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H I G H L I G H T S  

• Sustainable energy mix literature relies on the additive aggregation of costs. 
• Additive aggregation allows compensation across sustainability dimensions. 
• We examine various cost aggregation methods. 
• Various optimization models are developed to test aggregation methods 
• More sustainable portfolios are generated through multiplicative aggregation.  
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A B S T R A C T   

Generating secure, affordable, and clean energy requires careful evaluation of the costs and associated risks of 
different energy generation sources. Portfolio optimisation models are commonly used in this regard to help 
diversify risks associated with generation sources. In recent times, energy policies often require the consideration 
of the environmental and social effects of such activity. Consequently, sustainability has become a key factor in 
making energy mix planning decisions. To incorporate sustainability considerations in energy mix planning, the 
conventional approach has been to add indicators for environmental and social costs to the total generation cost 
for each available technology in a portfolio optimisation model. However, this approach to developing a sus
tainable generation mix may not effectively address all dimensions of sustainability. In most cases, the economic 
dimension is prioritised over social and environmental factors. We examine how various aggregation methods 
impact the preference among the sources and the optimal portfolio mix and propose aggregation methods that 
effectively incorporate all sustainability dimensions. We observed that technology ranking based on multipli
cative, pairwise interaction, and multilinear aggregation options aligns better with our sustainability goals than 
additive aggregation. By adopting these methods of aggregation, we were able to include more renewable and 
clean energy sources in our optimal portfolios.   

1. Introduction 

Rapid economic development and increasing population growth 
globally have put pressure on energy resources [56]. As such, the 
development and planning of energy generation sources have become a 
matter of priority for countries. However, due to awareness of the limits 
of non-renewable primary resources, environmental and social impacts 
of both renewable and non-renewable generation sources and increasing 
requirements of policy for clean, secure and affordable energy (the 

energy trilemma) [54], there is a growing research interest in con
structing a sustainable mix of energy generation technologies/sources. 
Energy generation mix and power flow planning is an important area of 
research because of the urgency to decarbonise by deploying low-carbon 
infrastructure [20] in line with the requirement to achieve goal seven of 
the UN Sustainable Development Goals (SDGs): “Ensure access to 
affordable, reliable, sustainable and modern energy for all” [49]. 

In response to this research and policy interest, different methods 
have been employed in the interest of constructing a diversified mix of 
energy generation sources that meet the energy demand requirements of 
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a country while managing the associated risks to the environment and 
society. Ioannou et al. [21], reviewed the risk-based methods for sus
tainable energy system planning and observed that optimisation 
methods, the mean-variance portfolio theory and multi-criteria decision 
analysis are the prominent techniques for the construction and analysis 
of sustainable generation portfolios. For the mean-variance framework, 
the early work of Bar-Lev and Katz [6] and later Awerbuch and Berger 
[4] established the foundation for applying portfolio diversification 
theory to energy planning decisions to optimise the portfolio of gener
ation technologies. At its foundation, the method requires estimates for 
generation cost and risks as the building blocks for assessment. While 
these early works did not have sustainability considerations as a primary 
objective, later works have sought to develop a sustainable mix of 
generation sources that considers the policy needs for energy security 
and climate change mitigation. 

The sustainability problem requires the modelling of the different 
dimensions of sustainability - economic, social, and environmental di
mensions [9,24]. The solution adopted in energy mix planning studies is 
to add environmental and other social costs to the generation cost and 
risks used in the optimisation model [8,32]. Arnesano et al. [3], for 
example, defined total generation cost to be the sum of industrial, 
external, and direct and indirect CO2 costs. While the industrial cost 
component comprised construction, fuel and operation and mainte
nance (O&M) costs per kWh, the external and CO2 cost components 
captured the social and environmental impacts of the various generation 
technologies. Marrero et al. [32], added the externality cost of CO2 
emissions to the levelized cost of energy in the sensitivity analysis to 
model the potential complementarity between renewable and non- 
renewable energy sources in reducing both portfolio risk/cost and CO2 
emission. 

While this approach for incorporating the social and/or environ
mental costs in the portfolio diversification problem is widely accepted 
in sustainable energy mix planning, we argue that this is not adequately 
effective in modelling the relevance of these sustainability dimensions in 
such problems. This is because adding such environmental and societal 
costs to other economic generation costs does not capture the preference 
relationship between the dimensions. By relying on multi-attribute 

utility theory, and data envelopment analysis (DEA), it is shown that 
the preference relationships in an additive model fail to consider the 
joint effects in such multiple dimension aggregation problems. This has 
implications for the optimal portfolios generated and the emissions 
reduction potential. For additive aggregation, there is a greater potential 
for poor performance on some dimensions of sustainability to be 
compensated by good performance on other dimensions of sustainability 
[10,27]. Additionally, the large differences in the magnitude of the 
contributions of each of the cost dimensions towards total generation 
cost mean some dimensions may be disadvantaged in favour of di
mensions with higher contribution magnitude. In the Arnesano et al. [3] 
case, for example, the social and environmental dimensions on average 
accounted for only 18% of the total generation cost of a technology, 
while the industrial (economic) cost accounted for 82% of the total cost. 
Therefore, the portfolios generated in such assessment overly advantage 
the economic dimension of sustainability to the disadvantage of the 
other equally important sustainability dimensions. Hence there is more 
emission-reduction potential for a truly sustainable energy portfolio 
diversification if the preferences and magnitudes of these dimensions 
are more effectively modelled. 

The need to ensure sustainability, security and affordability of en
ergy is one of the most pressing concerns faced by many governments 
and international bodies in contemporary times. As such, effective 
modelling of the problem is key for energy policy. This paper examines 
the impact of the composition of the cost structure on the preference 
between alternative generation sources that should be optimised in a 
portfolio model. As such, the implications of various cost configurations 
on the preference between sources and the optimal portfolio of sources 
are presented to show the weaknesses of traditional approaches to 
constructing sustainable generation mixes. From this, recommendations 
are made on how to generate a more sustainable mix with higher 
emissions reduction potential and a more effective combination of 
renewable and non-renewable generation sources. This paper contrib
utes to the existing literature by highlighting the limitations of tradi
tional approaches in incorporating environmental and social costs into 
the portfolio diversification problem. This introduces a novel perspec
tive by integrating multi-attribute utility theory and DEA to better un
derstand the joint effects of these dimensions and address the 
shortcomings of additive aggregation. In this regard, novel DEA models 
are developed to study the implications of aggregation technique on the 
ranking of sources. We identify and discuss the weaknesses in traditional 
methods of constructing sustainable generation mixes. This critical 
analysis is important for informing policy makers and researchers about 
the potential biases in existing models, and therefore urging for a more 
balanced and comprehensive approach. Finally, we also provide rec
ommendations for generating a more sustainable energy mix with 
higher emissions reduction potential. 

