dai&Ma,

2014; Kerr et al., 1999; P. A. Smith, 2014).

Although BDNF has been proposed as a candidate biomarker of

chronic pain, especially NP, there remains a significant gap in our

understanding of the physiological mechanisms that lead to changes

in BDNF levels measured peripherally. This is partially due to the dif-

ficulty in assessing central nervous system BDNF level. In addition, an

understanding of this multifactorial experience could lead to the more

effective use of personalized medicine approaches to pain manage-

ment. The purpose of this review is to (a) summarize current findings
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from human studies that have utilized BDNF as a potential biomarker,

(b) briefly outline the role of BDNF in NP by summarizing results from

animal studies, and (c) provide a critique of the existing measurement

techniques used to assessBDNFwith the intentionof presenting a case

for themost reliable and valid techniques.

As an initial step, Table 1 provides the study characteristics and find-

ings for articles that have investigated group differences at baseline

(Table 1a) and group differences across time following an intervention

(Table 1b) utilizing BDNFas a biomarker in healthy volunteers, patients

with chronic pain, and patients with neuropsychiatric disorders.

It is evident fromthe information inTable1a, b thatBDNF is typically

measured either in serum or in plasma. In addition, studies quantify

concentrations of BDNF in pg/ml or ng/ml which makes standardiza-

tion of theBDNF levels difficult, and these studies present inconsistent

findings with a number of studies demonstrating differences at rest

between various groups and across time in healthy volunteers, gen-

der, patients with chronic pain, and patients with neuropsychiatric

disorders, whereas other studies have not demonstrated these differ-

ences. The perplexing nature of these data demand a more intricate

examination beginning with the evidence supporting BDNF as a pos-

sible mechanistic biomarker for pain perception and then a more

sophisticated review of themeasurement techniques utilized.

1 BDNF RELATED MECHANISM OF ACTION IN
NP

BDNF acts as a pain mediator (factor that contributes to the initia-

tion and development of pain) and modulator (factor that regulates

pain) and performs its biological functions through two receptors: p75

neurotrophin (pan-selective p75 neurotrophin receptor) and the TrkB

receptor (tropomyosin receptor kinase B or tyrosine receptor kinase

B) (Andero et al., 2014; Binder& Scharfman, 2004; Chao&Hempstead,

1995). BDNF also binds with TrkC at a lower affinity, which is primar-

ily activated by neurotrophin 3 (NT-3) (Ateaque et al., 2022;Mcmahon

et al., 1994; Reichardt, 2006). BDNF is released in response to periph-

eral inflammation and is known as a nociceptive modulator for both

pain perception and sensitization at both spinal and supraspinal lev-

els (Merighi et al., 2008; Pezet &McMahon, 2006). p75 is a low affinity

receptor while the tropomyosin receptor kinase B (TrkB) receptor is a

high affinity receptor (Binder & Scharfman, 2004), and is upregulated

in chronic pain states (Pezet et al., 2002, Pezet & McMahon, 2006;

Merighi 2008; Smith, 2014; Thibault et al., 2014; Wang et al., 2009).

Spinal BDNF-TrkB signaling has been implicated in studies that have

investigated pathological mechanisms for NP (Cao et al., 2020; Coull

et al., 2005; Ohira & Hayashi, 2009; Soril et al., 2008; Thibault et al.,

2014; X. Wang et al., 2009). This BDNF-TrkB signaling can modulate

neurotransmission and enhance synaptic efficacy both via presynaptic

and postsynapticmechanisms (Binder& Scharfman, 2004; Cheng et al.,

2017; Pezet & McMahon, 2006; Yoshii & Constantine-Paton, 2010).

Furthermore, the pronociceptive role of BDNF–TrkB is responsible for

the persistent increase in excitability of second order neurons in the

spinal dorsal horn contributing to allodynia, hyperalgesia, spontaneous

pain, and causalgia that characterize NP and central sensitization

(Biggs et al., 2010; Sandkühler, 2009;Woolf, 2007;H. Zhaoet al., 2017).

Because the focus of this article is on NP (pain induced by injury to the

nervous system) and the associated role of BDNF in promoting neu-

ronal growth, survival, and neurogenesis in the nervous system, animal

studies that describe the prevalent role of BDNF in the initiation and

maintenance of NP at the spinal, peripheral and central levels will be

discussed. Figure 1 provides a depiction of the role of BDNF in NP and

the site of involvement for itsmechanism of actionwith citations of the

supporting literature.

