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Defining novel functions for cerebrospinal 
fluid in ALS pathophysiology
Koy Chong Ng Kee Kwong1,2,3†, Arpan R. Mehta1,2,3,4,5† , Maiken Nedergaard6,7 
and Siddharthan Chandran1,2,3,4,8*

Abstract 

Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS 
remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently 
been recognised as a major clearance pathway for the brain, has received considerable attention in several neuro-
logical conditions, particularly Alzheimer’s disease. Its significance in ALS has, however, been little addressed. This 
perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of 
evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in 
ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the impor-
tance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional 
avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people 
with ALS.

Keywords: Glymphatic system, Cerebrospinal fluid, Amyotrophic lateral sclerosis, Motor neuron disease, 
Frontotemporal dementia, Ageing
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Introduction
Amyotrophic lateral sclerosis (ALS) is a rapidly pro-
gressive fatal neurodegenerative disorder characterised 
by the selective death of motor neurons. Although the 
underlying cause of ALS is unknown, recent discoveries 
in the genetics and molecular pathology of ALS have pro-
vided important new insights. These include the finding 
that monogenetic causes of ALS—accounting for approx-
imately 10% of cases—are phenotypically and patho-
logically largely indistinguishable from sporadic ALS. 
Furthermore, over 97% of ALS cases and half of fron-
totemporal dementia (FTD) are pathologically defined 
by cytoplasmic mis-accumulation of insoluble TDP-43, 

leading to these disorders being classified as TDP-43 pro-
teinopathies [135].

Although much remains to be established about ALS 
pathophysiology, multiple mechanisms are implicated 
including proteostasis, glutamate excitotoxicity, dysregu-
lation of RNA metabolism, nuclear-cytoplasmic trans-
port and autophagy [16, 36, 73]. Notwithstanding these 
advances in our mechanistic understanding of ALS, a 
number of key questions remain unanswered. These 
include the primary cause of the disease and the signifi-
cance of ageing as a risk factor, as well as a male predilec-
tion [8, 107].

The glymphatic system has recently been recognised as 
an important clearance pathway for the brain, playing a 
major role in the regulation of brain metabolites, includ-
ing glucose and lipids [86]. Notably, its involvement in 
protein homeostasis has led to it receiving considerable 
attention in neurodegenerative diseases, particularly Alz-
heimer’s disease. ALS, despite also being a proteinopathy, 
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has received comparatively less attention in the context 
of glymphatic function.

Against this background we describe the various 
potential roles of cerebrospinal fluid (CSF) in ALS patho-
physiology, including as a possible driver for the disease 
process. We start by providing a brief overview of CSF 
circulation, followed by a primer on the glymphatic sys-
tem, including the different factors affecting its func-
tion (Box  1), both of which have been comprehensively 
described by excellent reviews [21, 86]. We then assess 
the possibility of CSF contribution in ALS by considering 
various lines of evidence.

Box 1: Factors affecting glymphatic function
Arterial pulsation
Current evidence suggests that exchange between the 
cerebrospinal and interstitial fluid (CSF-ISF) is mainly 
driven by arterial pulsation. Reducing arterial pulsa-
tion through internal carotid artery ligation resulted 
in significantly reduced exchange between CSF and 
ISF [79]. Accordingly, enhancing CSF pulsation by sys-
temic administration of dobutamine was also found 
to increase CSF influx [79]. It was later demonstrated 
that CSF flow velocity could be reduced by hyperten-
sion [122], a finding confirmed by a more recent study 
showing impaired glymphatic function in spontane-
ously hypertensive rats [131]. The reduced CSF flow 
has been attributed to stiffening of the arterial wall, 
altering the pulsatility of the arterial wall and leading 
to increased backflow of blood.

