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Importance of electronic correlations for the magnetic properties of the
two-dimensional ferromagnet CoBr2

Hrishit Banerjee1, ∗ and Markus Aichhorn1

1Institute of Theoretical and Computational Physics,
Graz University of Technology, NAWI Graz, Petersgaße 16, Graz, 8010, Austria.

(Dated: May 7, 2021)

We investigate the emergence of ferromagnetism in the two-dimensional metal-halide CoBr2, with
a special focus on the role of electronic correlations. The calculated phonon spectrum shows that the
system is thermodynamically stable unlike other Co halides. We apply two well-known methods for
the estimation of the Curie temperature. First, we do DFT+U calculations to calculate exchange
couplings, which are subsequently used in a classical Monte Carlo simulation of the resulting Ising
spin model. The transition temperature calculated in this way is in the order of 100 K, but shows
a strong dependence on the choice of interaction parameters. Second, we apply dynamical mean-
field theory to calculate the correlated electronic structure and estimate the transition temperature.
This results in a similar estimate for a noticeable transition temperature of approximately 100 K,
however, without the strong dependence on the interaction parameters. The effect of electron-
electron interactions are strongly orbital selective, with only moderate correlations in the three
low-lying orbitals (one doublet plus one singlet), and strong correlations in the doublet at higher
energy. This can be traced back to the electronic occupation in DMFT, with five electrons in
the three low-lying orbitals and two electrons in the high-energy doublet, making the latter one
half-filled. Nevertheless, the overall spectral gap is governed by the small gap originating from the
low-lying doublet+singlet orbitals, which changes very weakly with interaction U . In that sense,
the system is close to a Mott metal-to-insulator transition, which has been shown previously to be
a hot-spot for strong magnetism.

I. INTRODUCTION

There has been a lot of recent excitement about func-
tional two-dimensional (2D) materials, which provide op-
portunities to venture into largely unexplored regions of
materials space. On one hand, their thin-film like na-
ture makes them extremely promising for applications
in electronics. On the other hand, the physical proper-
ties of monolayers often differ dramatically from those
of their parent three-dimensional materials, providing a
new degree of freedom for applications while also un-
veiling novel physics associated with low dimensionality.
Moreover, van-der-Waals (vdW) heterostructures have
recently emerged as an additional avenue to engineer new
properties by stacking 2D materials in a desired fashion.

Emergence of spontaneous ferromagnetism (FM) with-
out doping in 2D materials has been receiving a lot of
attention, since long-range FM in 2D can facilitate var-
ious applications.1–3 According to the Mermin-Wagner
theorem,4 continuous symmetries cannot be sponta-
neously broken at finite temperatures in systems with
sufficiently short-range interactions in dimensions D ≤ 2.
This implies that ferromagnetism cannot be stabilised in
2D without additional symmetry-breaking effects. The
additional symmetry breaking may be provided by the
presence of sufficiently strong spin-orbit coupling (SOC),
resulting in magnetic anisotropy. This requirement in
low-dimensional systems therefore explains the rareness
of inherent 2D FM materials. Such anisotropic symme-
try breaking has recently been observed in monolayers
of CrI3 and Cr2Ge2Te6, leading to spontaneous stable
ferromagnetism.5–9 These studies have shown the emer-

gence of spontaneous magnetism in 2D originating from
the transition metal d orbitals. These materials are in-
sulating with small band gaps.

There have been several first-principle predictions of
the ferromagnetic Curie temperature TC in 2D materi-
als in general. Most of these predictions follow the well-
known procedure of solving an Ising or Heisenberg model
using Monte Carlo methods,10–15 where the magnetic su-
perexchange parameters for those models are extracted
from density-functional theory (DFT)+U calculations. A
recent development in this field is to use high-throughput
machine learning methods to estimate transition tem-
peratures for certain materials.11 Notwithstanding the
fact that these Monte-Carlo methods tend to overesti-
mate the Curie temperatures by some amount, there is
also the additional problem of how to correctly determine
the magnetic exchange coupling and magnetic anisotropy
from DFT+U calculations. They depend heavily on the
choice of Hubbard U and Hund JH parameters, particu-
larly in these strongly-correlated d-shell transition metals
in which such spontaneous magnetism is seen.