1.1 Spinal dorsal horn, dorsal root ganglia and
microglia mediated action

Previous studies utilizing NPmodels have demonstrated that elevated

BDNF levels in the spinal dorsal horn contributes to hyperalgesia and

central sensitization (Alles et al., 2021; Dai &Ma, 2014; Z. Zhang et al.,

2013). Evidence from preclinical studies that utilize peripheral nerve

injury models have also revealed that BDNF is synthesized by dorsal

hornneuronsandcauseshyperexcitationofdorsal hornneurons,which

results in pain hypersensitivity (Coull et al., 2005; Ding et al., 2015;

Sikandar et al., 2018; L. J. Zhou et al., 2011; W. Zhou et al., 2021), an

important contributor toNP. Lu et al. (2007and2009) describe the role

ofBDNF inNPusing chronic constriction injurymodels in the rat dorsal

horn to illustrate the increased excitability in the dorsal horn. These

investigators demonstrated that the excitatory and inhibitory neurons

in the substantia gelatinosa of the dorsal horn exhibited altered

behavior due to changes in synaptic drive mediated by the release of

BDNF with increased excitatory synaptic drive to excitatory neurons

and a decrease in the synaptic drive to the inhibitory interneurons. It is

critical to consider that central sensitization is an activity-dependent

increase in excitability of dorsal horn neurons (Latremoliere & Woolf,

2009; Woolf & Thompson, 1991), and BDNF expression facilitates

this process by promoting a slowly developing increase in excitability

and synaptic activity in the dorsal horn. From here, TrkB receptors are

activated on second order neurons or primary afferent endings which

in turn activate spinal reflexes and primary afferents (Dai & Ma, 2014;

Kerr et al., 1999; Lu et al., 2007; X.Wang et al., 2009) causing allodynia,

hyperalgesia, and spontaneous pain, defining characteristics of NP.

With activation of TrkB receptors, there is a downstream activation of

different signaling pathways. For example, nuclear factor kappaB (NF-

κB) and themitogen-activatedprotein kinases (MAPK), that include the

p38, Jun N-terminal kinase (JNK), and extracellular signal-regulated

protein kinase (ERK) signaling pathways are activated (Cappoli et al.,

2020; Liu et al., 2007; Obata & Noguchi, 2004; Pezet & McMahon,

2006; Pha.m et al., 2022; Santana-Martínez et al., 2018). Obata

and Noguchi (2004) have also demonstrated that MAPK signaling

pathways, specifically ERK and p38 are involved in heat hyperalge-

sia and nerve injury induced neuroinflammation and neuropathic

pain.

Microglia are the resident immune cells in the central ner-

vous system, and their activation following peripheral nerve injury
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F IGURE 1 List of studies that support the role of brain derived neurotrophic factor (BDNF) in neuropathic pain with the associated site for the
mechanism of action. Createdwith BioRender.com

upregulates the purinergic receptors, especially P2 × 4R, causing the

phosphorylation of p38-MAPK that results in the release of BDNF

(Ji & Suter, 2007; Trang et al., 2011a; T.T. Zhou et al., 2014) Zhou,

2014; Suter, 2007; Trang, 2011). This facilitates the excitability of

dorsal horn neurons and persistence of hypersensitivity contributing

to NP (Biggs et al., 2010; Coull et al., 2005; Kohno & Tsuda, 2021;

Trang et al., 2011). In the microglia, BDNF can also activate PI3K and

ERK kinase pathways that are fundamental for the development of

neuropathic pain (Trang et al., 2011). The p38 pathway in themicroglia

also activates NF- κB leading to release of inflammatory mediators

like interleukin-1beta (IL-1β) and interleukin-6 (IL-6) leading to pain

hypersensitivity after nerve injury (Ji & Suter, 2007; Obata & Noguchi,

2006). Tumor necrosis factor, another inflammatorymediator involved

in NP inhibits long-term potentiation via NF- κB and p38, MAPK and

JNK signaling pathways (Butler et al., 2004; Liu et al., 2007). Addition-

ally, activation of the above signaling pathways also causes secretion

of reactive oxygen species(X. Gao et al., 2007; I. Lee et al., 2007), and

previous studies have highlighted the role of nitric oxide in central

sensitization and neuroinflammation (Cury et al., 2011; Schwartz et al.,

2008; Teixeira-Santos et al., 2020)