Respiration
Neuroimaging results have also revealed both ros-
trally- and caudally-directed CSF flow produced by 
inspiration and expiration respectively [211], with 
forced inspiration triggering greater CSF movement 
compared to the cardiac cycle-associated flow [52]. 
Additional support for the contribution of respiration 
stems from more recent findings demonstrating res-
piration-driven magnetic resonance encephalography 
(MREG) pulse waves, which likely reflects glymphatic 
flow in the human brain [93]. Direct evidence for the 
link between respiration and CSF-ISF exchange has, 
however, not yet been established. The contribution of 
natural breathing to CSF dynamics is also unclear.

Sleep
Sleep has been shown to play a major role in waste 
clearance from the brain. Injected radiolabelled amy-
loid-beta was found to be cleared much more rapidly 
in sleeping mice than in awake mice [208]. Sleep is 
associated with reduced norepinephrine levels, which, 
in turn, possibly trigger an increase in interstitial space 

volume, thus reducing resistance to CSF inflow into 
the brain parenchyma [208]. In humans, sleep dep-
rivation leads to an accumulation of amyloid-beta 
[180], which could possibly underlie the link between 
sleep and Alzheimer’s Disease [113]. Another fac-
tor involved in waste clearance is body posture, with 
a lateral or supine posture enabling greater CSF-ISF 
exchange [99].

Ageing
Early suggestions for the impact of ageing on CSF 
dynamics arose when several studies observed 
changes in resistance to CSF outflow, secretion and 
turnover in older individuals [7, 148, 154]. Ageing was 
subsequently shown in mice to result in decreased 
CSF inflow into the brain parenchyma and therefore 
reduced CSF-ISF exchange [95]. Although interstitial 
space volume was not significantly reduced in aged 
mice, decreased arterial pulsation along with abnor-
mal AQP4 polarisation were observed, accounting for 
the decreased CSF inflow into the brain parenchyma.

Overview of CSF circulation
Surrounding most of the brain and spinal cord, CSF is 
believed to originate primarily from the choroid plexus, 
which is an extension of the ependymal lining of the 
brain ventricles. The majority of CSF is secreted into 
the two lateral ventricles, from where it converges into 
the third ventricle through the foramen of Monro, and 
subsequently flows into the fourth ventricle through the 
aqueduct of Sylvius. CSF then leaves the fourth ventri-
cle and reaches the subarachnoid space via the foramen 
of Magendie and the two foramina of Luschka, with an 
indeterminate fraction of CSF also thought to flow into 
the central canal of the spinal cord.

CSF drainage however remains a topic of debate, with 
recent studies challenging the traditional view of reab-
sorption into dural venous sinuses by arachnoid granula-
tions, which are outgrowths of the arachnoid mater [23, 
163]. Alternative exit routes have been evidenced and 
include the olfactory route and meningeal lymphatics 
[12, 88, 109, 133, 151], although their relative contribu-
tions have not yet been established.

The total volume of CSF in an adult is widely estimated 
to be about 150 mL, with the larger majority of this vol-
ume distributed in the subarachnoid spaces and about 
25  mL present in the brain ventricles. Renewal of CSF 
takes place three to four times in a single day. Whilst the 
primary role of CSF has long been considered to be the 
provision of buoyant support to the brain and protection 
against mechanical damage, another important function 
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of CSF, which will be the focus of this review, is the clear-
ance of metabolic waste products.

A primer on the glymphatic system
The earliest descriptions of perivascular spaces, or 
Virchow-Robin spaces, arose as early as the mid-
1800s, when investigators, including Rudolf Virchow and 
Charles Robin, observed spaces surrounding blood ves-
sels penetrating the brain parenchyma [202]. However, it 
was only in the next century, based on findings derived 
from dye injection experiments, that perivascular spaces 
first came to be functionally associated with fluid flow 
[202]. Today, perivascular spaces are widely regarded as 
an important site of exchange between CSF and inter-
stitial fluid (ISF), underlying what is now known as the 
glymphatic system (Fig. 1).