A recent high-throughput study predicted the possibil-
ity of exfoliation of monolayers from a significant num-
ber of experimentally available materials,16 which may
show intrinsic ferromagnetism in its monolayer form. A
significant class of materials among them belong to the
MX2 class of metal halides. Since metal halides are van-
der-Waals crystals, they have low exfoliation energy in
general. In addition, the associated magnetic anisotropy
makes them ideal candidates for the emergence of intrin-
sic 2D ferromagnetism. In this study, we concentrate
on one member of the CoX2 class of materials. Since
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CoCl2 and CoI2 are possibly structurally unstable, as it
is seen from negative frequencies in the phonon excita-
tion spectrum.16 We thus focus on CoBr2 and study this
particular material in detail, primarily from the point of
view of strong electronic correlations. Needless to say
that such methodology may be applied to other relevant
metal halides or 2D materials in general as well.

Several interesting properties for CoBr2 have been
found in experimental studies, as well as predicted from
first-principle calculations. In a theoretical work, a
topologically nontrivial insulator state with a quantum
anomalous Hall effect and a topological Chern number
Z = 4 has been predicted, and it has been shown that its
edge states can be manipulated by changing the width of
its nanoribbons and by applying strain.17 Very recently it
has been shown that biaxial tensile strain can induce an
FM to antiferromagnetic (AFM) phase transition in the
CoBr2 monolayer, while compressive strain stabilises the
ferromagnetic ground state. Furthermore, doping plays
obviously a critical role in changing the ground state from
a semiconductor to a half metal, which is particularly im-
portant for spintronics based applications.18 The same
study also hinted at a possibly large TC . However, a re-
cent study on metal halides predicts a small Curie tem-
perature of 24 K, albeit with a large magnetic exchange
of 6.7 K.19 The large dependence of the Curie tempera-
ture on the actual choices for the parameters Hubbard
U and Hund exchange JH has been noted, as well as a
moderate TC ∼ 0.94 × TCrI3

C ∼ 43K has been estimated
in another study.20 Thus, it is imperative to understand
the electronic, and in particular magnetic properties of
the CoBr2 monolayer better. Since Co happens to be a
strongly-correlated d shell transition metal ion, this has
to be done with a special focus on the description of elec-
tronic correlations.

In this work we apply two well established methods for
the estimation of the transition temperature of CoBr2.
First, we calculate exchange couplings and the magnetic
anisotropy using DFT+U methods. We find a strong
variation of these couplings on the parameters U and
JH , which in turn influences strongly the predicted Curie
temperature from a classical Ising model Monte Carlo
simulation. Second, we apply the dynamical mean-field
theory (DMFT) to the problem, and calculate the mag-
netisation as function of temperature in order to esti-
mate TC . We show that the material in its paramag-
netic state has a very small, almost vanishing total spec-
tral gap, changing only slightly with interaction param-
eters. In that sense, we call the system close to a metal-
insulator phase transition. When looking at the elec-
tronic correlations in an orbital-resolved manner, how-
ever, one can see strong orbital selectivity of the corre-
lation effects. DMFT polarises the electronic occupan-
cies of the d-orbitals, making the higher-energy doublet
orbitals half-filled and very susceptible to correlations,
whereas the gap in the lower-energy orbitals is small and
shows almost no dependence on the interaction parame-
ters. The vicinity to the metal-to-insulator phase transi-

tion has been argued in previous works to be highly ben-
eficial for magnetism,21–23 and we argue that this mech-
anism is also at work here.

II. COMPUTATIONAL DETAILS

Our DFT calculations for structural relaxation were
carried out in a plane-wave basis with projector-
augmented wave (PAW) potentials24 as implemented in
the Vienna Ab-initio Simulation Package (VASP).25,26

For our DFT+DMFT calculations we are using the full-
potential augmented plane-wave basis as implemented in
the wien2k code package.27

In all our DFT calculations, we chose as exchange-
correlation functional the generalized gradient approxi-
mation (GGA), implemented following the Perdew Burke
Ernzerhof (PBE) prescription.28 The DFT+U calcula-
tions were carried out in the form of GGA+U. The value
of U at the Co sites in the GGA+U scheme was varied
between 3.5 and 4.5 eV, with a fixed Hund’s exchange
JH of 1 eV. We note here that the choice of Hubbard
U and Hund JH was inspired by the choices of U and
JH in recent literature.18–20 It is also seen in general
in DFT calculations, a slightly larger JH ∼ 1 favours
ferromagnetism.29

