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Mutational signature dynamics shaping the
evolution of oesophageal adenocarcinoma

Sujath Abbas1, Oriol Pich2, Ginny Devonshire 3, Shahriar A. Zamani 1,
Annalise Katz-Summercorn 1, Sarah Killcoyne1,4, Calvin Cheah1,
Barbara Nutzinger1, Nicola Grehan1, Nuria Lopez-Bigas 2,5,6,
OCCAMS Consortium*, Rebecca C. Fitzgerald 1,37 & Maria Secrier 7,37

A variety of mutational processes drive cancer development, but their
dynamics across the entire disease spectrum from pre-cancerous to advanced
neoplasia are poorly understood. We explore the mutagenic processes shap-
ing oesophageal adenocarcinoma tumorigenesis in 997 instances comprising
distinct stages of this malignancy, from Barrett Oesophagus to primary
tumours and advanced metastatic disease. The mutational landscape is
dominated by the C[T >C/G]T substitution enriched signatures SBS17a/b,
which are linked with TP53 mutations, increased proliferation, genomic
instability and disease progression. The APOBEC mutagenesis signature is a
weak but persistent signal amplified in primary tumours. We also identify
prevalent alterations in DNA damage repair pathways, with homologous
recombination, base and nucleotide excision repair and translesion synthesis
mutated in up to 50% of the cohort, and surprisingly uncoupled from tran-
scriptional activity. Among these, the presence of base excision repair defi-
ciencies show remarkably poor prognosis in the cohort. In this work, we
provide insights on the mutational aetiology and changes enabling the tran-
sition from pre-neoplastic to advanced oesophageal adenocarcinoma.

Oesophageal cancer is the sixth major cause of death globally, with
more than 400,000 deaths registered in 2017, and it remains a public
health challenge1,2. Oesophageal adenocarcinoma (OAC) is one of two
main subtypes for this cancer, and its incidence has increased sub-
stantially inwestern developednations over the last four decades.OAC
generally presents late, when loco-regional spread has already occur-
red and therefore has a dismal 5-year survival rate of <20%3. A major
risk factor for OAC is chronic gastro-oesophageal reflux disease
(GORD)4,5, which predisposes to cancer via the metaplastic pre-
cancerous stage called Barrett Oesophagus. This preneoplastic

condition offers the opportunity to gain insights into the early triggers
of this cancer, with previous studies showing surprisingly extensive
mutational damage early on in the disease, including in Barrett Oeso-
phagus samples from patients who do not progress to cancer6,7.

Such DNA damage, arising from extrinsic and intrinsicmutational
processes acting throughout an individual’s lifetime, is imprinted in
the genome of cancer cells in the form of distinct patterns of nucleo-
tide substitutions or larger chromosomal rearrangements. These
recurringpatterns have enabled cancer researchers to understandhow
different risk factors can shape the genomes of cells towards a
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neoplastic phenotype8–11. The distribution of such acquired mutations
is specific to their causal triggers, which can either manifest as endo-
genous impairment of cellular processes or as exogenous
mutagens12,13. In their simplest form, these patterns present as single
base substitutions in a trinucleotide context and are termed ‘muta-
tional signatures’.

Large scale efforts have comprehensively catalogued such muta-
tional footprints across different cancer types and linked them with a
variety of carcinogen exposures, e.g., smoking, UV light damage, but
also with intrinsic DNA damage repair (DDR) defects or ageing-related
processes8,9,14. Global collaborative studies such as the Mutographs
project are working to elucidate the possible causes of cancer devel-
opment and our laboratory has been involved in investigating the
aetiology of oesophageal squamous cell carcinoma as part of this
project15. Previously, we also showed thatmutational signatures can be
employed to delineate three distinct aetiology pathways in OAC,
exhibiting hypermutated, DNA damage impaired and oxidative stress-
linked phenotypes, respectively, and this classification could inform
therapeutic opportunities16. A recent report from the PanCancer Ana-
lysis of Whole Genomes (PCAWG) consortium recapitulated these
main patterns in OAC and highlighted intriguing subclonal decreases
in the SBS17 signature, the dominant pattern of mutational damage
observed in OAC9,17. However, these studies were limited to relatively
small numbers of OAC cases (129 and 97, respectively), focused
exclusively on primary disease and did not analyse clinical or demo-
graphic associations. Thus, this still leaves major questions unan-
swered around the biological role ofmutational signatures throughout
the entire course of OAC development from preneoplasia to metas-
tases, their aetiology and dynamics during cancer progression, as well
as the influence of various clinical risk factors on tumour emergence
and mutation fixation into cancer genomes. Understanding the evo-
lution of this cancer from pre-malignant lesions into fully developed
tumours and tracing its metastatic spread will help guide its clinical
management18.

In this work, we aim to understand what mutational forces drive
disease progression from pre-cancerous stages to advanced malig-
nancy in OAC. To this end, we survey a cohort of 997 patients across
different stages of OAC progression, from pre-malignant to advanced
disease (Fig. 1, Supplementary Tables 1, 2). Based on the pattern of
single base substitutions observed from whole-genome sequencing
data, we infer the mutational processes that are likely to have acted

during the evolution of this cancer and characterise their prevalence
across cancer stages. We find certain mutagenic footprints could be
indicative of disease stage, identify consistent evidence for specific
DDR deficiencies and pinpoint evolutionary shifts in mutational pro-
cesses that play a key role in shaping the progression of this disease.

Results
Mutational signatures from pre-malignant to advanced OAC
We employed whole-genome sequencing data from 161 Barrett Oeso-
phagus samples, 777 OAC primary tumours and 59metastatic samples
to infer and compare the signatures of mutational processes that
operate during the course of this disease (Fig. 1). We performed de
novo reconstruction ofmutational signatures jointly across samples in
all cancer stages using Non-Negative Matrix Factorisation (NMF) via
SigProfiler8. This analysis uncovered a total of 14 single base sub-
stitution signatures with evidence of activity in these genomes
(Fig. 2a), updating the disease landscape characterised in our previous
study16. The contributions of the various mutational processes to
individual genomes were determined through multiple linear regres-
sion using deconstructSigs19.

Across disease stages, we observed an increase in the tumour
mutational burden from Barrett Oesophagus to primary tumours to
metastases, as expected (Supplementary Fig. 1). Signatures SBS17a/b
were themost prevalent, alongwith evidence formutational processes
linked with ageing (SBS1/5/40), oxidative stress (SBS18), APOBEC
activity (SBS2), base excision repair mutagenesis (SBS30) and DDR
impairment (SBS3/8) (Fig. 2a, Supplementary Fig. 2a–c). To confirm
the latter, we performed indel signature inference (Supplementary
Fig. 3) and sought contributions of ID6 and ID8 signatures in the same
samples to strengthen evidence for homologous recombination (HR)
and double strand break repair defects. At a conservative threshold of
>5% for all these signatures, 61 samples were found to be HR deficient,
with an enrichment of such defects in primary tumours (8% of cases,
Chi-square test 11.371, df = 2, p = 0.003, Supplementary Table 3).

We also observed evidence of mismatch repair (MMR) deficiency
(SBS44) in 35 primary tumours (4.5%) as well as one Barrett Oeso-
phagus sample. MMR defects have been linked with hypermutated
genomes, increased neoantigen presentation, immune evasion and
improved responses to checkpoint inhibition in a variety of cancers20.
We also confirmed that in our cohort the MMR deficient samples
presented significantly higher mutational burden, as well as higher

Barrett Oesophagus
161

Primary tumours 
777

Metastases
59

AACCATC C C TGTA
a. Mutations 
and context

c. Mutational signature discovery

Clonal early

Clonal late Subclonal

b. Timing

d. Signature dynamics

Clonal Subclonal

WGS

SBS17b

SBS2

SBS1

AACCATC A C TGTA

Fig. 1 | Study workflow. Samples from pre-cancerous, primary and metastatic
stages were whole-genome sequenced (WGS) and mutations were called (a).
Mutations are timed and categorised into clonal early/late or subclonal (b) before

mutational signature analysis (c). Finally, the dynamics of mutational processes are
studied in relation to the clonal composition of the samples (d).
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immune scores, cytotoxicity and infiltration of CD8+/CD4 + T cells
(Supplementary Figs. 4, 5). This could indicate promise for effective
immune checkpoint blockade for this subset of tumours, which will
require further validation in future clinical trials.