Anatomically, these perivascular spaces are formed by 
pial arteries that perforate the brain parenchyma after 
traversing the subarachnoid space. As these pial arteries 
transition into penetrating arterioles, CSF from the suba-
rachnoid space also extends into the brain parenchyma, 

bordering the blood vessels and creating CSF-filled spaces 
that are able to interact with the extracellular space 
[86, 217]. These perivascular spaces are themselves sur-
rounded by a leptomeningeal layer, which, on one side, 
adheres to the blood vessel wall, and, on the other side, 
extends into the pia mater. Importantly, the outer wall 
of the perivascular space facing the brain parenchyma 
is lined by astrocyte endfeet expressing AQP4 channels 
[86]. It should, however, be noted at this point that the 
precise anatomy of perivascular spaces is still controver-
sial, and much remains to be established about certain 
key aspects, including the exact fluid flow pathways and 
the interconnections between different compartments.

Whilst evidence for the role of perivascular spaces in 
solute transport from the brain interstitium had already 
emerged in the 1980s [162], the importance of the glym-
phatic system was only recognised relatively recently, 
following a landmark study by Iliff et  al. who injected 
fluorescent tracers into mice and characterised the flow 
of CSF using two-photon microscopy [80]. CSF from the 
subarachnoid space is first forced into the perivascular 

Fig. 1 Overview of the glymphatic system. A combination of various forces, including vascular pulsation and respiration, drives the influx of CSF 
from the subarachnoid space into the periarterial space, or Virchow-Robin space. CSF then moves into the interstitial space, with its entry being 
promoted by AQP4 channels lining the astrocyte endfeet. A convective flow drives ISF towards the perivenous spaces, carrying solutes, including 
metabolic waste products, along. As ISF moves from the extracellular space into the perivenous space, it can be drained from the CSF circulation 
through pathways such as the olfactory route. This highly organised system, enabling rapid CSF-ISF exchange, is known as the glymphatic system
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space, driven by processes including vascular pulsation, 
respiration and sleep (Fig. 2). Following this, AQP4 chan-
nels lining the astrocytic endfeet are believed to promote 
the influx of CSF into the brain parenchyma by reduc-
ing resistance to inflow [80]. Although the role of AQP4 
channels in CSF-ISF exchange has been challenged [181], 
recent findings from AQP4-knockout mice support the 
importance of AQP4 channels in glymphatic transport 
and amyloid-beta clearance [121]. Following CSF influx 
into the extracellular space, a convective flow transports 
interstitial solutes from the periarterial to the perive-
nous end. Once ISF reaches the perivenous space, it can 
subsequently be drained through one of the previously 
described outflow paths. This elaborate clearance system, 
also shown to be impacted by ageing (Box  1), has thus 
been termed the ‘glymphatic system’, given its similarity 
with the lymphatic system and its reliance on glial cells, 
in this case, astrocytes.

Despite past studies usually focussing on either the 
glymphatic system or the meningeal lymphatic system, 
increasing evidence supports the view that these two sys-
tems could be interdependent, with recent findings dem-
onstrating a decrease in glymphatic influx and efflux of 
interstitial solutes following disruption of the meningeal 
lymphatic vasculature [47]. Similar to the glymphatic 
system, meningeal lymphatic function was found to be 
reduced in ageing, whilst also being linked to neurologi-
cal disorders, such as Alzheimer’s disease and Parkinson’s 
disease [5, 47, 112, 220]. We refer readers to previous 
review articles for a more in-depth discussion of the 
meningeal lymphatic system [46, 108].