For ionic relaxations using the VASP package, inter-
nal positions of the atoms were allowed to relax until the
forces became less than 0.005 eV/Å. An energy cutoff of
550 eV and a 6×12×4 Monkhorst–Pack k-points mesh
provided good convergence of the total energy. Spin-
orbit coupling was taken into account in a perturbative
non-self-consistent manner as implemented in VASP. A
vacuum thickness of about 15 Å was found to be suf-
ficient to get rid of any spurious electric field effects.
The phonon spectrum was calculated based on the den-
sity functional perturbation theory (DFPT) as imple-
mented in the VASP package. A 3×3×1 supercell and
a Γ-centered 3×3×1 Monkhorst-Pack k-point mesh were
used. The phonon frequencies were calculated using the
Phonopy code.30

For the wien2k calculations, we used the largest pos-
sible muffin-tin radii, and the basis set plane-wave cut-
off was defined by Rmin ·Kmax = 7.5, where Rmin is the
muffin-tin radius of the Br atoms. The consistency be-
tween the VASP and wien2k results has always been
cross-checked. We perform the DMFT calculations in
a basis set of projective Wannier functions, which were
calculated using the DFTTools package31–33 based on
the TRIQS libraries.34 For our calculations, all five Co
d orbitals have been taken into account in the corre-
lated subspace. The Anderson impurity problems were
solved using the continuous-time quantum Monte Carlo
algorithm in the hybridization expansion (CT-HYB)35

as implemented in the TRIQS/CTHYB package.36 We
performed one-shot DFT+DMFT calculations, with an
FLL-type double counting correction as given in Ref. 37
We use a fully rotationally-invariant Kanamori Hamil-
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tonian parametrised by Hubbard U and Hunds cou-
pling JH , where we set the intraorbital interaction to
U ′ = U − 2JH . For our DMFT calculations we used
U values ranging from 3.5 to 4.5 eV and JH = 0.5 eV
in order to investigate the effect of the interaction pa-
rameters on TC . The choice of interaction parameters is
motivated by previous DMFT work on cobalt-oxide com-
pounds such as NaxCoO2, showing a very similar layered
crystal structure. There, excellent agreement of DMFT
with experimental ARPES band structure as well as pre-
diction of experimental properties driven by correlations
have been demonstrated for a similar range of U and JH
values.38,39

We note here that there is however no reason for the
two sets of Hubbard U and Hunds exchange JH param-
eters between DFT+U and DMFT schemes to be iden-
tical. This is simply due to the reason that the local or-
bitals implemented within VASP are quite different from
the low-energy Wannier projections used in DMFT, with
the Wannier orbitals being more extended in space. In
general a slightly smaller value for U and JH is expected
to be required to correctly estimate the electronic prop-
erties in case of a DMFT calculation compared to the
DFT+U methods.

Real-frequency spectra have been obtained using the
maximum-entropy method of analytic continuation as
implemented in the TRIQS/MAXENT application.40

III. RESULTS

A. Crystal and DFT electronic structure

First we describe the crystal structure of CoBr2. It
is a van-der-Waals crystal with symmetry P3̄m1 and
lattice constants a = b = 3.738 Å, c = 16.907 Å and
α = β = 90o, γ = 120o. It has been shown16 that it has
a low exfoliation energy of 16.8 meV/Å2. It is a buck-
led rather than a planar structure, with Co-Br-Co out of
plane angles of 92.3o. Each Co has 6 Br nearest neigh-
bours which form magnetic superexchange paths to other
Co atoms. The structure of a monolayer of CoBr2 along
with the magnetic superexchange path J is shown in the
upper panel of Fig. 1.

To determine the dynamical stability of the CoBr2
monolayer we first relax the ionic positions, and then
carry out phonon calculations for the relaxed structure
within VASP, using a 3×3×1 supercell. The total phonon
density of states (DOS) is shown in the lower panel of
Fig. 1. Unlike CoCl2 and CoI2,16 we do not see any neg-
ative frequencies for CoBr2. Thus we can ascertain the
dynamical stability of the CoBr2 monolayer.