Elevated levels of BDNF at the level of the dorsal root ganglion

(DRG) facilitates pain transmission and contributes to pain hyper-

sensitivity and central sensitization (Wu et al., 2021). Both in NP

and inflammatory pain models, increased levels of BDNF in the DRG

neurons are correlated with increase in the BDNF levels in the spinal

dorsal horn (Pezet & McMahon, 2006; Wu et al., 2021). In the DRG,

BDNF/TrkC is primarily expressed in large sensory afferents specifi-

cally mechanoreceptors and proprioceptors (Mcmahon et al., 1994).

Following nerve injury, Michael et al. demonstrated an increase in

BDNF expression in the TrkC and TrkB receptors (Michael, 1999). Sim-

ilar to the role of microglia in NP, nerve injury also leads to activation

and recruitment of macrophages in the DRG (Malcangio, 2019; Tu

et al., 2022; Yu et al., 2020; H. Zhang et al., 2016). These macrophages

release BDNF and BDNF- TrkB plays an important role in both the

initiation and maintenance of the mechanical hypersensitivity of NP

(Tu et al., 2022; Yu et al., 2020). Yu et al. (2020) also demonstrated that

depletion of DRG macrophages prevented the upregulation of BDNF

within 24 h of nerve injury in mice (Yu et al., 2020).

Therefore, at the spinal level, BDNF is expressed in microglia, in the

neurons, and in nociceptors of the DRG and in the dorsal horn neu-

rons. This BDNF release is maladaptive in that it contributes to central

sensitization andNP.

1.2 NMDA–Glutamate–GABA receptor–mediated
action

BDNF also exerts its effects via interactions with other recep-

tors, neurotransmitters, and ion channels. Specifically, presynaptic

BDNF signaling promotes neurotransmitter release and postsynap-

tically it is involved in enhancing various ion channel function.

BDNF modulates synaptic plasticity in an activity dependent manner
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contributing to long term potentiation (C. S. Wang et al., 2022) via

TrkB and downstream signaling cascades, mainly phosphatidylinositol

3-kinase/protein kinase B, MNK, and the mechanistic target of

rapamycin (mTOR)-signaling (Cappoli et al., 2020; Nijs et al., 2015;

Pezet&McMahon, 2006). Thepresynaptic actionsofBDNFcan involve

synapsins and calcium channels (Cheng et al., 2017; Jovanovic et al.,

2000). The BDNF- TrkB- MNK signaling leads to augmentation of the

synapsin 1 phosphorylation causing sustained release of glutamate

(Cheng et al., 2017; Jovanovic et al., 2000). Synapsins are proteins

that are linked to synaptic vesicles encoding three mammalian genes

which generate multiple isoforms and mediate the release of neuro-

transmitters (Cheng et al., 2017). BDNF enhances presynaptic calcium

levels due to the activation of the phospholipase C pathway which

activates TRPC channels causing release of calcium from intracellular

stores (Cheng et al., 2017; Jovanovic et al., 2000). The release of cal-

cium augments the spontaneous release of glutamate. With regards

to GABA release, Cheng and colleagues demonstrated that synapsins

inhibit GABA release and calcium influx leads to GABA release similar

to glutamate release (Cheng et al., 2017).

Previous studies have described the interaction of BDNF-TrkB

signaling with N-methyl-d-aspartate (NMDA) receptors as an under-

lying mechanism that contributes to central sensitization of spinal

neurons (Kerr et al., 1999; Latremoliere & Woolf, 2009; Trang et al.,

2011). Animal models of NP have revealed that BDNF-TrkB signaling

promotes the upregulation of NR2B, a subunit of NMDA receptors

via activation of the mTOR pathway (L. Zhang et al., 2016). In addi-

tion, BDNF plays a major role in modulating the contributions of the

glutamatergic and GABAergic mechanisms responsible for long-term

potentiation of the glutamatergic transmission both presynaptically

and postsynaptically (Bliss & Cooke, 2011; Merighi et al., 2008; Tyler

et al., 2002). BDNF facilitates excitatory transmission at the dorsal

horn by attenuating GABAergic inhibitory neurotransmission that

causes a disequilibrium in GABA (y-aminobutyric acid) levels (J. Gao

et al., 2014; Lu et al., 2007, 2009; Zafra et al., 1991). This disinhibition

is an important contributor to central sensitization andNP (Malcangio,

2018)

In addition, elevated BDNF contributes to decreased expression of

KCC2 (Cappoli et al., 2020; Z. Zhang et al., 2013; S. Zhao et al., 2022).