CSF toxicity in ALS
Although CSF from ALS patients is now known to be 
constitutionally abnormal [18, 27], with raised levels of 
proteins, including TDP-43 and neurofilaments [115, 
210], its toxicity started being recognised early on, when 
it was shown to significantly reduce the survival of rat pri-
mary neuronal cultures [45]. Since then, numerous stud-
ies have been performed on various cell types, including 
NSC-34 cell lines, and, more recently, hESC-derived and 
iPSC-derived motor neurons, showing greater degen-
eration when the cells were exposed to CSF from ALS 
patients than to CSF from control patients [33, 136, 189, 
197]. Interestingly, ALS-CSF was also shown in NSC-
34 cells to result in TDP-43 mislocalisation to the cyto-
plasm, a feature that could be reversed by VEGF [174]. 
Nevertheless, the exact mechanism by which ALS-CSF 
induces neuronal degeneration remains to be established, 
although processes such as excitotoxicity and mitochon-
drial dysfunction have been suggested [175, 179].

The in  vitro effect of ALS-CSF also extends to both 
astrocytes and microglia, demonstrating a non-cell 

autonomous component to CSF toxicity. Upon exposure 
to ALS-CSF, astrocytes undergo a change in morphol-
ogy, accompanied by increased GFAP reactivity, further 
acquiring a neuroinflammatory profile [126]. Release 
of inflammatory markers is also common to microglia 
exposed to ALS-CSF [127]. Furthermore, rat primary 
motor neurons co-cultured with glia responded differ-
ently to ALS-CSF than when cultured alone [17], adding 
to the growing body of literature evidencing the role of 
glia in mediating neurotoxicity [214].

Supporting  these in  vitro findings, several studies 
have also reported various changes caused by ALS-CSF 
in animal models. Neurofilament phosphorylation was 
observed in rat motor neurons following injection of 
ALS-CSF into the spinal subarachnoid space [160]. More-
over, intrathecal injection of ALS-CSF led to changes in 
the Golgi complex [158], potentially affecting protein 
trafficking and causing endoplasmic reticular stress [196]. 
Histologically, close similarities were observed between 
tissue exposed to ALS-CSF and sporadic ALS cases [68]. 
ALS-CSF was also found to produce phenotypic changes, 
with rats subjected to intraventricular injections experi-
encing motor dysfunction [165]. Muscular atrophy was 
observed in a different study, possibly arising through 
motor neuron degeneration [173].

Accepting inherent limitations in patient studies, 
including sample heterogeneity, and that CSF concen-
tration may not reflect cellular levels, these in vitro and 
in  vivo studies nonetheless show that ALS-CSF is toxic 
to neurons and possesses pro-inflammatory properties 
[136]. The in vivo finding of toxicity distant to the site of 
CSF injection also raises a potential role for CSF in dis-
ease spread [68], a possibility supported by recent find-
ings demonstrating the onset of motor and cognitive 
decline, as well as TDP-43 proteinopathy, following ALS-
CSF infusion in mice [125].

Altered CSF dynamics in ALS patients
Evidence for the disruption of CSF flow in ALS includes 
findings from a phase-contrast electrocardiography-trig-
gered MRI study, which revealed different CSF dynamics 
in ALS patients, with a delay in CSF flow upon systole 
and a higher maximum velocity [169]. Abnormal CSF 
dynamics in ALS patients is also supported by a more 
recent study demonstrating reduced CSF flow magnitude 
along with a greater pulse wave velocity, although the 
causes, as well as implications, of these findings remain 
to be established [168]. 

Additionally, with human neuroimaging studies reveal-
ing changes in CSF dynamics with age [166, 170] and 
recent evidence also suggesting reduced glymphatic 
clearance in older individuals [216], a major propor-
tion of ALS patients, given the late onset of ALS, likely 
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experience altered CSF flow and impaired glymphatic 
function. Sleep, which plays an important role in glym-
phatic clearance, is also known to be disrupted in ALS 
patients, who often have apnoea, or sleep poorly, owing 
to muscle cramps and fasciculations [28]. Although sleep 
has yet to be acknowledged as a risk factor for ALS, it 
remains strongly associated with disease severity [4, 28, 
157]. Poor sleep, coupled to the severely affected res-
piratory function in ALS patients, could therefore sig-
nificantly impair CSF dynamics and therefore glymphatic 
clearance.