We identified an A-T rich hexanucleotide motif genetic scar
(SBS41) resembling that induced by colibactin, which has not been
described extensively in this cancer (Fig. 2a, Supplementary Fig. 2a–c).
The colibactin signature has been predominately reported in color-
ectal cancers, where it was suggested to be linked with genotoxins

originating from pks+ strains of E.coli during tumour progression21,22.
E.coli has been reported to form part of the microbiota in Barrett
Oesophagus and OAC, and not of normal oesophagus23. To confirm
this, we investigated evidenceof ID18 exposure in the same samples, as
this indel signature has been confidently linked with colibactin toxi-
city. A total of 18 samples presented evidence of both SBS41 and ID18
with contributions above 5% spread across all disease stages (Supple-
mentary Table 4), therefore suggesting a possible rare contribution of
colibactin-induced stress to OAC tumour development.
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Fig. 2 | Mutational signature landscape across disease stages. a The median
prevalence of mutational signatures present identified in the three disease stages
(Barrett Oesophagus, n = 161; primary tumours, n = 777; metastases, n = 59). The
magnitude of the circles is proportional to the median number of mutations con-
tributed by a specific signature to samples within a disease cohort. The causative
factor underlying each signature is detailed to the right of the plot when known.
DDR=DNA damage repair deficiency; ROS= reactive oxygen species; BER = base
excision repair; MMR=mismatch repair deficiency. b Mutational signature con-
tributions compared across the three disease conditions in non-matched, inde-
pendently measured samples (Barrett Oesophagus, n = 114, green; primary
tumours, n = 706, yellow; metastases, n = 55, purple). Only signatures that show a
significant change in at least one disease stage are shown (signatures 8 and 18 were
stable across disease stages). The centerline of boxes depicts the median values;
the bottomand topbox edges correspond to thefirst and thirdquartiles. Theupper

and lower whiskers extend from the hinges to the largest and smallest values,
respectively, no further than 1.5* the inter-quartile range. Two-sided Wilcoxon
signed-rank test p-values are displayed (not adjusted for multiple comparisons).
Exact p-values are provided in the Source Data file. c Changes in mutational sig-
nature prevalence between matched Barrett Oesophagus (green) and primary
tumour samples (yellow, n = 47). Black triangles pointing upwards denote an
increase in signature contribution in primary tumours; triangles pointing down-
wards denote a decrease. The centerline of boxes depicts the median values; the
bottom and top box edges correspond to the first and third quartiles. The upper
and lower whiskers extend from the hinges to the largest and smallest values,
respectively, no further than 1.5* the inter-quartile range. Two-sided Wilcoxon
signed-rank test p-values are displayed (not adjusted for multiple comparisons).
Only signatures with a significant change are shown. Source data are provided as a
Source Data file.
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Additionally, we uncovered a signature of platinum treatment
(SBS35) in primary tumours, which is expected given that the majority
of these tumours have been sequenced from the surgical resection
specimen after treatment with chemotherapeutic agents and platinum
is the backbone of treatment regimens. Indeed, this signature was
increased specifically in chemotherapy treated samples (Supplemen-
tary Fig. 2d) and likely reflects the mutagenic effects of this therapy24.
While SBS35 is a more generic platinum signature, specific mutational
scars left by cisplatin or capecitabine/5-FU treatment have been
defined recently24. However, we have not found evidence of such sig-
natures in our cohort. 46 patients in the cohort have been treated with
carboplatin/cisplatin, but this was almost always in combination with
capecitabine/5-FU or other therapies. Hence, it may be that the
carboplatin-specific signal (SBS31) gets drowned out by other more
prevalent processes. When it comes to the 5-FU signal, we are not able
to distinguish it from the pre-treatment SBS17b process which dom-
inates OACs, as the two signatures are essentially identical. It is clear
that the SBS17b signature in this cancer is a stand-alone process that
acts as an early trigger of OAC, present already in Barrett Oesophagus,
and is independent of 5-FU therapy. This does not exclude some
common mechanisms to the two processes that we have yet to dis-
entangle. In chemotherapy treated samples this signal may originate
both from theoriginal risk factor aswell as the 5-FU therapy, butweare
unable to distinguish the two.

Dynamics of mutational processes across disease stages
We found evidence formanymutational processes acting very early on
in tumour evolution such that they are already present inpe-cancerous
Barrett Oesophagus, especially SBS17a/b and the ageing-linked sig-
natures SBS1, 5 and 40 (Fig. 2b). Despite the fact that the Barrett
samples encompassed an entire spectrum from non-dysplastic non-
progressors and pre-progressors to low/high grade dysplasia, intra-
mucosal carcinoma and Barrett Oesophagus adjacent to the cancer,
the signature prevalence did not differ significantly across these
categories (Supplementary Fig. 6a), which were also clearly genomi-
cally distinct from the primary cancer, with copy number and ploidy
profiles in line with those expected in pre-malignant disease (Supple-
mentary Fig. 6b, c). Thus, the presence of most signatures early in
Barrett Oesophagus samples is unlikely to be due to a confounding
effect of malignancy already existing in some of the more advanced
cases given the heterogeneity of this cohort, but rather due tomost of
these processes acting very early on before tumour establishment.

Signatures SBS28 and SBS35 are scarcely visible in Barrett Oeso-
phagus (two and one samples, respectively, with an exposure >5%) but
they are clearly visible in primary tumours suggesting that they are
primarily operative at the stage of invasive disease. This is expected
given that SBS35 is linked with platinum treatment, while SBS28 has
been linked with polymerase epsilon mutations but also shares simi-
larities with SBS17b and thus could also explain a noisier or imperfectly
deconvolved signal in the already established malignancy, possibly
also due to 5-FU treatment. We also observed a general increase in the
contribution from APOBEC-linked mutagenesis (SBS2) and HR/MMR
deficiencies (SBS3 and SBS44) in primary tumours, followed by
decrease in metastases, while the SBS17 processes tended to rise fur-
ther inmetastases (Fig. 2b, Supplementary Fig. 7a). Most changes were
independent of the treatment status of the samples (Supplementary
Figs. 8, 9). While treatment-related signatures may be expected to be
enriched in metastases given enough time for a complete clonal
expansion, the observed SBS17a/b increase in metastases was similar
between naïve and treated cases and thus most likely due to the ori-
ginal unknown trigger. However, we cannot exclude some contribu-
tion from the 5-FU treatment, which is difficult to disentangle due to
the aforementioned separation problem between the SBS17-OAC-
specific process and the 5-FU signatures, which are highly similar25.
Nevertheless, it is worth noting that most of the primary tumour and

metastatic samples analysed were not originating from the same
patients, and for the cases where matched samples were available the
increasing/decreasing trends were less clear. Larger cohorts of mat-
ched primary-metastatic cases will be needed in the future to further
investigate these patterns.

Ageing-associated mutational events (SBS1 and 5) generally
appeared as a continuous background contribution that stabilises in
primary tumours and metastases and shows a relative decrease in
prevalence compared to other signatures. However, SBS40, also
thought to be linked with ageing, increased from pre-malignant to
advanced disease both in relative and absolute counts (Fig. 2b, Sup-
plementary Fig. 7a) – suggesting that the derivation of this mutational
process is different and may have a higher impact in this disease than
previously appreciated. The dynamics of such ageing-related pro-
cesses could also be linked with ageing-induced mutagenic drift
observed during Barrett Oesophagus development, which can be
present years prior to cancer initiation26,27.