KCC2 is a potassium/chloride cotransporter that controls intracellular

chloride concentrations in these neurons causing disruption of neu-

ronal chloride homeostasis. This contributes to spinal disinhibition and

promotes the development of pain hypersensitivity and mechanical

allodynia, which is commonly observed in inflammatory pain and NP

models (Cao et al., 2020; Trang et al., 2011; X. Zhang et al., 2011;

J. Zhao et al., 2006). The increase in chloride concentrations shifts

the chloride equilibrium potential to a less negative value, and this

also contributes to GABA disinhibition (Z. Zhang et al., 2013). This

BDNF–KCC2–GABA attenuation leads to NP and central sensitization

(Chen et al., 2014; Dai & Ma, 2014; P. A. Smith, 2014). Thus, altered

BDNF levels in NP, perturb the balance in potentiation between

glutamatergic and GABAergic synapses in the central nervous sys-

tem (CNS) that contributes to an imbalance in excitatory/inhibitory

neurotransmission.

1.3 Supraspinal involvement

Due to its role in brain signaling and synaptic plasticity, coupled

with its involvement in emotional comorbidities like memory, deci-

sion making, and depression, cerebral BDNF in brain areas including

the hippocampus, prefrontal cortex, and reward centers including the

mesocorticolimbic system (Mitsi & Zachariou, 2016; Navratilova et al.,

2012; H. Zhang et al., 2017) has been proposed as a marker of noci-

ception in chronic pain. Brainstem areas like the rostroventral medulla

and the nucleus raphe magnus involved in descending pain modu-

lation also contribute to the BDNF-KCC2-GABA impairment in the

development of chronic NP (Costigan et al., 2009; Dai & Ma, 2014).

The nucleus raphe magnus activates the descending pain pathways

due to BDNFmediated KCC2 downregulation causing GABAergic dis-

inhibition which plays an important role in the process of central

sensitization during the development of chronic pain (Dai &Ma, 2014;

Z. Zhang et al., 2013).

Figure 1 includes a list of the studies that address the correspond-

ing site of activity for BDNF at the supraspinal, spinal, and receptor

level. Therefore, increased levels of BDNF at different locations in the

central nervous system including the spinal dorsal horn, the microglia,

and the brain, coupled with its involvement at the receptor level and

its connections to neurotransmitters like glutamate and GABA, sug-

gests that enhanced BDNF signaling mediates the pathophysiology of

chronic NP. Therefore, these BDNF contributions to the processing of

pain offer clues to the mechanisms of central sensitization, hyperalge-

sia, and mechanical allodynia, and support the proposition that BDNF

levels may serve as a biomarker for chronic pain.

2 MEASUREMENT OF BDNF

BDNF can be quantified in peripheral whole blood, serum, or plasma,

and is stored in the platelets (Fujimura et al., 2002). In addition, the

brain is potentially a major contributor to circulating blood levels (Ras-

mussen et al., 2009) since BDNF freely crosses the blood–brain barrier

(Pan et al., 1998). Thus, serum and plasma BDNF are highly corre-

lated with central nervous system BDNF (Klein et al., 2011; Lang et al.,

2007; Pan et al., 1998; Pillai et al., 2010). For example, in a study

on rats, Karege et al. found a positive correlation (r = 0.81, p < .01)

between serumandcorticalBDNFconcentrations (Karegeet al., 2002).

Therefore, peripheral blood BDNF levels (serum or plasma) have been

used as a proxy for central (brain) BDNF levels. However, several stud-

ies have demonstrated discrepant results between plasma and serum

BDNF valueswithin the same subjects (see Table 1a and b), while other

studies have presented relatively high correlations between serumand

plasma BDNF levels (Elfving et al., 2010; Klein et al., 2011; Polacchini

et al., 2015; Trajkovska et al., 2007). This highlights the challenge of

assessing reliable BDNF concentrations in the periphery. Furthermore,

more than 90% of blood BDNF is stored in the platelets (Fujimura

et al., 2002) and released from the platelets to serum during the clot-

ting process, explaining in part, the differences in serum and plasma

BDNF levels (serum BDNF level is about 100- 200-fold higher than
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that of plasma) (Brigadski & Leßmann, 2020; Fujimura et al., 2002).