To achieve these objectives, the remainder of the paper is organised 
as follows: Section 2 presents a review of previous literature. Section 3 is 
the methodology section. We formulate various optimisation models to 
examine the relationship between the dimensions of sustainability. 
Section 4 presents an empirical analysis. In this section, we first examine 
the impact of various configurations of cost composition on rankings of 
individual sources using DEA. This is then followed by the impact of the 
cost configuration on the optimal portfolio selected using the mean- 
variance framework. Finally, concluding remarks and recommenda
tions are made in Section 5. 

2. Previous work 

Markowitz [31], first introduced a mean-variance framework for 
optimising a portfolio of investment assets by maximising expected 
returns and minimising associated risks. Since then, this mean-variance 
framework has found relevance in several areas, including energy 
planning decisions. Bar-Lev and Katz [6] and Awerbuch and Berger [4] 
were the early works that advocated for the application of this portfolio 

Nomenclature 

CCR Charnes, Cooper, and Rhodes (i.e. Constant Returns to 
Scale) 

DEA Data Envelopment Analysis 
kWh Kilowatt-hour 
MCDM Multi-Criteria Decision Making 
O&M Operation and Maintenance 
PV Photovoltaic 
WEI Without Explicit Output (i.e. index data form) 
E
(
Rp
)

The expected annual value/return of a portfolio p 
E
(
rj
)

The expected return of technology j 
E
(
rrj
)

The expected return of sustainability dimension r for 
technology j 

σp Standard deviation of a portfolio p 
σj Standard deviation (risk) of a technology j 
σrj Standard deviation (risk) of sustainability dimension r 

for a technology j 
ρjk Correlation between technology j and technology k 
wj Weight of technology j 
u(Y) Utility of a set of Y mutually utility independent 

attributes 
ϕ A risk-adjusted performance measure 
zj A non-negative vector of weights for technology j  
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diversification theory in energy planning decisions to optimise the 
portfolio of generation technologies. Subsequently, there have been 
many other studies that have used the mean-variance framework in 
energy planning decisions [1,29,43]. Although there have been several 
approaches and applications of the mean-variance framework in energy 
portfolio planning [53], at its foundation, the framework requires esti
mates for generation cost (or return) and risk, which form the building 
blocks for further assessment. The composition of the generation cost (or 
return) and risk have been the basis for some differences in literature 
since it has direct implications on the nature of optimal portfolios 
generated. 

On the one hand, some studies tackle portfolio optimisation prob
lems without considering negative externalities borne by the environ
ment and society [2,12,40]. For example, the components of the 
generation cost in Delarue et al. [12] include investment costs, fuel costs 
and fixed and variable O&M costs. Similarly, Allan et al. [2] considered 
private costs in estimating the levelized costs of the technology, thereby 
ignoring external costs such as the cost of emissions. Cost components 
considered included construction, storage, fuel and fuel delivery, pre- 
development, O&M costs and a waste and processing plant decom
missioning cost for nuclear energy [2]. Studies that do not consider 
environmental or societal dimensions provide portfolios aimed at opti
mising the generation cost in ensuring secure and affordable energy. 
However, such studies ignore the requirement for clean energy, which is 
an essential part of the sustainable energy policy. As such, optimal 
portfolios generated do not factor in emission-reduction potential, 
thereby, favouring non-renewable sources compared to renewable 
generation sources. 

On the other hand, some studies include environmental or external 
impacts when estimating expected generation cost or return [33,44]. The 
ambitious carbon emissions reduction targets and the need to raise energy 
efficiency has significantly influenced the structure of power generation 
[52,53]. Consequently, some studies have sort to consider the seemingly 
conflicting and competing priorities of energy security and sustainability/ 
climate change policies [44]. Existing literature incorporate these sus
tainability concerns by adding cost indicators from environmental and 
societal dimensions to the generation costs which are used in the earlier 
instances. For example, in the case of Zhu and Fan [59], their optimisation 
of China’s generation portfolio used a summation of generating costs 
(combining investment, fuel and O&M costs) and CO2 costs in their 
evaluation. Similarly, Arnesano et al. [3], defined a total cost as a sum of 
costs from the economic, environmental and social dimensions of sus
tainability. These studies follow the approach by Awerbuch and Yang [5] 
who included the expected market price of carbon emissions into the total 
cost in their evaluation. However, in such instances, these other environ
mental and social cost components, account for substantially lower pro
portion of the total cost. This is because, with additive aggregation an 
important dimension can be compensated by other dimensions. As such, 
the true effect of the environmental and social dimensions may not be 
observed in the optimal portfolios generated. 

There are others who focus on only renewable energy sources in their 
portfolio diversification problem. For example, López Prol et al. [28], 
constructed optimal portfolios comprising of wind and solar sources in 
the European context. However, in practice, the energy mix of nations 
comprises both renewable and non-renewable sources. Consequently, 
limiting the sources considered to only renewable sources limits the 
applicability of the results by policymakers. Finally, the others who use 
portfolio theory in energy mix problems. However, their evaluation is 
focussed on a private investor’s stock selection problem rather than a 
country’s energy mix problem. An example of such a study is Kuang [23] 
who examined whether clean energy stocks are attractive in stock se
lection. Such private investor problems are not considered in this paper. 

3. Methodology 

3.1. Portfolio diversification 

The mean-variance framework of Markowitz [31] used in portfolio 
optimisation requires estimates of the expected value of the portfolio of 
generation sources and associated risk. The portfolio expected return is 
defined from the generation cost [30,34] or output perspectives [37]. In 
energy mix planning, however, the inverse of the expected generation 
cost is usually used in a maximisation model [12]. The general portfolio 
expected return is defined as [37]: 

E
(
Rp
)
=
∑n

j=1
wjE
(
Rj
)

(1) 

This expected annual value of the portfolio E
(
Rp
)

comprises the 
weighted sum of the returns of n technologies under investigation. The 
risk of the portfolio is estimated by the standard deviation of the 
technologies: 

σp =

⎛

⎜
⎜
⎜
⎜
⎝

∑n

j=1
w2

j σ2
j +

∑n

j=1

∑n
k = 1
j ∕= k

wjwkσjσkρjk

⎞

⎟
⎟
⎟
⎟
⎠

1
2

(2) 

Where the σj and σk represent the standard deviation of technology j 
and technology k, while ρjk is the correlation between technology j and k. 
In the optimisation problem, the portfolio with the highest return can be 
found by maximising the portfolio expected return subject to the port
folio risk as a constraint. On the other hand, the minimum-variance 
portfolio can be estimated by minimising the portfolio risk subject to 
the expected return as a constraint. For both problems, there is a further 
requirement for the weights wj to sum up to unity, such that: 

∑n
j=1wj =

1. There may be other upper and lower bound requirements, as well as 
capacity constraints on the optimal weights to be estimated. This de
pends on the national and international policies on the generation mix 
[36,39]. 