Comparing matched samples of Barrett Oesophagus and primary
tumours from the same individuals (n = 51) further corroborated our
previous findings: APOBEC mutagenesis, HR impairment, the SBS40
process and the platinum signatures increase in prevalence with dis-
ease progression (Fig. 2c, Supplementary Fig. 7b). The ageing sig-
natures 1 and 5 and the oxidative stress signature S18 decrease in
importance, but continue to contribute mutations in the primary
tumour (SBS1) or stabilise (SBS5, SBS18). It should be noted, however,
that the prevalence of SBS2, 3 and 35 in the matched cases was most
often below 5%, and thus below the threshold on which we can con-
fidently call a mutational process as significantly acting in the tumour
(see Methods). Thus, after applying this threshold significant changes
were only observed in the SBS18 and ageing processes.

Nucleosome periodicity of mutations across disease stages
Mutation rates along the genome are highly variable and influenced by
several chromatin features. SBS17-associated T >G and T >C sub-
stitutions were enriched on the untranscribed and lagging strands,
confirming previous studies28, and this was consistent across the dis-
ease spectrum from Barrett to primary and metastatic disease (Sup-
plementary Fig. 10). The rate ofmutations innucleosomecoveredDNA
followed a periodic patternwithmaximumpower period (MP) of ~10.3
with increased mutation rate when the minor groove faces the
nucleosome, consistent with previous reports13. This periodic pattern
was similar across stages, with significant signal-to-noise ratios (SNRs)
that increased in primary tumours compared to Barrett Oesophagus
(Supplementary Figs. 11, 12).

Periodic patterns were most prominently observed for SBS17a/b-
linked mutations, with maximum power periods of ~10.3 and 10.15,
respectively, across all disease stages (Supplementary Fig. 13a, b).
SBS18-linked mutations also displayed periodicity in Barrett Oeso-
phagus and primary tumours, but not in metastases – although this
may be due to lower exposure in advanced cancers (Supplementary
Fig. 13c).

The results corroborate previous evidence that mutations in
nucleosome covered DNA follow a 10.3 bp periodicity pattern in
oesophageal cancer, and from another perspective demonstrate that
this periodicity is already present in mutations in Barrett Oesophagus,
indicating that this signal is essentially the same across stages. This
mutation periodicity is especially clear in SBS17mutations. The reason
for this periodicity has been attributed to differential DNA repair
processes in stretches of DNA with the minor groove facing histones
and away from them. In particular, SBS17 linked to 5-FU treatmentmay
be caused by alterations in the pool of nucleotides available for DNA
synthesis29, which could lead to misincorporation of nucleotides dur-
ing DNA replication. These misincorporated nucleotides could be, at
least in part, repaired by Base Excision Repair (BER), which we have
previously shown follows a periodic pattern13. Mutation periodicity for
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SBS17 not linked to 5-FU could have a similar explanation, although for
themoment, as the aetiologyof this signature is not clearwecannot do
more than speculate.

Risk factors and clinical associations
The risk factors that sustain OAC mutagenesis have remained poorly
characterised to date due to the scarcity of high quality matched
clinical annotations, and the aetiology of the SBS17 processes which
dominate this disease remains unknown. To get further insights into
the potential mutagenic triggers of this cancer, we correlated muta-
tional signatures observed in Barrett Oesophagus and primary
tumours with reported environmental exposures. These annotations
were not available for metastatic samples.

No marked strong correlations (p <0.01 or lower) were observed
with alcohol consumption or non-steroidal anti-inflammatory drug
(NSAID) usage (Supplementary Fig. 14). Current/past smokers pre-
sented increased levels of SBS17a/b compared to never smokers in the
primary tumours, but not in Barrett Oesophagus (Supplementary
Fig. 15). Mutational loads did not vary by smoking status at any pre-
malignant or cancer stage (Supplementary Fig. 16), and DDR asso-
ciated mutations were also broadly similar (Supplementary Fig. 17),
with a marginal depletion of SNVs affecting genes involved in direct
repair in never smokers (Fisher’s exact test adjusted p < 0.05, odds
ratio = 0.15). Overall, no strong signals of a protective effect from
mutagenesis appeared to be present in never smokers in pre-
cancerous stages. However, we did observe a significantly lower frac-
tion of smokers in the non-dysplastic Barrett Oesophagus patients that
do not go on to progress to cancer compared to all the other cate-
gories (Fisher’s exact test p = 0.009, odds ratio = 0.24, Supplementary
Fig. 18). This is in keeping with smoking being a known risk factor for
progression to OAC30.

No link was found between any signature and PPI/acid sup-
pressant usage. However, the majority of the cohort would have been
expected to use these drugs at some stage before or after diagnosis, so
any such correlationsmay be difficult to discern. Furthermore, data on
reflux symptoms is poorly recorded, further limiting the insights on
acid reflux association with mutational processes.

Cancer drivers and mutational signature impact
To check whether any of the observed mutational signatures shaping
disease stages in OAC might be linked with specific driver events, we
surveyed the mutational and copy number landscape of key drivers of
OAC as described by ref. 31. Overall, the top drivers remain fairly
consistent from preneoplastic samples to primaries and metastases,
with a higher prevalence of TP53 mutations in primary tumours and
metastases, as expected (Fig. 3a–c, left). Genomic changes affecting
several driver genes were associated with increases or decreases in the
prevalence of the SBS17 signatures aswell as ageing-related (SBS5/40),
BER (SBS30) andMMRD signatures (SBS44) (Wilcoxon rank-sum tests,
Fig. 3a–c, right). None of the associations where significant after mul-
tiple testing correction in Barrett Oesophagus, possibly due to
reduced driver frequency which reduces statistical power. However,
several such events remained significant in primary tumours as well as
metastases (Fig. 3b, c, right).

Most notably, TP53 alterations were linked with an increased
prevalence of SBS17a/b in primary tumours, while MDM2 changes
showed the opposite trend, pointing towards a consistent association
across the same pathway (Fig. 3b, right). In contrast, SBS17b boosts
alone appeared strongly associated with MUC6 and AXIN1 events in
metastases (Fig. 3c, right). Interestingly, CDK6 mutations appeared
linked with SBS17 mutagenesis both in Barrett Oesophagus as well as
metastases (Fig. 3a, right). CDK6 is a cyclin dependent kinase which
drives the cell cycle through pRB inactivation in G1, and an emerging
target in cancer together with CDK4. Indeed, when applying our pre-
viously developed signature of proliferation/cell cycle arrest to this

cohort32, we observed a significant increase in proliferation capacity in
samples with SBS17 contributions above 5% (Supplementary Fig. 19),
suggesting that SBS17 mutagenesis may be enhanced in faster grow-
ing, more aggressive tumours enabled through CDK6 activation.
Finally, changes in the gene ACVR2A, a transmembrane receptor linked
with TGFβ signalling, were correlated with a prominent increase in
MMRdeficiency (SBS44), whichmay pinpoint to linkedmechanisms of
immune evasion.

Mutational processes driving invasive disease
Given the observed fluctuations in mutational scars between Barrett
Oesophagus, primary tumours and metastases, it is reasonable to
expect that certain mutational processes might contribute to the
progression from pre-malignant to invasive disease. Within an indivi-
dual disease stage, we observed various combinations of mutagenic
processes acting in the genomes (Supplementary Fig. 20), some of
which were common between stages, such as the joint presence of
SBS17a/b and SBS40, and some of which were unique, e.g., SBS41 and
all ageing-linked signatures were only observed to co-occur in primary
tumours. To make sense of this complexity, we asked whether we
couldprioritise signatures that can help us distinguish betweenBarrett
Oesophagus, primary tumours and metastases. In other words, could
certain mutagenic patterns predict disease progression? To this end,
we employed gradient boosting and random forest classifiers to dis-
tinguish between cancer stages based on the mutational footprint
alone (see Methods).