Radka et al. also showed that there is a strong correlation between

serum serotonin, a marker for platelet activation, and serum concen-

tration of BDNF, thus highlighting the release of BDNF during the

clotting process described above (Radka et al., 1996). Previous stud-

ies have presented a broad range of correlations between plasma

and serum BDNF concentrations ranging from r = 0.2 to r = 0.70

(Bocchio-Chiavetto et al., 2010; B. H. Lee & Kim, 2009; Terracciano

et al., 2011).

Moreover, circulating BDNF levels measured using conventional

enzyme-linked immunosorbent assay (ELISA) kits, lack of standardiza-

tion has likely contributed to the poor reproducibility of results. With

regards to measuring serum BDNF, Polacchini et al. (2015) analyzed

fivedifferent assays inhealthyadults and found interassayvariationsof

5%–20%. In addition, there were differences in the form of BDNF that

the kits were measuring with some kits selectively recognizing mature

BDNF, while the others reacted with both pro-BDNF and mature

BDNF. Furthermore, Naegelin and colleagues (2018) have concluded

that “BDNF levels can be reliablymeasured in human serum, that these

levels are quite stable over one year, and that comparisons between

two populations may only be meaningful if cohorts of sufficient sizes

are assembled (Naegelin et al., 2018).” Interestingly, work done by

Chacón-Fernández, et al. (2016) has demonstrated that differences

and changes in serum BDNF levels demonstrated in studies on depres-

sion and physical activity likely reflect adaptations in megakaryocytes

and platelets (retaining or releasing BDNF) (Chacón-Fernández et al.,

2016). Thus, further examination of these adaptations is warranted.

Nonetheless, the ability to reliably assess changes in serum BDNF

must standardized procedures for serum preparation and critically

reviewedmeasurement techniques (Polacchini et al., 2015). Lastly, Bus

et al. (2011) has demonstrated the ability of platelets to release BDNF

and sequester BDNF fromblood. This activitymay result in differences

between serum and plasma BDNF levels. Other considerations that

can affect the measurement of BDNF in the plasma and serum include

(1) gender (Begliuomini et al., 2007; Lommatzsch et al., 2005), genetics

(Cash et al., 2021; Egan et al., 2003; Terracciano et al., 2013) and age

(2) the timing of measurement (accounting for diurnal variations)

(Begliuomini et al., 2008; Jasim et al., 2020; Pluchino et al., 2009); (3)

psychological/psychiatric disorders (Bocchio-Chiavetto et al., 2010;

Leyhe et al., 2008; Polyakova et al., 2015; Ventriglia et al., 2013); (4)

physical activity (Cho et al., 2012; Gomes et al., 2014; Slusher et al.,

2018); (5) duration of the sample storage period (Bus et al., 2011;

Naegelin et al., 2018; Trajkovska et al., 2007; Tsuchimine et al., 2014),

and (6) role of platelet activation (Bélanger et al., 2021; Karege et al.,

2005). Eachof these factors cannegatively influence the consistencyof

results. Table 2 provides a summary of the studies that have examined

factors that influence themeasurement of serum and plasma BDNF.

2.1 Factors affecting the measurement of serum
and plasma BDNF

At present, more than 95% of the studies in the literature that have

evaluated factors involved in themeasurementofBDNF, analyze either

serum BDNF and/or plasma BDNF. Below is a summary of the studies

that have examined factors that influence the measurement of serum

and plasma BDNF.

2.1.1 Role of gender, age, and genetics

Begliuomini et al. (2007) examined changes in plasma BDNF circulat-

ing levels in 60 women (20 fertile ovulatory women, 15 amenorrhoeic

women, and 25 postmenopausal women) and discovered that women

with regular ovulatory cycles present with higher BDNF levels than

amenorrhoeic or postmenopausal women (p < 0.001) (Begliuomini

et al., 2007). Lommatzsch et al. (2005) also observed in their sample

of 68 women, that platelet levels of BDNF were found to be higher

in the second half of the menstrual cycle and in the postmenopausal

period (Lommatzsch et al., 2005). In the same study, an analysis of

weight-matched groups found that women had significantly lower

BDNF levels in platelets than men, but no difference was observed

for plasma levels. Both studies also noted that plasma BDNF levels for

postmenopausal women decreased significantly with increasing age

(number of years following menopause). Similar results were observed

for serum BDNF by Bus et al. (2011) who found an age-related ele-

vation of serum BDNF in premenopausal women and an age-related

decrease in postmenopausal women.