3.2. Decomposing the expected return and risk 

The focus of this paper is to examine the internal structure of the 
return of technology from which the optimal portfolio is selected. The 
expected return, defined from the inverse of generation costs, comprises 
various generation cost types including (but not limited to) O&M costs, 
capital/investment cost, fuel costs, as well as emissions factor usually 
from carbon trading, as well as external costs such as costs on health 
damages [12]. These costs may be generally classified as private in
dustrial costs incurred during the plant operation and CO2 costs usually 
imposed by governments to check emissions and external costs that 
could be incurred as a result of the impact of the operation of the plant 
on society [2,3]. Total cost should reflect the economic, social, and 
environmental costs per unit of energy produced which should be 
minimised to achieve secure, affordable and clean energy. Conse
quently, the generation cost (and the risk) of technology is the basis for 
determining preference between different generation sources to 
generate a sustainable mix. 

The total cost is often defined as a sum or weighted sum of the 
various cost components for each technology (see [3,12]). If the cost of 
generation is decomposed into the r independent sustainability di
mensions (i.e. economic, social and environmental dimensions), the 
expected return and variance of a given technology j can be defined as: 

E
(
Rj
)
=
∑s

r=1
E(rr) (3)  

var(r1 +…+ rs) =
∑s

r=1
var(rr) (4)  
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where rr = 1/cr. The covariance is zero since the components are inde
pendent. Summing the components may not provide a truly sustainable 
portfolio since disadvantages on some dimensions can be compensated by 
large advantages on other dimensions. Since the expected return is the 
basis for determining the overall sustainability and preference between 
technologies, it is possible to look at the problem from a utility max
imisation perspective. If the preference between alternatives satisfy the 
Von Neumann and Morgenstern [50] axioms of rational behaviour and the 
components are mutually utility independent, then it is possible to express 
the multi-attribute utility problem in multilinear form [22,45]: 

u(Y) =
∑s

r=1
krur(yr)+

∑s

r=1

∑

t>r
krtur(yr)ut(yt)+…+ k1,2,…,su1(y1)u2

(y2)…us(ys)

(5)  

where k’s are scaling constants that ensure consistency. The attribute yr is 
utility independent of its complements if the preference for lotteries with 
different levels of that attribute yr does not depend on fixed levels of the 
remaining attributes [45]. In this case, higher economic returns are 
preferred to low economic returns at the same level of social and envi
ronmental returns. If all subsets of all attributes are utility independent of 
their complements, then the attributes are mutually utility independent 
[22,45]. The multilinear form is a generalisation of both the additive and 
multiplicative utility functions [22]. The additive expected return as 
expressed in follows the first term of the multilinear utility model in (5). 
Additive aggregation is used if alternatives satisfy additive independence, 
meaning preferences between the lotteries depend only on the marginal 
probability distributions [22]. It ignores the joint probability distribution 
and hence does not allow for interaction between the attributes. Elkington 
[17] shows sustainability as the point of intersection between social 
(people), environmental (planet) and economic (profit) objectives. 
Therefore, the idea of sustainability-focused planning decisions should 
require both economic efficiency and external considerations not either 
economic or external. This is seen in the triple bottom line framework, 
which shows sustainability as the point of intersection between economic, 
social, and environmental dimensions. 

An approach that constructs composite scores in a way that allows 
disadvantages on some criteria to be offset by large advantages on other 
criteria [18,19,38] is inconsistent with the idea of sustainability [17]. 
Additivity of the utility function across attributes with comparable scales 
allows for loss on one criterion to be compensated by gains of another 
[35]. Additionally, the various dimensions may not have the same 
magnitude. Bhattacharya and Kojima [8], for instance, show that CO2 
costs represent very little of the total generating cost breakdown in the 
Japanese case with economic costs (capital, fuel and O&M) accounting for 
about 75% of the total risk. Awerbuch and Yang [5], showed that carbon 
costs play very little in the generating cost structure of fossil-based fuels 
and even no direct impact on the cost of generating non-fossil technolo
gies. Examining these dimensions by the sum of the costs has the potential 
of reducing the weight of CO2 and other external costs in the final analysis 
and so goes contrary to the ideals of sustainability. 

In the case of sustainability, it may be more appropriate to define the 
expected return of the technology as a product of the dimensions. In that 
case, the joint probability distribution across dimensions is of concern 
such that overall preference for a technology differs at different levels of 
some dimensions. Consequently, the desirability of different amounts of 
a dimension may depend on the specific level of other dimensions [22]. 
Such interaction is not captured in the additive utility function. In such a 

case, the multiplicative preference relation may be preferred for deter
mining the expected return of technology across the sustainability di
mensions. This presents some complexity in the estimation of the risk 
attributable to the various components. When variables are interacting, 
variance depends on whether the interacting variables are independent 
random variables or are correlated. Since the economic, social and 
environmental cost components are independent, the covariance be
tween the components is assumed to be zero. 

E
(
Rj
)
=
∏s

r=1
E(rr) (6)  

var(r1⋅…⋅rs) =
∏s

r=1

(
var(rr)+ (E[rr] )

2 )
−
∏s

r=1
(E[rr] )

2 (7) 

Although the multilinear function in (5) has different levels of in
teractions between the dimensions, since the definition of sustainability 
requires all three dimensions, this study focuses on the interaction be
tween all three dimensions in determining the technology return. 
However, it may sometimes be useful to rely on pairwise interaction 
when technology has zero costs/returns on some dimensions. In the next 
section, optimisation models to examine the different relationships be
tween dimensions of sustainability are developed. These models are 
empirically tested in later sections to see how the relationship between 
dimensions influences the preference between technologies. 

3.3. Modelling the relationship between sustainability dimensions 

DEA is the multi-criteria decision-making (MCDM) technique used as 
the basis for evaluating the impact of various cost configurations on the 
scores and rankings of the technologies. Multi-criteria decision-making 
approaches have been widely used and advanced methodologically to 
incorporate multiple dimensions and indicators in sustainability 
research [14,48]. DEA has an advantage over other MCDM approaches 
as it does not have challenges with normalisation, dimension weighting 
and aggregation when incorporating economic, social and environ
mental impacts as occurs with other MCDM approaches [11,51]. With 
DEA, it is possible to examine the dimensions from the individual to the 
composite levels which allows for the examination of the impact of the 
dimension configuration on the composite scores. Advances in DEA 
allow for the examination of different preferences. Additionally, DEA 
has been widely used for portfolio optimisation problems [7,16,26,58] 
and sustainability assessment of various nature [47,57]. 