The finding of increased norepinephrine concentra-
tion in CSF from ALS patients is also intriguing [22, 35]. 
Norepinephrine reduces the extracellular space volume 

and thus increases resistance to glymphatic influx into 
the brain parenchyma [208]. Of further interest is that 
whilst sleep quality and respiratory function are known 
to be negatively correlated with ALS severity [4], a higher 
norepinephrine level has also been linked to more severe 
symptoms in FTD [58].

Abnormal vascular changes in ALS
Vascular function, which is intimately connected to the 
glymphatic system, is known to be affected in ALS. Multi-
ple studies employing single-photon emission computed 
tomography (SPECT) have demonstrated hypoperfusion 
in the brain of both ALS and FTD patients, with greater 
involvement of the frontal and temporal lobes [1, 82, 

Fig. 2 Factors affecting CSF dynamics in ALS patients. Several components of the glymphatic pathway are potentially disrupted in ALS patients. 
Ageing, for instance, is linked to reduced vascular pulsation, due to an increase in vessel wall stiffness. ALS patients also tend to suffer from 
poor sleep and impaired respiratory function, particularly towards later stages of the disease. Impairment of two major drivers of glymphatic 
influx, coupled to disturbed sleep, could underlie highly reduced glymphatic clearance in ALS patients. Other features of ALS that could impact 
on glymphatic function include abnormal AQP4 expression, raised norepinephrine levels, and vascular factors, such as hypertension and 
hypoperfusion. Whilst neuroimaging studies have demonstrated abnormal CSF dynamics in ALS patients, further studies may be required to 
specifically determine the influence of these different factors on glymphatic clearance in ALS patients
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199]. Abnormal vascular changes in ALS and FTD have 
further been evidenced through arterial-spin coupling 
[53, 177]. In the SOD1 mouse model, blood-spinal cord 
barrier (BSCB) breakdown may precede hypoperfusion 
[215], a feature which has previously been linked to dis-
ease severity in ALS patients [2, 40].

Genetic association studies linking ALS risk with angi-
ogenic genes, ANG and VEGF, provide further indirect 
evidence of the role of vascular factors in ALS [61, 66, 
70, 147, 195]. VEGF has been heavily implicated in ALS 
pathophysiology, with several studies demonstrating the 
protective effect of VEGF therapy on neuronal death, 

both in  vitro and in  vivo [15, 98, 187, 198]. Lack of the 
VEGF hypoxia-response element in mice also results in 
motor neuron degeneration [145]. VEGF-associated neu-
rodegeneration has been suggested to arise from ischae-
mia following reduced vascular perfusion, although this 
has yet to be established.

The link between hypertension and ALS is currently 
less clear. Multiple associations have been made between 
hypertension and ALS onset and survival [116, 129], but 
contradicting results have also been obtained by other 
studies [76, 94, 128]. This could possibly be explained 
by variations in methodology, and further studies are 

Fig. 3 Possible roles for cerebrospinal fluid in ALS. Abnormal CSF dynamics could have important implications in ALS, with both glymphatic 
clearance and glymphatic influx possibly involved. a–d Reduced glymphatic clearance could result in the accumulation of various neurotoxic 
factors, notably that of major pathogenic proteins, including TDP-43 and SOD1. A rise in the levels of CSF components such as glutamate, 
inflammatory factors and other toxic metabolites could also favour an increasingly toxic interstitial environment (ISF: interstitial fluid). e Given the 
importance of glymphatic function in lipid transport, impaired clearance or influx may possibly affect the regulation of lipid metabolism. f Impaired 
glymphatic influx could also influence pharmacokinetics, particularly in the context of intrathecally administered drugs, and may therefore deserve 
investigation in ALS neurotherapeutics. g Lastly, various lines of evidence suggest that the CSF circulation could act as an important medium for the 
spread of the disease, with a possible link to proteostasis. Note Shape sizes are weighted by their relative significance
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therefore required to confirm this association. Although 
one study found the use of angiotensin-converting 
enzyme inhibitors to be linked to a reduced risk of ALS 
[105], this was not replicated by a later study [63]. Never-
theless, the different vascular aspects of ALS could con-
stitute a further impediment to proper CSF dynamics in 
ALS patients.