Egan et al. (2003) and Hempstead et al. (2015) have previously

described the negative influence of BDNF polymorphisms especially

Val66Met polymorphism on the BDNF/TrkB signaling pathways, with

reduced TrkB activation causing impaired secretion of BDNF in

patientswith neuropsychiatric disorders. In ameta-analysis of 11 stud-

ies on healthy individuals that evaluated the relationship between the

BDNF Val66Met variant and BDNF levels, Terracciano et al. (2013)

concluded that there was no correlation between the BDNFVal66Met

variant and serum, plasma, andwhole blood BDNF levels.

2.1.2 Influence of diurnal variations and circadian
rhythms

In another study by theBegliuomini group (2008), males demonstrated

elevated plasma BDNF concentrations in the morning, followed by a

substantial decrease throughout the day with lowest values observed

at midnight (Begliuomini et al., 2008). Piccini et al. (2008) examined

plasma and serum BDNF levels at three different times during the day

(0800h, 1400h, and2200h), and similar toBegliuomini and colleagues,

noted significant diurnal variation in plasma BDNF levels in men, with

peak values in the morning for men and decreasing levels throughout

the daywith lowest values at 22:00h. Forwomen, no significant diurnal

variationswere observed in plasmaBDNF levels. In addition, for serum

BDNF, Piccinni and colleagues (2008) observed no changes across the

three time points and there were no sex differences. Pluchino et al.

(2009) investigated the influence of circadian rhythm and hormonal

status on plasma BDNF levels in fertile ovulatory women, women on

oral contraceptive therapy, and postmenopausal women. He and col-

leagues detected significant differences in BDNF levels among the
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three groups. In fertile women, plasma BDNF levels were signifi-

cantly higher during the luteal phase compared to the follicular phase,

whereas for postmenopausal women, BDNF was significantly lower in

the follicular phase (Pluchino et al., 2009). Concerning circadian vari-

ations, in all the three groups, plasma BDNF levels decreased during

the day. To summarize, in bothmen andwomen, plasmaBDNF can vary

greatly across the day. Thus, when assessing plasma BDNF, it may be

beneficial to take multiple samples over a 24-hour period in consid-

eration of diurnal variations in both men and women, and control for

hormonal changes in women. SerumBDNF levels are likely resistant to

the impact of diurnal, however, no study has evaluated the influence of

circadian rhythms on serumBDNF levels.

2.1.3 Psychological/Psychiatric disorders

Studies have demonstrated stress-induced alterations in BDNF lev-

els with acute stress causing an increase in serum BDNF levels and

chronic stress being associated with reduced serum BDNF levels. (Linz

et al., 2019; Meng et al., 2011) In two separate studies in healthy par-

ticipants, examined serum BDNF levels utilizing an acute psychosocial

stress paradigm, the Trier Social Stress Test and the results demon-

strated an elevated serum BDNF response compared to baseline and

a control group. No studies have examined changes in plasma BDNF.

In ameta-analysis of 57 studies in human subjects comparing serum

and plasma BDNF levels in patients with major depressive disorder,

bipolar disorder, and healthy control subjects, Polyakova et al. (2015)

reported that at baseline, serumandplasmaBDNF levelswere reduced

in these patients with major depressive disorder and bipolar disorder

compared to healthy controls. In the same article, Polyakova and col-

league performed a second meta-analysis that included 553 patients

withmajor depressive disorderwho received treatment for 2–8weeks.

They concluded that serum BDNF levels were significantly higher in

treatment responders and remitters compared tononresponders.Only

seven studies reported plasma BDNF levels, and no differences were

observed in the treatment responders and nonresponders (Polyakova

et al., 2015).