When considering the overall signature contributions in each
cancer stage, the models distinguishing Barrett Oesophagus from
primary tumour genomes had performances of 84–86% AUC
(Fig. 4a), suggesting that the combined mutational scars left in the
genome during the course of this malignancy can help distinguish
disease boundaries remarkably well. The APOBEC mutagenesis sig-
nature was ranked as the most predictive of primary tumour devel-
opment, followed by the ageing-linked SBS40 and SBS1, suggesting
theymay bemore important in driving themalignant transformation
of pre-neoplastic lesions (Fig. 4b). Interestingly, APOBEC3A has been
recently shown to preferentially mutate VpC and TpC hotspots in
cancer drivers such as PIK3CA and KRAS33, which we find are specifi-
cally selected in primary tumours compared to Barrett Oesophagus
or metastases (Fig. 4c, d). Indeed, PIK3CAmutant cancers showed an
increased SBS2 prevalence in our cohort (Wilcoxon rank-sum test
p = 0.005). Although our analysis indicates PIK3CA and KRAS muta-
tions as conferring a selective advantage at primary tumour stage,
they are not exclusive to primary tumours and in fact are also more
rarely found in Barrett Oesophagus (2 cases with KRAS mutations, 3
with PIK3CAmutations). Overall, this may indicate that the increased
APOBEC mutagenesis may facilitate the acquiring of key drivers for
OAC progression, which are likely important for enabling the estab-
lishment of the tumour although they are not linked with survival
outcomes (Supplementary Figs. 21, 22). This signature association
with the primary tumour stage was further corroborated by a mul-
tinomial regression analysis (Fig. 4e). The ageing signature S1
appeared most specific to Barrett Oesophagus cases, which is not
surprising given that it is the primary source of mutations in healthy
tissues.

Interestingly, it emerged from the model that the clonality of the
mutations had a strong contribution to distinguishing between cancer
stages (Fig. 4b). This was despite the fact that Barrett Oesophagus and
primary tumour samples had similar purities both when fully clonal as
well as when presenting subclonally (Supplementary Fig. 23). Thus, the
differences in clonality picked up by the model are unlikely to simply
reflect normal cell contamination in Barrett Oesophagus but rather a
genuine effect of the clonal or subclonal action of specific mutational
processes. As a result, we built a second gradient boost classifier that
would enable us to highlight processes that act subclonally or later in
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evolution in a stage-specific manner, which had an accuracy of 86%
(Fig. 4f). This model confirmed the key signals from the previous
analysis, but shed further light on the fact that the APOBEC and SBS41
mutations that appear as a distinct signature in primary tumours are
accumulated clonally later (APOBEC) and earlier (SBS41) in evolution,
respectively. Furthermore, SBS17b clonal mutations that accumulated
later in evolution emerged as the most specific for Barrett Oesopha-
gus genomes. The SBS17 signatures emerged amongst the toppatterns
linked with Barrett Oesophagus also when predicting this pre-

cancerous stage from primary tumours using both mutational and
indel signatures while removing signature contributions of <5%,
although at a slightly lower performance of 83% AUC (Supplementary
Fig. 24). Thus, while the APOBEC signature appears quite specifically
increased in primary tumours, its overall contributions are fairly low,
while SBS17 contributions are markedly high in pre-neoplasia. In
addition, indel signatures ID1 and ID2, linkedwith slippage duringDNA
replication, also ranked highly in distinguishing primary tumours
(Supplementary Fig. 24).
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Fig. 3 | Cancer drivers across disease stages and mutational signature pre-
valence. The landscape of cancer driver events and their association with muta-
tional signatures are depicted for (a) Barrett Oesophagus (n = 161), (b) primary
tumours (n = 777) and (c) metastatic samples (n = 59). Left: The mutational and
copy number alteration landscape of OAC drivers is shown in parallel with the
contribution of key mutational signatures (top bar plots). The fraction of samples
with alterations in a specific gene is shown on the left and in the bar plots on the
right. Differennt alteration types are denoted with different colours. SNV = single

nucleotide variant, AMP = amplification, DEL =deletion. Right: Heatmaps depicting
the increase (values >0) or decrease (values <0) inmutational signature prevalence
in samples harbouring mutations or copy number changes in specific genes. The
colour gradient indicates the median change in exposure compared to wild type.
Only significant changes of >10% (in either direction) are depicted with Wilcoxon
rank-sum two-sided test p-value <0.05. Stars indicate associations that are still
significant after FDR multiple testing correction. Source data are provided as a
Source Data file (including p-values).
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Our power to detect signature differences when comparing pri-
mary tumours tometastaseswas reduced due to the smaller size of the
metastatic cohort (despite an accuracyof 92%), but we could observe a
prominent contribution from a subclonal signature SBS17b in metas-
tases (Supplementary Fig. 25).

While we are not proposing these classifiers for clinical applica-
tion, this analysis does suggest that there are distinct contributions of
mutational processes over a lifetime of a tumour which are prevalent
enough to be somewhat predictable.

DNA repair pathway dysregulation modulates OAC progression
Wenext investigated howDDR regulationmight contribute to shaping
themutational landscape of this disease. First, we asked towhat extent
the different pathways involved in repairing DNA damage are altered
via SNVs, indels or copy number changes in the cohort. We surveyed
such changes across >400 genes acting in 13 DDR-related pathways as

described in ref. 34. Among themost frequently alteredpathwayswere
BER, nucleotide excision repair (NER), HR, translesion synthesis (TLS),
Fanconi Anaemia, mismatch repair (MMR) and non-homologous end
joining (NHEJ), particularly based on the frequency of deletions which
affectedmore or nearly half the patients, while sparser events affected
other pathways (Fig. 5a). We also confirmed that changes in these
pathways were linked with an increased SNV or indel signature con-
tribution of the same expected mutagen in the cohort (Fig. 5b). How-
ever, considering the broad prevalence of DDR pathway alterations in
the cohort, we could observe the mutational footprint left by defi-
ciencies in these processes to be relatively low – which suggests a
remarkable robustness encoded in these pathways.

To investigate whether the tumours that present distinct DDR
alterations also display downstream transcriptional changes, we
employed matched RNA-seq data that we had available for 203 OAC
cases. When investigating the expression of the genes involved in the
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Fig. 4 |Mutationalprocesses anddriver events distinguishingprimary tumours
from Barrett Oesophagus genomes. a Performance of the gradient boosting and
random forest signature-based classifiers in distinguishing between Barrett Oeso-
phagus andprimary tumours. The area under the curve (AUC) is indicated for either
model. b Output of xgboost model distinguishing Barrett Oesophagus from pri-
mary tumours basedon overall signature prevalence, while accounting for clonality
and timing. Features are ordered according to their ranking in the model (top
ranking features first). Every dot is a sample and the colour corresponds to the
signature contribution in that sample, ranging frompurple (highest contributionof
the respective signature across the cohort) to yellow (lowest contribution of the
respective signature). For ‘clonality’/‘timing’purple denotes clonal/early and yellow
denotes subclonal/late. c Genes positively selected in primary tumours versus
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tional events, specific to primary tumours, are highlighted in bold. The log
likelihood-ratio test p-values are reported, adjusted for multiple testing using the
Benjamini-Hochberg method. d Genes positively selected in primary tumours

versusmetastases are shown similarly as in (c). The log likelihood-ratio testp-values
are reported, adjusted for multiple testing (Benjamini-Hochberg method).
e Multinomial regression classifier results distinguishing Barrett Oesophagus, pri-
mary tumoursandmetastases basedon signatureprevalence. Thepredictivepower
of SBS 2 and 41 in distinguishing primary tumours is exemplified. The top panel
shows the predicted disease stage depending on increasing mutational signature
prevalence. The bottom panel shows the true distribution of mutational con-
tributions for the selected signatures among three stages, with the centerline of
boxes depicting the median exposure, the bottom and top box the first and third
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different DDR pathways (see Methods), we observed a good coordi-
nation across most pathways, with samples splitting into three broad
patterns of relative upregulation, downregulation, or moderate activ-
ity acrossmost DDR pathways concomitantly (Fig. 5c, top). We did not
observe any clear clustering of pathway transcriptional activity by
mutational patterns in the respective pathways, which reflects a
complex relationship between genome scars and downstream gene/
protein-level activity (Fig. 5c, bottom). Overall, these findings suggest
that the DDR pathways appear fairly resilient in OAC.