3.3.1. Relationship between DEA and multilinear utility function 
The multilinear utility function is presented in eq. (5), with a set of 

Y =
(
y1, y2,…, ys

)
mutually utility independent attributes. Here ur(yr) is 

the utility function of the rth attribute scaled by krwhere 0 ≤ kr ≤ 1. In 
practice, the procedure for constructing the utility u(Y) in multi- 
attribute utility theory, involves first assessment of the partial utilities 
ur(yr) then determining appropriate scaling using qualitative judge
ments, and other approaches like Analytic Hierarchy Process, Entropy 
method or Principal Component Analysis [15,55]. Yang et al. [55] have 
shown the relationship between the DEA approach and the multi- 
attribute utility theory in estimating the scaling factors. Since the at
tributes in (5) are all ‘more is better’, DEA Without Explicit Output 
(DEA-WEI), which uses index data of the form yir = er/xi where er and xi 
are outputs and inputs respectively [25], can be used for the assessment 
of the scaling factors [55] in the quadratic model:  

h = Max
∑s

r=1
wrur(yro) +

∑s

r=1

∑

t>r
wrtur(yro)ut(yto) + … + w1,2,…,su1(y1o)u2(y2o)…us(yso)

s.t.
∑s

r=1
wrur

(
yrj
)
+
∑s

r=1

∑

t>r
wrtur

(
yrj
)
ut
(
ytj
)
+ … + w1,2,…,su1

(
y1j
)
u2
(
y2j
)
…us

(
ysj
)
≤ 1

wr ≥ 0, j = 1,…, n, r = 1,…, s, t = 1,…, s

(8)   
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The objective in (8) determines the scaling factors that maximise the 
multilinear utility function of the alternative o under investigation 
subject to the restriction that for all the other j alternatives (j = 1,…, n), 
the same function given the chosen scaling factors does not exceed unity. 
Alternatively, the dual form of the linear programming problem (8) may 
be preferred: 

Max θ

s.t.
∑n

j=1
zjur
(
yrj
)
≥ θur(yro), r = 1,…, s

∑n

j=1
zjur
(
yrj
)
ut
(
ytj
)
≥ θur(yro)ut(yto), r = 1,…, s, t = 1,…, s

⋮
∑n

j=1
zju1
(
y1j
)
u2
(
y2j
)
…us

(
ysj
)
≥ θu1(y1o)u2(y2o)…us(yso)

∑n

j=1
zj = 1

θ ≥ 1

zj ≥ 0, j = 1,…, n

(9) 

The optimal solution of (9) is the reciprocal of the optimal solution of 
(8). In a single input case, as in the risk-return problem, the DEA-WEI 
can directly be converted into the constant returns to scale DEA model 
[25]: 

Max θ

s.t.
∑n

j=1
λjerj ≥ θero

∑n

j=1
λjxj ≤ xo

λj ≥ 0, j = 1,…, n, r = 1,…, s

(10) 

Note that (10), shows the CCR model corresponding to a DEA-WEI 
model with just the additive term in the multilinear function. It is 
possible to show a CCR model with the interacting terms. This will only 
require additional constraints. In the next sub-section, DEA models 
based on the CCR are developed to examine how the relationship be
tween the sustainability dimensions influence the rankings of 
technologies. 

3.3.2. DEA modelling of attribute relationships 
DEA models using the CCR model to examine how the modelling of 

the relationship between the sustainability dimensions (or attributes) 
influence the ordinal ranking of the technologies (j = 1,…, n). In this 
section, the expected return (E(r) ) is modelled as the output to be 
maximised while the risk (σ) is modelled as the input to be minimised. 
For each of the DEA models to be presented, the score may be inter
preted as a risk-adjusted performance measure since returns are maxi
mised at given levels of risks. 

3.3.2.1. Additive modelling of sustainability dimensions (Model 1). As a 
starting point, the DEA model with expected return and risk defined by 
(3) and (4) is presented for the performance ranking. This model uses 
technology returns as a sum of the returns of the various sustainability 
dimensions that make up the generation cost of the technology. This risk 
measure in (11) is the square root of the variance in (4). This is the 
traditional way return is estimated for the portfolio optimisation 
problems. 

E1
o = max

z,ϕ
ϕ

s.t.
∑n

j=1
zjσj ≤ σo

∑n

j=1
zjE
(
rj
)
≥ E(ro)ϕ

zj ≥ 0, j = 1, 2,…, n

(11) 

For technology o, the objective is to find the maximum Pareto- 
efficient proportional expansion in expected return, given its risk 
level. As such, if the score ϕ is equal to unity, then there is no oppor
tunity for expansion of return since no other technology has a more 

Pareto-efficient risk-return combination. The inverse of the score in (11) 
is bounded by zero and unity with unity as the most efficient score 
(

0 < 1
ϕ ≤ 1

)
. Also, zj is a non-negative vector of weights for technology j 

and E
(
rj
)

is the additive expected return score for technology j. The 
model formulated assumes constant returns to scale (hereafter called 
CCR) since it has better discriminatory power. It is believed that the 
rankings in (11) are inconsistent with the idea of sustainability since the 
various dimensions are combined without the requirement for good 
performance on each of the sustainability dimensions, therefore, 
allowing compensation. 

3.3.2.2. Separating the sustainability dimensions (Model 2). To address 
the weakness of the additive model presented in (11), one solution may 
be to define the various dimensions as separate outputs thereby allowing 
Pareto preference on each of the sustainability dimensions. Given the 
dimensions of sustainability, the total return and risk are decomposed 
into the three dimensions treated as the separate/independent outputs/ 
inputs in separate constraints in (12). 

E2
o = max

z,ϕ
ϕ

s.t.
∑n

j=1
zjσrj ≤ σro r = 1,…, s

∑n

j=1
zjE
(
rrj
)
≥ E(rro)ϕ r = 1,…, s

zj ≥ 0, j = 1, 2,…, n

(12) 

The model in (12) will, therefore, have three risk constraints and 
three expected return constraints representing the risk and returns for 
the three sustainability dimensions. In such a model, the technology 
return and risk may be defined as a weighted average in the portfolio 
analysis. This model is preferred to that presented in (11) since it allows 
preference to be examined on each dimension independently. However, 
the model allows the technology to choose the sustainability dimension 
for which more emphasis will be placed in terms of the weighting. This is 
since the weights are local and differ between technologies. 