In a study looking at changes in serum BDNF levels in patients

with Alzheimer’s disease before and after 15 months of treatment

with acetylcholinesterase inhibitors, Leyhe et al. (2008), reported

that serum BDNF levels were higher post treatment. In a subse-

quent study by Ventriglia et al. (2013), treatment with mood stabiliz-

ers/antiepileptics and L-DOPA, increased serumBDNF levels, whereas

patients administered benzodiazepine demonstrated a decrease in

serum BDNF. These results highlight the importance of controlling for

the use of medications.

2.1.4 Physical activity and exercise training

A majority of the studies evaluating the changes in BDNF levels

post exercise have measured serum BDNF. These studies consistently

demonstrate an increase in serum BDNF following an acute bout of

exercise in healthy individuals. The fact that circulating BDNF is a

good surrogate for changes in CNS plasticity and cognition has led

some investigators to propose this as a mechanism for explaining the

relationship of physical activity and cognitive function. Several stud-

ies have demonstrated increases in both serum and plasma BDNF

post exercise (Dinoff et al., 2017; Rasmussen et al., 2009; Slusher

et al., 2018). In an interesting study, Slusher et al. (2018) investigated

the role of plasma and serum BDNF following high intensity inter-

val training on executive function in healthy college aged males, and

revealed a significant increase in serum BDNF concentrations post

exercise but no difference in plasma BDNF (Slusher et al., 2018). Rey-

craft et al. (2020) only measured plasma BDNF levels after exercise at

different intensities (including moderate-intensity continuous training

at 65%VO2max, vigorous-intensity continuous training at 85%VO2max,

and sprint interval training) and observed that plasma BDNF levels

increased immediately after exercise for all the groups with the great-

est increase seen in the sprint interval training group (Reycraft et al.,

2020). These increases in plasma BDNF levels were short-lived with

plasma concentrations recovering 30–90 min postexercise for all the

groups. In a previous study, Gilder et al. (2014) demonstrated that

serum BDNF levels recover more quickly than plasma BDNF levels

(30 vs. 90 min) in individuals with high compared with low-fat free

mass post completion of an incremental graded exercise test. This

study suggests that the time required for BDNF recovery post exer-

cise is dependent on the biofluid fromwhich the BDNFwas quantified,

namely serum and plasma and body composition.

2.1.5 Storage conditions

The time from blood sample collection to processing and the temper-

ature at which the sample is stored can influence BDNF levels. During

the coagulation process, activation of platelets causes a rapid release

of BDNF from platelets into serum within the first hour at room tem-

perature. This suggests that the length of clotting time constitutes

a critical methodological issue when measuring the concentration of

BDNF, in particular in serum. Therefore, it is important to evaluate pre-

analysis conditions (e.g., preparation time and temperature) to ensure

that BDNF analyses across studies assess similar physiological events.

Gejl et al. (2019) noted that BDNF levels measured in serum samples

increased significantly with time during the first hour between col-

lection and centrifugation, and subsequently became relatively stable

(Gejl et al., 2019). Similar results were seen in a study by Tsuchimine

et al. (2014), where BDNF measured in serum increased during the

first hour of coagulation at 25◦C and were relatively stable with a

clotting time between one and 48 h. In contrast, a study by Amadio

and colleagues (2017), demonstrated that serum BDNF samples incu-

bated at 37◦C, reached a plateau after 30 min, whereas 120 min were

necessary to obtain similar BDNF levels at room temperature. Further-

more, Wessels and colleagues (2020) noted that the type of plasma

separator tube, storage duration, and number of freeze–thaw cycles

can impact the quantification of plasma BDNF concentration. In addi-

tion, plasma stored at −80◦C compared to −20◦C tends to have less
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variability in mean BDNF concentrations. More specifically, storing

plasma BDNF for up to 6months at either−20 or−80◦Cwas shown to

have reproducible results (Wessels et al., 2020). In addition, Trajkovska

et al. (2007) demonstrated that serumBDNF levels were stable up to 1

year after being stored at−20◦C, but the levels significantly decreased

after5yearsof storageandBuset al. (2011) observed similar decreases

after 3.5 years when it was stored at –85◦C. Thus, a possible disadvan-

tage ofmeasuringBDNF in serummaybe adecline inBDNF levels after

long-term storage of serum, which may not occur for BDNF stored in

plasma.