Tumour clonal heterogeneity uncovers SBS17 mutagenic shifts
To further understand howmutational processes shape evolutionary
trajectories in OAC, we investigated the timing of mutation accu-
mulation due to the different neoplastic processes identified in the
cohort. We identified frequent subclonal events (~51% of samples)
where mutational pressures change (Fig. 6a). Most of these changes
were consistent across tumour stages, with the exception of SBS18
and SBS5, which increased only in Barrett subclones, and decreased
in primary tumour and metastasis subclones. Several processes,

including SBS17 and SBS18, presented clear subclonal changes,
whereas others, like SBS30 or SBS28, appeared stable on average.
The most notable change was a subclonal decrease in SBS17a/b
mutations, corroborating the findings from the PCAWG consortium
study in primary tumours9. The lower subclonal exposure was
observed across the stages, from Barrett Oesophagus to primary
tumours andmetastases, but with a slight progressive pattern. These
were by far the most dominant signals of dynamic shift observed
during OAC evolution. Thus, we focused on exploring the genetic
and pathway dependencies of SBS17 more broadly in the cohort in
order to shed clarity into potential consequences of the clonal
dominance of SBS17.

Multiple cancer drivers involved in chromatin remodelling and
transcriptional control, including SMARCA4, KMT2D and ARID2, were
positively selected in samples with abundant SBS17 signals (Fig. 6b).

Tumours with SBS17b exposure displayed increased ploidy and
chromosomal instability, as well as higher DDR activity, telomere
maintenance, cell cycle control and angiogenesis (Fig. 6c). Further-
more, samples where the SBS17 was more prevalent subclonally
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Fig. 5 | DNA damage repair drivers and downstream transcriptional activity.
a SNVs, indels and copy number changes affecting DDR pathways. The heat map
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in pathway. Increasing fractions of alterations are denoted by a colour gradient
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without). The centerline of boxes depicts the median values; the bottom and top

boxedges correspond to the first and third quartiles. The upper and lowerwhiskers
extend from the hinges to the largest and smallest values, respectively, no further
than 1.5* the inter-quartile range. Two-sidedWilcoxon signed-rank test p-values are
displayed. All plots confirm increased signature contributions when the pathway is
mutated. c Top heatmap: Sample by sample activity in every DDR-related pathway
as measured from expression of genes implicated in the pathway using GSVA,
displayed for n = 203 profiled primary tumour samples. The colour gradient varies
according to the pathway activity score. Bottomheatmap: Prevalence of SNV/indel
and copy number changes for the same samples in the respective pathway
(black = altered, white = non-altered). Source data are provided as a Source
Data file.
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harboured a functional, wild type p53 (Fisher’s exact test p =0.0004,
1.9-fold enrichment) and showed a slight reduction of CD8+/CD4+ T
cell infiltration (Wilcoxon rank-sum test p <0.05), as inferred from the
expression of cell type-specific markers using ConsensusTME (Sup-
plementary Fig. 26). Wild type p53 often marks slower growing
tumours, which could explain the decreased immune responses
observed. This observation is consistent with what we would expect to
see in samples where SBS17 is not a clonal process, according to our
previous analyses which showed that a strong SBS17 prevalence links
with higher proliferation.

Clinical relevance of mutational signatures
Finally, we sought to investigate whether any mutational processes
present links with outcomes observed in the clinic for OAC patients.
Remarkably, the mutational signature linked with BER impairment,
SBS30, was the most prognostic in our cohort, even after accounting
for confounding factors such as age, gender, stage (Fig. 7a, Supple-
mentary Table 5). Patients showing any evidence for BER deficiency in
their tumours (>5%, cut-off determined by robustness tests of muta-
tion callers - see Methods) had a worse overall survival (Fig. 7a), sug-
gesting a potential prognostic utility for this signature in the clinic.
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showing a dominant decrease across Barrett (n = 89, green), primary (n = 512, yel-
low) andmetastatic (n = 38, purple) stages. Box boundaries represent first and third
quartiles, centerline indicatesmedian values. The upper and lower whiskers extend
from the hinges to the largest and smallest values, respectively, no further than 1.5*
the inter-quartile range. Outlier points are plotted individually.bPositively selected
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selectedonly in the SBS17 dominant group are highlighted in red. cThepresenceof
SBS17b is associated with an increase in ploidy and chromosomal instability (CIN),
as well as higher activity of telomere maintenance, DNA damage repair (DDR), cell
cycle control and angiogenesis pathways. The YES category (red) denotes samples
with SBS17b exposure >5% (n = 831 for genomic measurements; n = 167 for tran-
scriptional hallmarks), while the NO category (blue) refers to exposures <=5%
(n = 164 for genomic measurements; n = 36 for transcriptional hallmarks). Box
boundaries represent first and third quartiles, centerline indicates median values.
The upper and lower whiskers extend from the hinges to the largest and smallest
values, respectively, no further than 1.5* the inter-quartile range. Two-sided Wil-
coxon signed-rank test p-values are displayed. Source data are provided as a Source
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SBS17a and SBS17b exposures did not show significant associa-
tions with overall survival outcomes (Supplementary Table 6). How-
ever, patients with worse tumour regression outcomes, i.e., Mandard
TRG 3 or higher, presented increased SBS17a mutagenesis in the
tumour before treatment (Fig. 7b, Supplementary Fig. 27). We further
assessed tumour progression by growth in tumour volume from pre-
treatment staging to post-therapy resection, and detected an
increased SBS17b prevalence in tumours that grew after surgery
(Fig. 7c). This was observed both in tumours sequenced before as well
as after treatment, potentially hinting at an early SBS17 mutagenic link
with patient outcomes. When examining poor responders to neoad-
juvant chemotherapy, we found that past or present smokers showed
an increased SBS17a mutagenesis signal in their tumours after treat-
ment compared to never smokers (Fig. 7d). No differences were
observed in individuals presenting complete or partial response to
chemotherapy by smoking status (Supplementary Figs. 28, 29). A
similar trend was observed in tumours in the context of radiotherapy,
but these did not reach statistical significance (Supplementary
Figs. 28b, 29b). This, in conjunction with our previous observations
that SBS17 signatures tend to bemore prevalent in faster proliferating
tumours, could indicate a role of thismutational process in conferring
more aggressive phenotypes that are also more resistant to standard
therapies for OAC. These observations should nevertheless be con-
sidered in light of the dominance of stage T3/4 tumours in our cohort
(76% of cases), which limits the chance to observe progressive disease.

Discussion
This present study of mutational processes during the course of OAC
development from pre-cancerous stages to advanced spread provides
an extensive description of the dynamics of mutational events during
tumorigenesis in this disease. Buildingonour knowledgeofmutational
signatures operative in OAC tumours16, we have elucidated details
about the temporal behaviour of mutational processes during the
evolution of OAC, summarised in Fig. 8.