In Fig. 2 we show the PBE electronic structure for
the monolayer, both in the spin-polarised and non-spin-
polarised ground states. In the top panel of Fig. 2 we
show the non-spin-polarised projected density of states
(PDOS), projected to the relevant Co d orbitals. We see
a metallic ground state with a mix of Co d orbitals at

0 2 4 6
Phonon Energies (eV)

0

5

10

15

20

25

T
o

ta
l 

P
h

o
n

o
n

 D
O

S
 (

s
ta

te
s

/e
V

)

FIG. 1. (Color online) Top: Crystal structure of a monolayer
of CoBr2. Co atoms are shown in blue, and the surround-
ing Br atoms in green. Middle: Crystal structure showing
a lateral image of the monolayer to highlight the buckling
of the structure. The magnetic superexchange coupling J is
also indicated as black line. Bottom: Total phonon density of
states. The absence of spectral weight at negative frequencies
confirms the structural stability of the material.

and around the Fermi energy, which is marked by the
dashed line, with some mixing from Br p orbitals. A
combination of almost degenerate orbitals mostly lie at
a lower binding energy of -0.8 eV with respect to Fermi
energy, while higher energy doubly-degenerate orbitals
occupy the states at the Fermi energy. We explain this
arrangement of d orbitals in more detail in Appendix A
and show the band structure along with the correspond-
ing Wannier projections in Fig. 6. A diagonalization of
the local Wannier Hamiltonian shows that the three lower
energy states are split up into a singlet at -0.849 eV, and
a doublet very close in energy at -0.842 eV, resp. The two
degenerate orbitals around the Fermi level are found at
0.043 eV, forming the higher-energy doublet. At the level
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FIG. 2. (Color online) DFT electronic structure of a mono-
layer of CoBr2. The top panel shows the non-spin-polarised
DOS while the bottom panel shows the spin-polarised DOS,
both projected to the relevant orbitals. The green lines rep-
resent the Br p orbitals, the red lines represent the sum of
the lower energy singlet+doublet d orbitals which are almost
degenerate, and the blue lines represent the higher energy
doublet.

of non-magnetic DFT calculations, all the three lower en-
ergy singlet+doublet orbitals have almost the same filling
in Wannier space, summing up to n = 5.85 electrons, and
the higher energy doublet is occupied by n = 1.15 elec-
trons. The energies below -2 eV are dominated by the
Br p orbitals. The spin-polarised PDOS in the bottom
panel of the same figure shows a half-metallic state with
a large spin splitting and a calculated moment of 3µB .
An ad-hoc application of static Hubbard U as done in
general in DFT+U calculations gives a very large band
gap. We do not show here the PDOS from our PBE+U
calculations, but refer to a recent study which shows the
this band structure, and also confirms the phonon bands
for this system.18

B. DFT+U combined with Monte Carlo study

We next determine the magnetic superexchange as well
as the magnetic anisotropy energy from first principles.
For calculating the magnetic exchange coupling J , a
2×1×1 supercell was constructed and internal positions
were relaxed. Next, self-consistent energy calculations
for U = 3.5 eV, 4 eV, and 4.5 eV (for a fixed JH = 1 eV)
for both ferromagnetic and anti-ferromagnetic configu-
rations were carried out. The total energies from these
calculations were fitted to a simple nearest-neighbor Ising
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FIG. 3. (Color online) Magnetisation and susceptibility ob-
tained from Monte Carlo simulations of a Ising spin model
on a 25×25 sites lattice. The magnetic superexchange J and
magnetic anisotropy energy AM are extracted for three dif-
ferent values of Hubbard U = 3.5 eV, 4 eV, and 4.5 eV. Inset:
Effect of the finite cluster size on the average magnetisation,
shown for lattice sizes of 25×25, 50×50, 75×75, 100×100, for
the case of U = 4.5 eV.

U (for JH = 1 eV) J/S2 (K) TC (K)
3.5 eV 6.4 139
4.0 eV 4.5 99
4.5 eV 2.8 63

TABLE I. Variation of coupling J and transition temperature
TC with changing Hubbard parameter U .

model H = −J
∑
〈ij〉 S

z
i S

z
j to obtain the coupling J . The

magnetic anisotropy energy AM = Ez
SOC − Exy

SOC was
calculated as the difference in energy when the magnetic
moment is pointing in the z direction or in the xy plane,
resp. Of course, spin-orbit coupling is necessary to be
included in these calculations.