2.1.6 Impact of platelet activation on plasma
BDNF levels

A possible confounder in the blood that can impact plasma levels of

BDNF is clotting and platelet activation due to the storage of BDNF

in platelets. Platelet activation or clotting can release large quan-

tities of BDNF into the bloodstream, which causes the release of

platelet factor 4 and the surface expression of P-selectin. Belanger

et al. (2021) demonstrated that higher platelet activitymeasured using

soluble P-selectin in plasma was associated with significantly higher

plasma BDNF concentrations in individuals with and without coro-

nary artery disease. In a study in patients with depression, Karege

et al., 2005 investigated whether serum BDNF levels are dependent

on platelet reactivity and determined that serumBDNF is independent

of platelet reactivity but plasma BDNF levels were accompanied by

increase in platelet factor 4, a marker of platelet reactivity. Schneider

et al. 1997 examined the role of coagulation factors on platelet acti-

vation by evaluating the binding of coagulation factors to the platelet

surface and observed that, anticoagulants such as heparin, sodium

citrate, and oxalate can influence platelet activation which can influ-

ence BDNF release. Another factor that can cause increase BDNF

release from platelets is presence of agonists like thrombin, colla-

gen, Ca2+ and shear stress (Serra-Millàs, 2016). It is critical to keep

in mind that even with agonist stimulation, only 30–40% of BDNF in

platelets is secreted and the other 70% that is present in cytoplasm is

never released (Fujimura et al., 2002). Lastly, comorbidities like depres-

sion and cardiac abnormalities can influence platelet activation, thus

platelet reactivity, assessed by examining platelet factor 4 and or P-

selectin, should be examined in these patients when quantifying BDNF.

Galeano et al. (2015) demonstrated that when corrected for hemo-

concentration, BDNF levels increased in the whole blood and in the

serum 24 hours after exercise compared to baseline, but plasma levels

did not significantly change at baseline and at 24 h post exercise. Fur-

thermore, correlation analyses revealed that serum BDNF levels were

highly correlated towholeblood levelswhereasplasma levelswerenot.

To summarize, a majority of studies have utilized measurement of

serum BDNF as a marker of BDNF levels in healthy controls and in

patients with neuropsychiatric conditions, in response to stress, fol-

lowing exercise, and the following the administration of medication.

In addition, serum BDNF is more stable and reproducible than plasma

BDNF, in particular when considering the impact of diurnal and circa-

dian variations, psychotropic medications, and blood volume changes

in response to exercise on plasmaBDNF levels. Both serum and plasma

levels are sensitive to changes with age, bodyweight, and menstrual

cycle phase (hormonal influences inwomen). It is also important to con-

sider that alterations in serum BDNF have been observed with various

clotting times and storage temperatures. Genetic associations linked

to the Val66Met polymorphism have not been found to influence the

measurement of serum and plasma BDNF.

Below is a list of factors to consider when deciding upon a valid and

reliable research protocol.

1. Sex and gender differences (hormonal status for women)

2. Age (older individuals, especially women present with lower BDNF

concentrations at baseline)

3. Diurnal variations andcircadian rhythms (report timeof thedayand

consider collecting samples at different time points during the day)

4. Assess the use of medication(s)

5. The use of 1 h for clotting time and store samples at−20 to−80◦C

6. If measuring in a clinical population with platelet impairment,

measure platelet factor 4 and or P-selectin to evaluate platelet

reactivity.

3 CONCLUSION

Concerning chronic pain, there is no conclusive evidence supporting

the notion that changes in BDNF levels are causative or a consequence

of chronic pain conditions, including NP and musculoskeletal pain in

humans. In addition, the documented inconsistent results across stud-

ies between plasma BDNF and serum BDNF may be attributable to

differences in the constitution of plasma and serum. More specifi-

cally, BDNF is largely stored in platelets and is released from activated

platelets to the serum during the clotting process. This explains the

lower concentration of BDNF in plasma compared to serum, and the

timing of the changes in serum and plasma BDNF following activities

that activate platelets. Based on current evidence, we would recom-

mend assessing serum BDNF levels to quantify peripheral BDNF as

they are more stable and sensitive to changes than plasma BDNF.

Future studies should clarify serum and plasma responses to various

stimuli, and define a standard protocol for themeasurement of periph-

eral BDNF. In addition, large prospective studies are needed to address

the methodological confounds and generalizability for utilizing serum

BDNF as a biomarker for chronic pain, and specifically forNP diagnosis

and response to treatment.
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