Wehave characterised and compared the landscape ofmutational
processes at each stage of OAC carcinogenesis. We showed that OAC
evolution is marked by frequent mutational signature changes in
relation to the clonal composition of the tumour. The dominant
SBS17b/a process appears to be triggered early in preneoplastic stages
and is accompanied by increased copy number instability, DDR and
telomerase activity, suggesting a role in promoting tumour progres-
sion. We confirmed that the nucleosome periodicity of thismutational
process13 ismaintained across cancer stages, and found that chromatin
remodellers such asSMARCA4,KMT2D andARID2 appear to be selected
for in the presence of this signature. Interestingly, SBS17 was promi-
nently clonal and linked with genomic and transcriptional markers of
highly proliferating, more aggressive tumours, including CDK6 muta-
tions. Potentially this is most important in conferring a proliferative
advantage in the incipient stages of cancer, since association with
CDK6 are observed in Barrett Oesophagus but not in primary tumours,
and in metastases which could be due to the fact that the latter are
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Fig. 7 | Associations between mutational signatures and clinical outcomes.
a Patients with a BER signature prevalence >5% have a significantly worse overall
survival outcome, as depicted by Cox proportional hazards analysis (Cox model
log-rank p = 7.3e-06). The shaded areas depict the 95% confidence intervals. The
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intervals are shown in the table below. b Prevalence of the SBS17a signature in
treatment naïve tumours, compared between patients with Mandard scores TRG 1-
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the median values; the bottom and top box edges correspond to the first and third
quartiles. The upper and lower whiskers extend from the hinges to the largest and
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sided Wilcoxon signed-rank test p-value is displayed. c Prevalence of the SBS17b
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(n = 83) after surgery. The change in tumour volume (T stage) was calculated from
pre-treatment staging to post-therapy resection pathology staging. The tumours
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observed based on treatment status, but an increase in SBS17b is seen in tumours
growing after surgery. The groups are coloured according to treatment and volume
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and smallest values, respectively, no further than 1.5* the inter-quartile range. Two-
sided Wilcoxon signed-rank test p-values are displayed. d SBS17a signature pre-
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Higher SBS17a contributions are observed in smokers. Box boundaries represent
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whiskers extend from the hinges to the largest and smallest values, respectively, no
further than 1.5* the inter-quartile range. A two-sided Wilcoxon signed-rank test p-
value is displayed. Source data are provided as a Source Data file.
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often seeded early during OAC development35. Since CDK4/6 inhibi-
tors have shown promise in preclinical studies in OAC36, it is possible
such inhibitors may be most effectively targeted at the patient seg-
ment showing high SBS17 levels in advanced metastatic disease. Such
associations by no means suggest any causal link between these dri-
vers and mutational processes, but their co-occurrence warrants fur-
ther investigation and may inform patient stratification for certain
therapeutic regimens.

Observed subclonal decreases in SBS17 intensity in the course of
the disease may be due to inflammation-triggering processes becom-
ing better controlled through treatment, to confounding effects from
the termination of chemotherapy, or simply to changes in environ-
mental or cell-intrinsic triggers whereby other mutational processes
take over. The higher subclonal prevalence of SBS17b in metastases
might suggest that further mutagenesis from this process in later
stages of the disease can be detrimental to patient outcomes. This is
further corroborated by our observation that SBS17 subclonal increa-
ses are linked with a reduction of cytotoxic T cells in the micro-
environment, which could lead to more immune evasion.

We also observed that SBS17a/b were elevated in the context of
disease progression. As the SBS17b trace can also be the result of the
chemotherapy itself when 5-FU is applied and we cannot distinguish
mutations occurring before and after therapy in this study, it is pos-
sible that part of the signal observed is explained by the preservation
of the chemotherapy insult in the surviving cells. However, the same
explanation cannot be offered for SBS17a increases, which makes it
tantalising to hypothesise that OAC is all the more successful in
avoiding therapies due to an enhanced proliferation capacity in the
presence of SBS17 mutagenesis (for reasons unknown) before and
after chemotherapy. This is a complex question which will need to be
addressed in future studies.

APOBECmutagenesis, the A-T richmotif SBS41 signature and BER
impairment appearedmost distinctly active after OAC transformation,
possibly enabling the activation of progression-specific drivers such as

PIK3CA and KRAS, and tended to dilute in advanced stages. The higher
prevalence of these signatures, in particular of APOBEC, in primary
tumours suggests it may inform whether a sample is a tumour rather
thanBarrettOesophagus, even though the contributionof theAPOBEC
process is relatively weak. Further longitudinal studies will be required
to investigate whether the presence these signatures can predict the
risk of progression in Barrett Oesophagus. Importantly, while muta-
tions arising due to BER deficiency were on average relatively few, they
marked a significantly worse patient outcome. Intriguingly, these
mutational insults, along with other notably prevalent alterations in
NER, HR, TLS and MMR genes, appeared uncoupled from the tran-
scriptional activity of the respective pathways, potentially implicating
epigenetic regulation that restores lost function later during cancer
evolution which requires further study. Nevertheless, these findings
suggest that DDR deficiency phenotypes beyond HR may be an
underappreciated prognostic and therapeutic opportunity in a subset
of OAC patients. These signatures could be easily ascertained in the
clinic in the future through cost-effective methods such as mutREAD37

or highly sensitive ones like NanoSeq38.
By scaling up the cohorts of analysed cancer genomes, it is

becoming clear that the repertoire of uncoveredmutational processes
in OAC continues to expand. While the SBS17 process undoubtedly
dominates across tumour development stages, and SBS41/DDRD
mutagenesis appear particularly important in shaping primary
tumours, it is likely that a variety ofmutational processes will continue
to emerge as acting in a minority of OACs, much like the long tail of
cancer drivers. For instance, the SBS93mutational process appeared in
some of our solutions although not the optimally chosen one, and it is
likely that it will become more significant in larger cohorts since it is
also present in gastric cancer and oesophageal squamous cell carci-
noma, with its aetiology still to be resolved. While some of the sig-
natures uncovered may provide some clinical utility in the long-term,
including for prognosis or delaying progression e.g., by acting with
CDK6 inhibitors to supress proliferation early in the disease,
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comprehensive longitudinal studies with matched samples across
different disease stages will be crucial to elucidate the entire dynamic
complexity of these processes. Despite the relatively large size of the
cohort in the present study, the findings should be interpreted taking
into account the uncertainty around the contribution of the lesser
prevalent signatures, particularly in pre-neoplastic conditions. This is
further limited by the fact that we are unlikely to be comprehensively
sampling the subclonal heterogeneity of Barrett Oesophagus, which is
likely to be rather high, due to the limited sequencing depth. Future
studies utilising deep sequencing or clonal lineage tracking will be
required to shed further light into the complex pre-neoplastic muta-
tional signatureheterogeneity. In addition, our insights intometastatic
disease are limited by the small number of metastatic and lymph node
samples available for analysis. Experimental validation in vitro and
in vivo will be crucial in the future to confirm themutational signature
changes observed at disease boundaries. In addition to the lack of
matched samples for most of the cases in our cohort, this study is also
limited by the uneven availability of pre- and post-therapy samples
(with the latter category dominating). Thus, we are predominantly
characterising tumours that are refractory to neoadjuvant che-
motherapy forwhich tissuewas still available for sampling, and there is
a lesser representation of pre-therapy tumours which responded to
therapy. The differences in the biology of these tumours can therefore
not be accurately captured and further balanced longitudinal studies
are required to dissect these aspects.