AQP4 channels and ALS
Overexpression of AQP4 in ALS is well documented 
in rodent models [19, 48, 137]. In addition to increased 
expression, reduced AQP4 polarisation with decreased 
endfeet localisation has also been observed in the SOD1 
mouse model [48]. The exact implications of these 
changes in neuronal degeneration are currently unclear. 
However, given the various roles played by AQP4 chan-
nels, several downstream consequences have been sug-
gested, including loss of blood-brain barrier (BBB) 
integrity, glutamate dysregulation and impaired potas-
sium homeostasis [219]. The disrupted AQP4 polari-
sation could also contribute to impaired glymphatic 
function, commensurate with the features observed in 
aged mice [95].

Another intriguing finding is that reduced AQP4 
expression in SOD1 mice triggered earlier disease onset 
and reduced survival [204]. One explanation suggested 
by the authors was that the absence of AQP4 channels 
led to reduced SOD1 clearance, favouring an increasingly 
neurotoxic extracellular environment. Notwithstanding 
this, further studies are required to confirm whether such 
changes in AQP4 expression and their possible impli-
cations in glymphatic clearance are features specific to 
SOD1 ALS.

The implications of abnormal CSF dynamics in ALS
Taken together, there are multiple and converging lines 
of evidence that suggest that the glymphatic system plays 
a role in ALS pathophysiology. We therefore outline sev-
eral key processes in ALS that might be impacted by a 
dysregulated glymphatic system (Fig. 3).

Proteostasis
Accumulation of various proteins that may directly or 
indirectly be toxic in ALS is well-established (Box  2). 
These include mis-accumulated phosphorylated TDP-
43, SOD1 aggregates and dipeptide repeats (DPRs) found 
in the most common inherited form of ALS, due to a 
repeat expansion  mutation in C9ORF72. TDP-43 pro-
teinopathy is known to be the most prevalent and has 
been implicated in many pathways, including mitochon-
drial dysfunction, autophagy dysregulation and impaired 
endocytosis [153].

The reasons for accumulation could reflect excess pro-
duction and/or impaired clearance through autophagy 
and the ubiquitin-proteasome system (UPS). These are 
both involved in TDP-43 and SOD1 clearance [89, 101, 
212], with another mechanism promoting TDP-43 clear-
ance being the more recently discovered endolysoso-
mal pathway [101, 106]. Thus, indirect evidence from 
rare inherited forms of ALS due to mutations in genes 
linked to autophagy or the UPS, such as VCP, OPTN and 
UBQLN2, argues for an important role for dysregulated 
clearance in ALS. Clear evidence supporting the over-
production of TDP-43 in ALS, however, remains to be 
established.

Given the established role of the glymphatic system 
in protein clearance, impairment of glymphatic func-
tion could also contribute to the accumulation of the 
different toxic proteins in ALS. The presence of TDP-
43, SOD1 and DPRs in ALS-CSF is well-evidenced and 
points to a potential role for CSF in their regulation. It 
is therefore possible that ageing, coupled to the differ-
ent possible sources of glymphatic disturbance already 
discussed, could result in an imbalance between produc-
tion and clearance of these pathogenic proteins. Notably, 
ageing has further been argued to promote the deteriora-
tion of processes such as autophagy and the UPS [138], 
which could further exacerbate protein clearance in the 
diseased state. The numerous clearance mechanisms 
involved in amyloid-beta clearance in Alzheimer’s dis-
ease [190] also suggest that other major clearance path-
ways in ALS beyond intracellular mechanisms are yet to 
be defined, of which the glymphatic system would be one 
notable example.