From our DFT+U calculations we see that J varies
significantly with changes in the Hubbard parameter U
for fixed JH = 1 eV, and this variation is shown in Table
I. The anisotropy AM is calculated to be −0.4 K. A mag-
netic superexchange value similar to our J for Hubbard
U = 3.5 eV has been calculated in a recent study,19 how-
ever, the explicit variation with U and JH has not been
discussed.

The Ising model is then constructed for a 2D lattice
according to the equation

H = −J
∑
〈ij〉

Sz
i S

z
j +AM

∑
i

Sz
i S

z
i

. The magnetisation and the susceptibility of this model
are then calculated with a Markov chain Monte Carlo al-
gorithm using the Metropolis-Hastings rejection scheme.
All results shown here are calculated on the 2D triangular
lattice of Co atoms (see Fig. 1) with periodic boundary
conditions.

We show in Fig. 3 a plot of the magnetisations and
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susceptibilities calculated from Monte Carlo simulations
on a 25×25 lattice. We see, for all values of U , a tran-
sition from a high-spin ferromagnetic state with mag-
netic moment of 3µB to a paramagnetic state without a
net magnetic moment. The transition temperature, how-
ever, depends quite significantly on the value of U . The
peak in the susceptibilities shows the phase transition
point. For the three different U values of 3.5 eV, 4 eV,
and 4.5 eV the model predicts transition temperatures of
139 K, 99 K and 63 K respectively. All these values of
TC are larger compared to the experimentally measured
TC of 45 K for CrI3. Irrespective of a possible overestima-
tion of the transition temperature calculated from Monte
Carlo, we note here a large variation of almost ∼ 40 K
with change in Hubbard U parameter of 0.5 eV in each
case. This dependence is what we intend to address in
our next section with an investigation using DMFT.

We have checked the results for larger lattice sizes of
50×50, 75×75, and 100×100, and we do not see any
appreciable change in the TC , see the inset of Fig. 3.
The magnetisation curves become sharper indicating a
sharper transition at the larger size of the lattice. Putting
AM = 0 K, we find a significant shift of the transition to
the left in all the curves (not shown). However, the tran-
sition does not vanish completely, simply due to the use
of an Ising model, which has an inherent anisotropy and
hence supports a magnetic transition in two dimensions.
Our goal here is not to show the emergence of ferromag-
netism in 2D materials per se, but to provide an estimate
of the TC , which this model does effectively. We want to
note that the 2D Ising model has been used to extract
TC for other 2D ferromagnets in recent literature.15

C. DMFT calculations

We carry out DFT+DMFT calculations to include
electronic correlations more appropriately, and try to es-
timate the Curie temperature for the paramagnetic to
ferromagnetic transition. Our paramagnetic DFT band
structure calculations using wien2k reveal a metallic so-
lution, with lower-energy doublet+singlet d orbitals at
roughly −0.8 eV below Fermi energy, and higher-energy
doublet orbitals crossing the Fermi energy, in exact agree-
ment with our VASP calculations shown in Fig. 2.

We first carry out paramagnetic DMFT calculations at
inverse temperature β = 40 eV−1, including all five Co d
orbitals to allow for high spin solutions. Further expla-
nation on the Wannierization is provided in Appendix
A. The correlated spectral function for U = 3.5 eV and
JH = 0.5 eV is shown in Fig. 4. We see an insulat-
ing solution with a very small band gap at the point
of a metal-to-insulator transition. Within DMFT, the
lower energy singlet+doublet orbitals are seen to be ma-
jorly occupied with a total occupancy of n = 5. The
higher-energy doublet on the other hand is occupied by
two electrons and is, thus, half filled. These different
fillings result in very different response to electron in-

teractions, and lead to strongly orbital-selective corre-
lations. We did calculations also for increased U = 4
and 4.5 eV, using the same JH = 0.5 eV (not shown).
The gap within the higher energy doublet orbitals in-
creases with increasing U , but there is almost no change
in the gap within the lower-energy singlet+doublet or-
bitals. This is due to the very different reaction of multi-
orbital problems as function of their occupation.41 As a
result, the half-filled higher-energy doublet shows strong
correlations, and dependence on U , whereas the small
gap of the lower-energy singlet+doublet states does not
vary much as function of U . We want to note here that
the DMFT solution shows the polarised occupations-five
electrons in the singlet+doublet states and two electrons
in the higher-energy doublet-necessary for a high-spin
magnetic solution already in the paramagnetic state.