Further research is also required to elucidate the role of BER and
SBS17 mutagenesis in the progression of OAC, from a genetic and
environmental perspective. Within our cohort, we did not find any
robust associations between mutational signatures and exposure to
risk factors such as alcohol, PPI or NSAID usage, and only a moderate
correlation between SBS17 and smoking in primary tumours. Our data
suggest a potential weak contribution of smoking to progression to
adenocarcinoma, in line with previous epidemiological studies in the
field39,40. We also find an association between smoking and SBS17-
related mutagenesis in non-responders to chemotherapy, but these
findings do not imply a causal effect and are highly limited by the lack
of a suitably sized longitudinal cohort. Interestingly, we also note there
is no strong evidence of the classical smoking signature SBS4 in our
cohort, which paints a complex picture of the effects of smoking on
the OAC cell of origin. This could be explained by weaker exposure or
interaction with other risk factors and repair processes thatmay differ
from the ones encountered in the lung. Longitudinal analyses in larger
cohorts will be required to elucidate any definitive links. Finally, the
frequent mutational process shifts in tumour subclones should be
further investigated in relation to clinical outcomes upon various
therapies.

To summarise, we have describedmultiple processes that shape
the evolution of OAC, presenting distinguishable as well as common
features from pre-neoplastic to advanced disease (Fig. 8). The lack of
major differences in clinical risk factors and signatures from Barrett
Oesophagus to OAC might underscore the fact that we are compar-
ing different stages of the same disease process, in keeping with
findings from ref. 41. The dynamics observed across disease stages
are suggestive of putative shifts in intrinsic and environmental
pressures that may influence tumourigenic capacity and the micro-
environmental niche. These mutational changes could help inform
cancer progression and patient prognosis in a stage-dependent
manner.

Methods
The research performed in this study complies with all relevant ethical
regulations. The study was approved by the Cambridge South
Research Ethics Committee (REC 07/H0305/52 and 10/H0305/1) and
included written individual informed consent. No participant com-
pensation was provided.

Study cohort
A cohort was assembled comprising 161 Barrett, 777 OACs and 59
metastatic samples that had been collected through a multicentre UK
wide study called OCCAMS (Oesophageal Cancer Classification And
Molecular Stratification) and undergone whole genome sequencing
(WGS) as part of the ICGC-International Cancer Genome Consortium.
These included 47 pairs of matched Barrett Oesophagus and primary
tumours from the same individuals, and four trios of matched Barrett
Oesophagus, OAC and metastases. Part of the OAC tumours (214/777)
were collected from the Mutographs study with available clinical
annotations.

The assembled cohort comprises 85 female and 560male patients
with OAC, and 26 female and 121 male patients with Barrett Oeso-
phagus, based on self-report. All results presented come from amal-
gamating human data from both sexes. Sex and gender have not been
considered in the design of this study, because OAC has a high male
dominance and thus any study looking at differences between male
and female cancers would likely be underpowered given the available
data. No filtering of the human data was performed based on sex or
gender, but we do report this information in Supplementary Table 1
and account for this variable when modelling clinical outcomes.
Patient age did not differ significantly between Barrett Oesophagus
and OAC cases (median of 67 versus 68, see Supplementary Table 1).

A sample from the Barrett/tumour/metastatic sample and a mat-
ched germline reference, which was ideally matched blood or if not
available normal squamous oesophagus as far away from the tumour
as possible (at least 5 cm), was collected during surgical resection or by
an endoscopic biopsy. All samples were snap-frozen.

A systematic pathological review was performed to check the
cellularity of the tumour samples using hematoxylin-and eosin-stained
sections and only samples with ≥70% cellularity were included. DNA
was extracted from frozen tumours using the Allprep DNA/RNA mini
kit (Qiagen, Hilden Germany) and DNA from blood was isolated using
QIAmp DNA blood maxi kit (Qiagen, Hilden Germany).

Whole genome sequencing and mutation calling
Paired-end whole genome sequencing at 50X depth for tumours
and 30X for matched normal (blood) was performed under contract
by Illumina (San Diego,US) as part of the International Cancer
Genome Consortium. Quality checks were performed using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and in-
house tools.

For mutation calling, sequencing reads were aligned against the
reference genome (hg19/Ensembl GRCh37) using the latest version of
Burrows-Wheeler alignment algorithm, BWA-MEM. Aligned reads were
then sorted into genome coordinate order and by using Picard (http://
broadinstitute.github.io/picard) duplicate reads were removed. The
Strelka 2.0.15 software42 was used for calling single nucleotide variants
and indels (Supplementary Table 7). Functional annotation of the
resulting variants was performed using Variant Effect Predictor.

To validate Strelka calls, we also called ran MuTect2 on 10 ran-
domly selected samples. Somatic variants were called using MuTect2
v4.1.7.0 in matched normal mode with a panel of normals and a
population germline resource. Orientation bias priors were obtained
using LearnReadOrientationModel before running FilterMutectCalls.
Default setting were used throughout.

We obtained very good associations in mutational signature pre-
valence estimates between Strelka and MuTect2, with lesser certainty
only for signatures with <5% prevalence (Supplementary Fig. 30). To
account for this uncertainty, we set all mutational signature con-
tributions of <5% to 0 in downstream analyses where a cut-off for
prevalence was important (e.g., for survival analysis). The motivation
for this is that there ismore uncertainty that their contributions will be
correctly estimated below 5%, and it is less likely such a contribution
would play amajor role in shaping the dynamics of OAC development.
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When examining cancer drivers, only nonsynonymous SNVs and
indels were considered.

Sample purity and ploidy values were estimated from WGS pro-
files using ascatNgs v2.143. Copynumber alterations after correction for
estimated normal-cell contaminationwere also inferredwith ascatNgs,
using read counts at germline heterozygous positions estimated by
GATK 3.2-244.

Mutational signature discovery
Mutational signature discovery in the cohort was performed using
SigProfilerExtractor8. The optimal signature configuration in the
cohort was selected from a range of signature combinations from 5 to
17 based on the highest stability and lowest Frobenius reconstruction
error for a signature combination. A total of 14 signatures were iden-
tified as the optimal configuration, and this was confirmed by inde-
pendent analysis using the Bayesian methodology from Sigminer45.
Once the main mutational processes in the cohort were defined, we
used deconstructSigs19 to infer the mutational contributions of these
processes to each sample. Indel signatures were inferred using
deconstructSigs on COSMIC signature references.

Transcription/Replication strand bias
The MutationalPatterns package was used to map the SNVs to either
the transcribed or untranscribed strand. Likewise for replication bias,
SNVs were assigned to lagging or leading strands46.

Nucleosome periodicity
Nucleosome periodicity was analysed as described in Pich et al. Cell
2018. Briefly, nucleosome-centred positions in the human genome
were stacked and extended (72 bp each side in zoom in analyses, 1000
in zoom out), and the distribution of mutations across different
cohorts was plotted. An expected distribution of mutations was
obtained by randomising the observed mutations following the pen-
tamer context. Finally, the relative increase of the mutation rate
((observed-expected)/expected) was calculated across all stacked
positions. The relative increase signal-to-noise ratio (SNR) was derived
from a discrete time fourier transform derived periodogram and
compared across 1000 randomisations obtaining an empirical p-value.

Mutation clonality and timing analysis
To infer subclonality of mutations and mutational processes, we first
assessed the likelihood for any sample containing subclonality using
the Hartigan’s dip test on the distribution of purity-corrected variant
allele frequencies. Samples with no significant evidence of deviation
fromunimodaldistributionweredeemedas fully clonal. The restof the
samples (51%) were assumed to contain subclonality.

Next, we used MutationTimer17 to infer the timing (early/late) of
everymutation called in each genomeas follows: for samples thatwere
assumed to be fully clonal, we ran MutationTimer with default para-
meters (minimal read support = 3, 0 dispersion) and 100 bootstrap
iterations; for samples with evidence of subclonality, we ran Muta-
tionTimer with modified input specifying the expected subclonal
proportions (calculated from a Gaussian mixture model with two
components) and inferred both the clonality and timing of mutations.
In both cases, the analysis was performed in a whole-genomedoubling
conscious manner.