3.3.2.3. Multiplicative modelling of sustainability dimensions (Model 3). 
To handle this preference problem between the expected returns across 
sustainability dimensions, it may be more appropriate to interact the 
various dimensions under study since the idea of sustainability funda
mentally requires interaction between the dimensions. Here, only the 
joint probability distribution is explored. Yang et al. [55] have shown 
that the DEA approach can be extended using the multi-attribute utility 
theory with variable weights to include interaction terms to reflect value 
judgements. To cater for the need for interactions between the di
mensions, therefore, the three return estimates are included as an 
interaction term as formulated in (13). This will require an estimation of 
a new risk variable defined as a product of the returns. This new risk 
variable for each technology is incorporated in (13) as σ̂ j. Also, note that 
the expected return and risk are estimated as in (6) and (7) respectively. 

E3
o = max

z,ϕ
ϕ

s.t.
∑n

j=1
zj σ̂ j ≤ σ̂o

∑n

j=1
zjE

(
∏s

r=1
rrj

)

≥ E

(
∏s

r=1
rro

)

ϕ

zj ≥ 0, j = 1, 2,…, n

(13) 

The rankings generated from (13) is most consistent with the prin
ciples of sustainability and will ensure that economic, social and envi
ronmental considerations are equally prioritised in the composition of 
different technologies. 

3.3.2.4. Pairwise interactions between sustainability dimensions (Model 
4). The potential problem with (13) is the impact a zero score on any 
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dimension can have on the final ranking. A zero value on any dimension 
may mean no performance assessment based on the other dimensions 
can be undertaken. A renewable technology may have no environmental 
cost, for example, if only direct emissions are considered. In such cir
cumstances, it is possible to conduct pairwise interaction as a compro
mise solution. 

E4
o = max

z,ϕ
ϕ

s.t.
∑n

j=1
zjσ̃rtj ≤ σ̃rto, r = 1,…, h − 1, t = h + 1,…, s

∑n

j=1
zjE
(
rrj⋅rtj

)
≥ E(rro⋅rto)ϕ, r = 1,…, h − 1, t = h + 1,…, s

zj ≥ 0, j = 1, 2,…, n
(14) 

Note that σ̃rtj in (14) represents the standard deviations of the ex
pected return for sustainability dimensions r and t estimated using 
pairwise interaction. The variance is estimated like (7) except that r is 2 
in each case. The model presented in (14) retains the interactions be
tween the dimensions as required by sustainability while catering for the 
possibility of zero scores on a dimension. In essence, this approach ex
amines the other outcomes in the triple bottom line framework such as 
technologies that are not environmentally damaging and support society 
but come at high cost (socio-environmental), economically viable 
technologies which support society but have high environmental im
plications (socio-economic) and those that are economically profitable, 
do not burden the environment but do not provide sufficient support for 
society (eco-efficiency) [46]. The overall technology expected return 
and risk under such evaluation is the average of the pairwise 
interactions. 

3.3.2.5. Multilinear assessment of sustainability dimensions (Model 5). An 
alternative compromise solution that addresses the problem of zero data 
on the dimensions and which also captures the joint effects across di
mensions is presented in (15). This approach captures both the marginal 
effects and the joint effects between the dimensions. 

E5
o = max

z,ϕ
ϕ

s.t.
∑n

j=1
zj

(
∑s

r=1
σrj + σ̂ j

)

≤

(
∑s

r=1
σro + σ̂o

)

, r = 1,…, s

∑n

j=1
zjE

(
∑s

r=1
rrj +

∏s

r=1
rrj

)

≥ E

(
∑s

r=1
rro +

∏s

r=1
rro

)

ϕ

zj ≥ 0, j = 1, 2,…, n
(15)  

4. Empirical assessment 

To allow for a comparison of our results to the approach in the 
literature, the data by Arnesano et al. [3] on portfolio optimisation of the 
Italian electricity generation mix is used. In their assessment, generation 
cost comprised environmental (CO2 cost), societal (external costs) and 
economic (industrial) dimensions. As such, we can model all three di
mensions of sustainability in our assessment. In their study, the rela
tionship between these dimensions was modelled as a sum where the 
inverse of the sum of generation costs, comprising industrial, external, 
and direct and indirect CO2 costs, was maximised given the risk asso
ciated with each generation technology. 

4.1. DEA evaluation of sustainability dimensions 

Arnesano et al. [3] examined the Italian context to verify whether a 
different energy mix could be identified that minimises financial costs 
and risks, while at the same time examining environmental sustain
ability. The environmental dimension, represented by CO2 costs, was 

based on a lifecycle estimate of the environmental emissions of the 
technology, as such, even renewable energy sources like hydro, wind 
and solar PVs incur some environmental cost in the production due to 
embodied emissions. Assessment based on the lifecycle perspective does 
not limit the environmental impact to only the generation of the re
sources, but the environmental impacts from the ‘cradle-to-grave’ life
cycle thinking perspective. The composition of total cost included an 
external cost dimension, which represents all other costs due to the 
production of energy that is not sustained by the power plants them
selves but by society. This external cost is used as the social dimension of 
sustainability in this chapter. A summary of the data from the paper for 
the 10 technologies comprising both renewable and non-renewable 
sources are presented in Table 1. 

From the values in Table 1, it is expected that renewable energy 
generation sources (hydro, solar [PV], wind and biomass) will outper
form their non-renewable counterparts (gas and coal) if the technologies 
are considered along with environmental and social perspectives of 
sustainability. This is because renewable sources generally have rela
tively lower environmental and societal costs and have relatively lower 
risk levels compared to most non-renewable technologies. Non- 
renewable sources like coal and gas have a comparative advantage in 
terms of the economic (industrial) dimension. Nuclear energy is also 
expected to be a higher performer since it is also associated with lower 
costs, though the risk may be high. When cost is examined at the total 
level, it is seen that the high industrial costs associated with renewables 
erode the gains it makes on the other cost dimensions. The industrial 
cost of PV, for example, represents 98.9% of its total cost of generation. 
At the national level, sustainable generation mix planning implies an 
optimal mix that effectively caters for environmental and social objec
tives together with economic implications. In this section, therefore, the 
effect of the structure of the cost/return on the rankings of the various 
technologies and its implications on the portfolio generated are 
examined. 

Table 2, shows the risk-adjusted performance scores and rankings of 
the technologies estimated by Model 1 [Eq. (11)] where the costs are 
combined as a sum of the dimensions. As expected, due to the use of the 
additive composite score, poor performance on some sustainability di
mensions is compensated by higher performance on the others. For 
example, PV is disadvantaged in terms of comparative performance due 
to high industrial (economic) costs, although it has a low environmental 
and social impact as well as risk. Additionally, gas (100–160) and gas 
(660) which are fossil fuel-based technologies are among the higher 
performers although they are among the riskiest technologies in terms of 
environmental impact. 