We carried out DMFT calculations at lower value of
U = 1.3 eV, J = 0.3 eV, which clearly shows a metallic
solution in the higher energy doublet. This is shown in
Appendix B in Fig. 7.

In the next step we investigate the spin-polarisation
in the DMFT solutions. Starting from the paramagnetic
solutions, we introduce a spin splitting in the real part
of the self energies, and let the DMFT iterative cycle
converge to a possibly spin-split solution. We carry out
the calculations at various values of inverse temperature
β between 40 and 250 eV−1.

At β = 40 eV−1, the calculation converges still to a
paramagnetic state, but when reducing the temperature
we find a transition to a ferromagnetic ground state. The
spectral function at β = 200 eV−1 is shown in Fig. 4 for
U = 3.5 eV. Again, a very similar variation is seen in the
electronic structure with changes in U values. We see a
clear splitting between the up and down spin channels,
and a band gap of 0.2 eV, slightly larger than in the para-
magnetic phase. We observe that the spin-up channel for
the higher-energy doublet orbitals is occupied with two
electrons, while the spin-down channel for the same is
empty. For the lower-energy singlet+doublet orbitals,
the spin-up channel is fully filled while the spin-down
channel is only partially filled with two electrons. This
gives the total magnetic moment of 3µB coming from
two unpaired electrons in the higher-energy doublet or-
bitals and one unpaired electron in the almost degenerate
lower-energy singlet+doublet orbitals.

Next, we look at the temperature dependence of the
ferromagnetic solution, as we wish to determine the Curie
temperature from a DMFT perspective. We plot the
Wannier magnetic moments on Co, obtained from the
density matrix of the spin-split DMFT solution, in Fig. 5.
It is obvious that a transition from a paramagnetic to
a ferromagnetic state occurs at around β = 125 eV−1,
which corresponds roughly to a temperature of 100 K. It
is interesting to note that here as well changing the value
of U from 3.5 to 4 to 4.5 does not change this value of
the transition temperature much, unlike in the case of
the DFT+U studies. This can be correlated to the fact
that CoBr2 is an insulator with a small band gap in the
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FIG. 4. (Color online) DMFT correlated spectral functions for U = 3.5 eV and JH = 0.5 eV. Left: Paramagnetic solution
at inverse temperature β = 40 eV−1. Right: Spin-polarized solution at inverse temperature β = 200 eV−1. The black curves
represent the sum of the three almost degenerate orbitals (one doublet+one singlet) at lower energy, and the magenta curve
is the sum of two higher energy degenerate orbitals (doublet). The spectra have been obtained using the maximum entropy
method of analytic continuation.
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FIG. 5. (Color online) Wannier magnetic moment versus tem-
perature obtained from a DMFT calculation for U = 3.5, 4,
and 4.5 eV, and JH = 0.5 eV.

paramagnetic phase in a quite large range of interaction
values. As already discussed above, for this special case
of half-filled higher-energy doublet and 5/6-filled lower-
energy singlet+doublet orbitals, the total band gap does
not significantly change with U . As a result, the system
lies quite robustly at the phase transition point between
an insulator and a metal, which has been shown to be a
hot spot for large magnetic transition temperatures.21–23

However, it should also be noted that DMFT, too,
overestimates the magnetic transition temperatures. For
3D bulk systems, this overestimation is normally between
a factor close to 1 up to a factor of 2,22,42 depending on
the system under investigation. In layered systems, this

factor can be even larger, since finite-wave-length spin
fluctuations are stronger. For instance, it has been found
in technetium oxides that the 3D variant SrTcO3 has a
transition temperature of roughly 1000 K,22 whereas the
layered variant Sr2TcO4 was predicted to have a transi-
tion temperature of around 550 K.23 Single-site DMFT
would rather give similar estimates for the TC in the two
cases. Given all the uncertainities, we can estimate a TC
in the range of 30 to 50 K, which is more in line with the
prediction in Ref. 20 than with the small TC ’s in other
previous studies.19

IV. CONCLUSION

We have investigated the influence and importance of
electronic correlations for a monolayer of CoBr2. This
system can easily be obtained from the bulk van-der-
Waals crystal by exfoliation. First, we have applied a
standard methodology for the estimation of the transi-
tion temperature, which is a combination of DFT+U for
the calculation of exchange couplings, and a subsequent
solution of a classical spin model using Monte Carlo tech-
niques. We find that the transition temperature varies
substantially with the interaction parameter U that is
used in the DFT+U treatment. Nevertheless, TC ’s in
the range of 60 to 140 K can be obtained for reasonable
values of U .