We used the MutationTimer results to split the mutations into
clonal/subclonal and early/late and performed mutational signature
inference using deconstructSigs again on these separate populations.
This allowed us to infer a time and clonality-depedent mutational
prevalence of various signatures.

Finally, we corroborated our clonal composition results using
TrackSig47, which identifies cancer cell fractions where mutational
signature proportions change. The cases where we observed at
least one mutational signature change were in agreement with

cases where we observed subclonality using the approaches
described above.

DDR genomic event characterisation
To uncover evidence of DDR impairment in the cohort, we examined
nonsynonymous mutations, indels, amplifications, deletions and loss
of heterozygosity accumulated in >400 genes across 13 DDR pathways
as described in SupplementaryTable S3 fromref. 34. Non-synonymous
mutations and indel categories included missense, non-sense, stop
gained/lost, frameshift/in-frame insertions/deletions, initiator codon
variants, incomplete terminal codon variants, 5’/3’ UTR variants and
transcription factor binding site variants. Amplifications were defined
as regions with an average copy number that is double or higher than
the average ploidy of the sample (as inferred by ascatNgs). Deletions
were identified in regions with a copy number that is half or less than
the average ploidy of the sample. Loss of heterozygosity was defined
for genes with a complete loss of one copy.

Positive selection
Groups were defined based on disease stage (Barrett Oesophagus,
primary tumour, metastasis) or mutational signature dominance. In
the latter case, samples where SBS17a + SBS17b contributed the
majority of mutations in a sample were classed as ‘SBS17 dominant’;
the rest of the samples were categorised as ‘Other dominance’. Simi-
larly, samples with evidence of dominant SBS3 + SBS8 exposure were
classed as ‘HR dominant’, while the ones without were grouped sepa-
rately. The dNdScv tool48 was run separately on samples from the
individual groups in order to infer genes that were under positive
selection in the respective group. Finally, genes under positive selec-
tion were compared between the groups with/without dominance of a
particular mutational signature, and common as well as specifically
selected genes were extracted. Among these, cancer driver genes were
identified by cross-referencing against the COSMIC Cancer Gene
Census database. For genes which had not previously been docu-
mented as cancer drivers, we used the GTeX database to confirm their
expression in oesophageal/gastric tissue. Olfactory receptors were
discarded from the analysis as they are believed to be spurious hits.

Machine learning for OAC stage classification
We used a gradient boost classifier as implemented by the xgboost
package in R to train two models to distinguish Barrett Oesophagus
cases from primary tumours, and primaries from metastases, respec-
tively, based on prevalence of all mutational signatures and including
clonality and timing as covariates in themodel.We split the cohort into
70% for discovery and 30% for validation, and used 5-fold cross-vali-
dation in 100 iterations to determine the optimal parameters for the
training. The features ranked by importance were visualised using a
Shapley plot. The modelling procedure was repeated in a similar
manner but with prevalence of signatures detailed based on clonality
and timing. The accuracies for testing were 87% and 94%, respectively.
The analysis employed the code developed at the following GitHub
repository: https://github.com/pablo14/shap-values/blob/master/
shap.R. Additionally, we used a random forest classifier as imple-
mented in the randomForest R package to confirm the signature
ranking and overall prediction performance.

We also built a multinomial regression model which took as fea-
tures mutational signature exposures, timing and clonality of sig-
natures and trained a classifier to predict the stage of the tumour (with
the 3 stages, Barrett, primaries,metastases, predicted simultaneously).
This analysis was implemented using the glmnet package in R.

RNA sequencing
RNA was quantified using the Qubit High Sensitivity RNA kit (Thermo
Fisher) and checked for quality (RNA integrity number; RIN) on the
Agilent 2100 Bioanalyzer® (Agilent Technologies, USA) using the RNA
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6000 Nano kit. Samples with insufficient material, or an incalculable
RIN were excluded. There was no other lower limit for RIN inclusion.

Libraries were prepared with an input of 250ng RNA using the
TruSeq Stranded Total RNA High Sensitivity protocol with ribosomal
depletion. Samples with less than the specified input, but with >100ng
total were included and this was noted for the analysis. Library quality
and quantitywere checked using the Agilent 2100Bioanalyzer with the
DNA 1000 kit and KAPA quantification (KAPA Biosystems, Roche,
Switzerland) and were pooled according to the Illumina protocol.
Samples were run on the HiSeq 4000 instrument to generate 75 bp
paired-end reads. A mixture of normal expression controls was run on
each plate: squamous oesophagus, gastric cardia, duodenum. Duo-
denummimics the intestinal appearance of Barrett Oesophagus and it
is hypothesised that Barrett Oesophagus arises from gastric cells.
Squamous oesophagus is a less useful comparison because it shares
few features with the glandular epithelium of Barrett Oesophagus.

RNA sequencing data was trimmed for poor quality bases using
Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) and was then aligned using STAR using the ENSEMBL
gene annotation. Reads per gene were quantified using the summar-
iseOverlaps function from the GenomicRanges package, which was
also later used for computing Transcripts per million (TPM).

Hallmarks of cancer and tumour microenvironment signatures
The cancer hallmark signatures were obtained from the CancerSEA
database49. The tumour microenvironment signatures and composi-
tion were inferred using ConsensusTME50.

Chromosomal instability was calculated as the number of seg-
ments with an abnormal copy number (gain/loss) spanning >5% of the
length of a chromosome. These numberswere subsequently scaled via
a Z-score transformation.

The proliferative capacity of tumours was calculated from RNA-
seq data based on markers of G0 arrest as 1-QS, where QS is the
combined Z-score of G0arrestmarkers as described in Supplementary
Table 1 from ref. 32.

Statistics
Group comparisons were performed using the Student’s t test (two-
tailed), Wilcoxon rank-sum test or ANOVA, as appropriate. Multiple
testing correction using the Benjamini-Hochberg method was per-
formed where appropriate.

Survival analysis was performed using univariate or multivariate
Cox Proportional Hazards models as implemented in the ggforest R
package. The optimal prognostic cut-offs for mutational signatures
were determined using the maximally selected rank statistic, as
implemented in the survminer package in R. Kaplan–Meier curves
were plotted using the survminer package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw DNA sequencing data used in this study have all been pre-
viously published and are deposited at the European Genome-
Phenome Archive (EGA) under accession codes: EGAD00001007785
(whole-genome sequencing of primary tumours andmatched normal),
EGAD00001006083 (whole-genome sequencing of primary tumours
and matched normals), EGAD00001005434 (whole-genome sequen-
cing of primary tumours, Barrett Oesophagus, metastases and mat-
ched normals), EGAD00001006349 (whole-genome sequencing of
Barrett Oesophagus samples and matched normals). The raw
sequencing data are available under restricted access due to data
privacy laws; access can be requested to the ICGC Data Access Com-
plianceOffice as described here: https://docs.icgc-argo.org/docs/data-

access/daco/applying. The processed mutation data for 409 primary
tumours employed in this study are also available at the ICGC Data
Portal (https://dcc.icgc.org/), under accession code ESAD-UK. The
GRCh38/hg38 patch release 13 of the human reference genome
[https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/] has
been employed in this study. Source data are providedwith this paper.

Code availability
The scripts developed during the analysis presented here are available
at the following GitHub repository, released under a GNU GPL-v3.0
license: https://github.com/secrierlab/Mutational-Signatures-OAC
(Zenodo https://doi.org/10.5281/zenodo.8063940 51). This includes
scripts for mutational signature and clonality inference, positive
selection analysis, genomic associations, development and testing of
mutational signature-based classifiers, DDR pathway analyses and
clinical associations.
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