Next, the total return is decomposed. The three dimensions are 
treated as separate outputs and inputs in separate constraints as in 
Model 2 [eq. (12)] with the results presented in Table 3. Arnesano et al. 
[3] do not provide estimates for the risk of the social (external) 
dimension due to the unavailability of historical data. As such, we also 
do not include any risk score (and constraint) for the social dimension. 

From Table 3, the preference evaluation of the technologies is 
deemed relatively more consistent with sustainability than previously 
shown in Table 2 since dimensions are independently compared based 
on Pareto preference. However, in forming an overall score, since each 
dimension is compared across technologies, the model will be less 
discriminatory than the previous model. Additionally, technologies 
choose which dimension more emphasis is placed on in their weighting. 
That explains why gas (660) is among the better performers since it 
places more emphasis on its higher economic performance. Coal (320) 
also places more weight on its low industrial costs (high economic 
returns), though it has relatively poor performance on the environ
mental and societal dimensions. This, however, does not conform with 
the traditional idea of sustainability since emphasis can be placed on one 
dimension to the neglect of other ones. 

The next table explores how interacting the expected returns for the 
sustainability dimensions affect the scores and rankings. These 
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interactions align more with the idea of sustainability than the additive 
model. Due to the relatively higher risk scores on the economic 
dimension (see Table 3), the economic return variable is transformed 
and replaced with the square root of the returns in Table 3, for each 
technology. Risks are estimated, with respect to eq. (7). 

Results, presented in Table 4, conform much better to our a priori 
expectations of the rankings, with most renewables and nuclear among 
higher performers and fossil-based fuels among the lower performers. 
Among the top performers are wind, nuclear, hydro and PV. This 
interaction between the dimensions allows for better incorporation of all 
three dimensions of sustainability in the portfolio generation. However, 
it must be noted that zero value on any dimension will mean no per
formance score for that technology. Technology may have no environ
mental cost, for example, if only direct emissions are considered and not 
the whole lifecycle emissions which would account for embodied 
emissions. 

To cater for the implication of a zero score on a dimension on the 
final score for such special occasions, it is reasonable to use compromise 
solutions. Ranks generally stay similar to those presented in Table 4 
while catering for the possibility of zero scores on a dimension. Table 5 
shows the rankings using the two compromise solutions that incorporate 

some level of interaction between the dimensions. For both compromise 
solutions, renewables outperform non-renewable sources, which is 
consistent with our a priori expectations. 

While pairwise interaction captures the joint effect between two 
dimensions at a time, the multilinear form captures both the joint effect 
of the three dimensions and their marginal effects. Therefore, for pair
wise interaction, if there is a value of zero on any one dimension, the 
expected return will comprise only the interaction of the two remaining 

Table 1 
Cost and risk estimates.  

Technology CO2 Cost (Environmental) External Cost (Societal) Industrial (Economic) Total Cost Risk 

Gas (100–160) 0.423 2.500 9.893 12.816 11.02 
Gas (660) 0.423 2.500 6.939 9.862 10.85 
Coal (100–160) 0.816 5.850 5.487 12.154 15.48 
Coal (320) 0.816 5.850 4.975 11.642 16.02 
Hydro (>10)a 0.172 0.340 5.457 5.968 8.19 
Hydro (<10)a 0.172 0.340 6.410 6.922 27.46 
Wind (>0.1–2)a 0.041 0.150 13.293 13.484 3.75 
PV (0.5–1)a 0.272 0.160 39.746 40.178 4.02 
Biomass (<15)a 0.234 2.650 13.223 16.107 12.57 
Nuclear (1100) 0.021 0.250 5.082 5.353 16.72  

a Renewable energy source. 

Table 2 
Additive modelling of sustainability dimensions (Model 1).  

Technology Return Risk Score Rank 

Gas (100–160) 0.08 11.02 0.3459 5 
Gas (660) 0.10 10.85 0.4567 4 
Coal (100–160) 0.08 15.48 0.2598 8 
Coal (320) 0.09 16.02 0.2620 7 
Hydro (>10) 0.17 8.19 1.0000 1 
Hydro (<10) 0.14 27.46 0.2571 9 
Wind (>0.1–2) 0.07 3.75 0.9669 2 
PV (0.5–1) 0.02 4.02 0.3027 6 
Biomass (<15) 0.06 12.57 0.2414 10 
Nuclear (1100) 0.19 16.72 0.5459 3 

Italicized values do not conform with our a priori expectations of technology 
ranking based on the ideals of sustainability. 

Table 3 
Separating the sustainability dimensions (Model 2).  

Technology Return Env. Return Soc. Return Eco. Risk Env. Risk Eco. Score Rank 

Gas (100–160) 2.36 0.40 0.10 0.86 10.99 0.4180 8 
Gas (660) 2.36 0.40 0.14 1.12 10.80 0.5936 5 
Coal (100–160) 1.23 0.17 0.18 1.75 15.38 0.5271 7 
Coal (320) 1.23 0.17 0.20 1.83 15.92 0.5616 6 
Hydro (>10) 5.81 2.94 0.18 0.75 8.15 1.0000 1 
Hydro (<10) 5.81 2.94 0.16 0.64 27.45 0.2821 10 
Wind (>0.1–2) 24.39 6.67 0.08 0.08 3.75 1.0000 1 
PV (0.5–1) 3.68 6.25 0.03 0.18 4.02 0.8738 4 
Biomass (<15) 4.27 0.38 0.08 0.38 12.56 0.2954 9 
Nuclear (1100) 47.62 4.00 0.20 0.10 16.72 1.0000 1 

Italicized values do not conform with our a priori expectations of technology ranking based on the ideals of sustainability. 

Table 4 
Multiplicative modelling of sustainability dimensions (Model 3).  

Technology Return Risk Score Rank 

Gas (100–160) 0.30 0.1091 0.0060 7 
Gas (660) 0.36 0.1694 0.0046 8 
Coal (100–160) 0.09 0.1275 0.0015 9 
Coal (320) 0.09 0.1398 0.0015 10 
Hydro (>10) 7.32 0.9429 0.0170 6 
Hydro (<10) 6.75 0.7491 0.0197 5 
Wind (>0.1–2) 44.60 0.1474 0.6609 2 
PV (0.5–1) 3.64 0.1754 0.0454 3 
Biomass (<15) 0.44 0.0391 0.0248 4 
Nuclear (1100) 84.49 0.1845 1.0000 1  

Table 5 
Compromise solutions (Models 4 and 5).  