Treating correlations within DMFT leads on first sight
to similar transition temperatures. However, the physical
picture is slightly different. Different to DFT+U calcu-
lations, we see only a marginal dependence of the single-
particle gap on the Hubbard parameter U . As a result,
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FIG. 6. (Color online) The non-magnetic DFT band struc-
ture superimposed with the effective Wannier projected bands
along a typical path through the Brillouin zone.

the system is placed very robustly at the vicinity of a
metal-to-insulator transition. This point in the phase di-
agram has been shown to be very beneficial for magnetic
properties, as we also see here. A careful estimation of
the transition temperature, also taking into account pos-
sible over-estimations due to the mean-field nature of the
theories and the dimensionality of the problem, gives a
range of Tc ∼ 30 to ∼ 50 K. This is a quite remarkable
transition temperature for a 2D material. Furthermore,
the concept to find materials in the vicinity of metal-
insulator phase transitions to find good magnets is cor-
roborated by this study, and might be exploited in the
future to enhance even more the Curie temperatures of
these layered materials.

Appendix A: Wannier Projections

Here we show in Fig. 6 the Wannier projected d bands
superposed on the non-magnetic DFT band structure ob-
tained from Wien2k, which we consider for setting up
the DMFT calculations. The overall structure is that
there are three bands at binding energies between -1.2
and -0.7 eV, and two degenerate bands around the Fermi
level. It can be easily seen that the three lower-energy
bands are further split up into a singlet and a doublet.
The calculation of the orbital energies from the local
Wannier Hamiltonian shows that the singlet has orbital
energy of −0.849 eV, whereas the doublet is located at
the almost degenerate energy −0.842 eV. The two higher
energy states-the doublet-are located at 0.043 eV. That
the three lower-energy states are almost degenerate can
also be seen from the local density matrix, which give
orbital occupations of n = 1.953 for the singlet and the
doublet, resp. For the states at the Fermi level we get
orbital occupancies of n = 0.57.

Looking at the band structure in Fig. 6, one could be

FIG. 7. (Color online) The paramagnetic DMFT correlated
spectral functions for U = 1.5 eV and JH = 0.3 eV at inverse
temperature β = 40 eV−1. Green, magenta and cyan curves
represent the three lower energy orbitals which are as seen
here almost degenerate, while the red and the black repre-
sent the two higher energy orbitals which are also seen to be
degenerate.

tempted to construct Wannier orbitals only for the two
bands around the Fermi level. This procedure, however,
would result in a complete filling of the lower-energy sin-
glet+doublet states with n = 6, leading to n = 1 in the
effective two-band Wannier Hamiltonian. This in turn
allows only for low-spin state solutions with 1µB instead
of the expected high spin state of 3µB . Therefore, to al-
low for the high spin state all five d bands are considered
in the calculation. In this 5-band calculations, the total
filling of the Wannier orbitals is always n = 7. The hy-
bridisation with the Br p states is as usual taken care of
by the Wannier construction and orthonormalisation.

Appendix B: Paramagnetic DMFT at smaller
Hubbard U

As discussed in the main text, the overall spectral gap
is rather independent of the Hubbard U at reasonable in-
teraction values. Here, we show the paramagnetic corre-
lated spectral function for a smaller Hubbard interaction
value U = 1.5 eV. In order to keep the interaction values
in the Kanamori Hamiltonian physically meaningful, we
also decreased the Hund’s coupling to JH = 0.3 eV, such
that U − 3JH remains positive. From Fig. 7 one can see
that the gap in the higher-energy doublet has closed, and
a small quasi-particle feature has emerged at the Fermi
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level, leading to a metallic state. Also the distribution
of spectral weight in the other orbitals has changed, and
significantly shifted towards the Fermi level. The gap
that has been very clear in Fig. 4 has become at most a
pseudo gap.
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