Technology Pairwise Interaction Multilinear 

Score Rank Score Rank 

Gas (100–160) 0.0869 7 0.0139 8 
Gas (660) 0.0798 8 0.0142 7 
Coal (100–160) 0.0573 10 0.0051 9 
Coal (320) 0.0576 9 0.0050 10 
Hydro (>10) 0.1340 6 0.0866 4 
Hydro (<10) 0.1436 5 0.0285 5 
Wind (>0.1–2) 1.0000 1 1.0000 1 
PV (0.5–1) 0.4274 3 0.1632 3 
Biomass (<15) 0.1710 4 0.0209 6 
Nuclear (1100) 1.0000 1 0.4204 2  
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dimensions. Consequently, such a technology will not dominate another 
technology with non-zero values. In the multilinear model, the expected 
return of technology comprises both the additive and multiplicative 
terms. Hence, if technology has zero value on any dimension, its ex
pected return will be lower since it will be made up of only the additive 
component. 

We used the Simar and Wilson [41,42] bootstrapping technique to 
estimate the bias-corrected scores for all previous risk-adjusted perfor
mance scores. This is because DEA scores can be influenced by outlying 
observations and statistical noise. Additionally, we present the 95% 
confidence intervals for the bias-corrected scores. The rankings of the 
sources from the bias-corrected scores are consistent with the original 
estimates presented in the previous tables. This shows that our results 
are not subject to the risk of outlying observations or statistical noise. 
The bootstrapping scores are reported in the supplementary materials. 

We show in Table 6 a comparison of the various models discussed. 
We present a heatmap of the rankings among the technologies for each 
model and the correlation coefficient between the models. Evidently, the 
significantly strong correlations between model 3, model 4 and model 5 
show that both the interactions and the comprise solutions underscore 
the reliability of interaction as an aggregation method in reflecting all 
dimensions in the ranking. The low and insignificant correlation be
tween the additive model and the interacting models also shows the 
validity of the interacting models to reflect the sustainability outcome 
based on all the dimensions considered. 

4.2. Constructing optimal generation portfolios 

We have showed that the aggregation approach for generating the 
total cost/return used for portfolio optimisation can impact preference 
between technologies and their rankings. The next question is whether 
changes in the aggregate the cost/return affect the optimal portfolio of 
technologies generated using the Markowitz approach. Two portfolios, 
the maximum return and minimum risk portfolios are constructed for 
each of the cost configurations examined in this section. For the 
maximum return portfolio, the expected return of the portfolio of 
technologies is maximised given risk and capacity constraints. Minimum 

risk portfolio constructs the optimal portfolio that minimises the overall 
portfolio risk. The minimum risk portfolio is usually the most diversified 
portfolio while the maximum return portfolio is the least diversified. For 
the Italian case, the minimum and maximum capacity constraints 
showing the lower and upper bounds for the different technologies 
considered are given in the supplementary materials. 

In Fig. 1, the optimal portfolios of technologies excluding nuclear 
energy are presented. The current generation mix of Italy, for the period 
under study, had no nuclear generation input, as such the portfolios 
presented in Fig. 1 exclude the nuclear option. CO2 emissions have been 
estimated based on the allocation of gas and coal options using the 
emission factors of 55.82 kg/GJ and 94.073 kg/GJ respectively, for the 
annual electricity demand of 314.57 TWh consistent with Arnesano 
et al. [3]. Full portfolio characteristics are presented in the supple
mentary materials. 

Maximum return portfolios for the additive (model 1) and multipli
cative (model 3) options show a clear difference. The optimal portfolio 
based on an addition of the sustainability dimensions has only 30% total 
allocation to renewable energy sources, although maximum capacity 
constraints allow for at most 61% allocation to renewable sources. Even 
PV gets no allocation in the generation mix. The portfolio is, therefore, 
dominated by non-renewable sources with gas (660) receiving the 
highest allocation of about 48%. Compare that to the portfolio generated 
based on the interaction of the components (model 3) of the total return 
for the technologies. Here, 61% of the portfolio allocation has been 
given to renewable generation sources, thereby, ensuring a massive 
reduction in the CO2 emissions based on the additive model (model 1). 
This is a cleaner generation mix compared to the additive portfolio 
which allows for more non-renewable sources due to lower economic 
cost alone. 

For the minimum risk portfolio, it is seen that the additive model 
slightly outperforms the multiplicative model, probably because no risk 
for the social dimension was captured in the original data, although the 
expected returns reflect the social dimension of sustainability. Note that 
discussions in the previous section were based on the maximisation of 
return and its implication on risk, however, the portfolio generated by 
the multiplicative model for the minimum risk portfolio does not seem 

Table 6 
Relationships between the aggregation methods. 

p < 0.05 *, p < 0.01 **, p < 0.001***. 
Spearman's correlation coefficients are reported. 
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very different from that generated by the additive model. Generally, the 
allocations for the minimum risk portfolios are identical with renew
ables comprising 56% of the additive model and 51% in the multipli
cative model. 

Fig. 2 shows the maximum return and minimum risk portfolios for 
the set of technologies including nuclear energy. Regardless, renewable 
content in the multiplicative model is higher than in the additive model. 

Observations made earlier for the minimum risk portfolio remains the 
same when nuclear energy is included in the optimal portfolio. 

Finally, in the case of zero data on some dimensions, compromise 
solutions based on pairwise interaction and multilinear models are 
presented. The optimal portfolios using these approaches have been 
presented for no nuclear and nuclear cases in Fig. 3 and Fig. 4 respec
tively. In the figures, the optimal solutions are compared to the current 

Fig. 1. Optimal electricity production mixes and CO2 emissions without the nuclear option. The diagram shows both the maximum return and the minimum risk 
portfolios for the additive and multiplicative aggregation of sustainability dimensions. 

Fig. 2. Optimal electricity production mixes and CO2 emissions with the nuclear option. The diagram shows both the maximum return and the minimum risk 
portfolios for the additive and multiplicative aggregation of sustainability dimensions. 
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Italian mix as well as the optimal solution in the multiplicative model. 
While the maximum return portfolios give similar emission levels, the 
compromise solutions outperform even the multiplicative model in the 
minimum risk case. 

The existing portfolio (current) in the Italian case was characterised 
by high levels of carbon emissions and low levels of renewable energy 
sources in the mix. Only 26% of the electricity generation was from 
renewable sources. Any of the scenarios reported in Fig. 3 and Fig. 4 
presents a portfolio with less emissions potential and higher levels of 

renewable energy sources. This is because the multiplicative aggrega
tion approach and its compromise alternatives are better in giving 
importance to all the identified sustainability dimensions which are 
being modelled. It takes a more comprehensive account of the policy 
objectives into account rather than economic considerations. Consid
ering compromise solutions for situations with zero scores on certain 
dimensions can be a practical approach. Energy policies could benefit 
from flexible models that take into account data limitations. This would 
ensure that decisions are still well-informed and reliable, even when 

Fig. 3. Comparison of compromise solution with other solutions without the nuclear option.  

Fig. 4. Comparison of compromise solution with other solutions with the nuclear option.  
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complete information is not available. In essence, the research findings 
directly contribute to the development of effective and forward-thinking 
energy mix planning policies. This helps policymakers navigate the 
complexities of sustainability and optimise the use of diverse energy 
sources for a more resilient and environmentally friendly energy 
landscape. 

4.3. Discussion and implications for policy 

Energy policy should prioritise the need for secure, affordable and 
clean energy system [54]. This requires the expansion of energy infra
structure to those with access and ensuring that the energy supplies are 
reliably available. Countries must prioritise investing in clean energy 
sources such as solar, wind, and thermal energy, while ensuring uni
versal access to affordable electricity [49]. Sustainability should be at 
the forefront of long-term energy-mix planning decisions, where eco
nomic costs should not be the main consideration. Instead, the impact of 
various generation sources on the environment and society should be 
given equal importance. 

Researchers and practitioners have been working towards devel
oping a sustainable mix of generation sources that considers the need for 
energy security and climate change mitigation objectives. They have 
modelled the different dimensions of sustainability in their assessments. 
Previous studies have suggested that a sustainable generation mix could 
be achieved by adding social and environmental cost estimates to the 
levelized cost of energy [24]. However, this traditional approach to 
constructing a sustainable generation mix may not effectively consider 
all dimensions of sustainability. More emphasis is placed on the eco
nomic dimension than the social and environmental dimensions of 
sustainability. 

We agree with deLlano-Paz et al. [13] that greater flexibility is 
required in the modelling to increase the share of renewable technolo
gies in the generation mix. The aggregation method selected is vital to 
ensuring equitable consideration of all sustainability dimensions in the 
optimal portfolio. Additive aggregation of the cost components can 
allow poor performance on some dimensions to be compensated by good 
performance on others [27]. Moreover, there is a large difference in the 
size of the estimates used for the various dimensions, which means that 
additive aggregation may not effectively give renewable generation 
sources an equal opportunity of being selected as non-renewable 
sources. 

Our investigation shows that various multiplicative aggregation 
options better conform to our expectations of technology rankings than 
additive aggregation. When these aggregate cost/returns and risks are 
subjected to portfolio optimisation, a larger proportion of renewable 
energy sources are included in the optimal portfolios in the multiplica
tive aggregations compared to the additive ones. Compared to Arnesano 
et al. [3] optimal portfolios, which had on average 43% (SD = 0.1870) 
renewable energy inclusion, multiplicative aggregation techniques in 
the study achieved an average of 57% (SD = 0.0462) renewable energy 
inclusion in the portfolio without even considering nuclear energy. 

The research underscores the need for a balanced and integrated 
approach to energy planning that equally considers the relevance of 
environmental, social, and economic dimensions. Policies that recognise 
the interdependence of these dimensions can lead to more secure and 
sustainable energy systems. It is crucial for policymakers to consider all 
dimensions of sustainability when deciding on incentives, subsidies, or 
regulations. They must ensure that all dimensions are adequately rep
resented in the aggregated value, which is the basis of the policy deci
sion. This paper advocates for models that capture interactions between 
sustainability dimensions, presenting a more nuanced understanding of 
technology performance. Energy policies that embrace such models can 
better align with sustainability goals and achieve more favourable out
comes in terms of environmental impact, societal benefits, and economic 
feasibility. Flexible models that account for data limitations are neces
sary to ensure that decisions are still informed and reliable even when 

complete information is not available. 

5. Conclusion 

This paper examines the implication of adding environmental and 
social costs to the total generation cost used for sustainable portfolio 
optimisation models. We provide methodological insights into how to 
enhance the assessment of sustainable energy portfolio diversification in 
energy mix planning. The study highlights the limitations of current 
methods and provides alternative approaches for incorporating the tri
ple bottom line sustainability dimensions into such assessments. 

Traditional approaches to this energy mix planning problem have 
generally relied on the mean-variance approach and have incorporated 
social and environmental dimensions in the estimation of the expected 
returns of the technology. However, our investigation shows that the 
nature of the aggregation of these dimensions is critical in equally 
capturing the relevance of all the dimensions of sustainability. This 
study, therefore, promotes the sustainability assessment of energy gen
eration systems by combining environmental and external cost compo
nents with industrial/economic costs through exploring interactions and 
other relationships between the various components. 

We observe that the nature of the aggregation between the di
mensions has an impact on the performance score and rankings of the 
energy generation sources. We also observe a large impact on the mix of 
sources in the optimal portfolio. If policymakers find environmental and 
social implications as equally important to economic factors in energy 
mix planning, then we find additive aggregation as ineffective since it 
has the potential to disadvantage renewable energy sources. It is, 
therefore, not surprising that deLlano-Paz et al. [13] observe that 
portfolio optimisation has a limitation when it comes to assessing the 
impact of the inclusion of renewable technologies in the portfolio. We 
find that multiplicative aggregation provides the opportunity to better 
model the effect of renewable sources in sustainable mix planning. 

While our study reveals new insights for the use of modern portfolio 
theory in energy mix planning and policy, we limited our evaluation to 
the portfolio optimisation problems. However, the aggregation problem 
may be evident in other methods for energy mix-planning such as sto
chastic programming and optimisation and MCDM techniques. While we 
have observed attempts in the MCDM literature to address this issue, we 
have observed little consideration in the optimisation literature. This 
calls for further research into the effect of various aggregation methods 
on the optimal mix using other optimisation approaches. In the empir
ical assessment, data for the Italian case used previously in the literature 
was adopted. The choice of this data was informed by the existence of 
cost data on the three sustainability dimensions and the ability to 
compare the findings with existing literature. Reliance on existing 
research data resulted in some challenges with the determination of 
risks. The social (external) dimension, for example, did not have a risk in 
the original application. Further research could generate cost and risk 
data from historic data series. While the focus was on the composition of 
costs, similar arguments could be made about the composition of risk, 
especially when it is considered that risk for an energy technology does 
not only come from fuel cost but it is an amalgamation of different di
mensions, including CO2 cost volatilities. Finally, we hope that based on 
our findings, future research on sustainable energy mix planning using 
portfolio optimisation will move away from additive aggregation as the 
method for determining the technology risks and returns. 
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