Notwithstanding this, protein inclusions associated 
with ALS, including those enriched in TDP-43, SOD1 
and DPRs, are predominantly intracellular, as opposed 
to amyloid-beta aggregates, found in Alzheimer’s dis-
ease, which also reside extracellularly. Thus, glymphatic 
clearance in the context of ALS could potentially follow 
from processes such as exosome secretion [34, 78] or 
necroptosis, in which intracellular contents are released 
from the dying cell into the interstitial space [83]. A pos-
sible interplay between intracellular mechanisms and 
extracellular processes could also be involved, with UPS 
clearance, for instance, being influenced by an altered 
extracellular environment, owing to impaired glymphatic 
function.

Whilst considerable progress has been made towards 
understanding ALS pathophysiology, its primary cause 
has remained a matter of debate, with genetic mutations 
accounting for only a minority of ALS cases. Hence, the 
significance of ageing in the impairment of clearance 
mechanisms could provide a promising avenue to explore 
in ALS.
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Box 2: Key ALS proteins
TAR DNA‑binding protein 43 (TDP‑43)
TDP-43 inclusions are now widely considered as the 
pathological hallmark of ALS, with more than 95% 
of ALS patients known to exhibit ubiquinated TDP-
43 deposits [135]. The TDP-43 protein, which is 
encoded by the TARDBP gene, possesses a wide range 
of functions, most notably in RNA regulation. About 
5% of familial ALS cases can be attributed to muta-
tions in the TARDBP gene [221]. TDP-43 aggrega-
tion is thought to be implicated in the disease process, 
and some of the proposed mechanisms for TDP-43 
induced cytotoxicity include mitochondrial dysfunc-
tion, autophagy dysregulation and impaired endocyto-
sis [153].

Superoxide dismutase 1 (SOD1)
SOD1 was the first ALS-linked gene to be discovered 
and mutations in the SOD1 gene are now known to 
account for about 15% of familial ALS cases and 1% 
of sporadic cases [221]. The SOD1 gene codes for 
the Cu-Zn superoxide dismutase enzyme whose cel-
lular function is to convert superoxide radicals into 
hydrogen peroxide and oxygen. Although increasing 
evidence indicates a gain-of-function mechanism for 
SOD1 pathogenicity [152], its neurotoxic effects are 
still incompletely understood, with possible explana-
tions including oxidative stress and proteostasis [73]. 
Considerable evidence also supports the non-cell 
autonomous nature of SOD1 cytotoxicity, with astro-
cytes and microglia considered to play an important 
role [149].

Fused‑in‑sarcoma (FUS)
Another ALS protein known to form cytoplasmic 
inclusions is the FUS protein. Mutations in the FUS 
gene are responsible for a relatively small fraction of 
familial ALS cases (about 3%), and an even smaller 
proportion of sporadic ALS cases [221]. The FUS pro-
tein is mostly found in the nucleus and is involved at 
multiple steps of the RNA processing machinery, such 
as transcription and splicing [139]. The exact mecha-
nism by which FUS mutations promote neurodegen-
eration is, however, unclear.

C9ORF72‑associated dipeptide repeats (DPRs)
The commonest known cause of ALS is a repeat 
expansion in the C9ORF72 locus, accounting for 
about 40% of familial ALS and about 10% of sporadic 
ALS [37, 114]. One feature of C9ORF72-mediated 
ALS is the non-canonical translation of repeated RNA 
sequences, giving rise to five classes of DPR proteins, 

namely, poly-GA, poly-GP, poly-GR, poly-PA and 
poly-PR [16]. Although evidence for their contribu-
tion to the disease process is currently mixed, various 
mechanisms, including caspase activation and inhi-
bition of membrane-less organelles formation, have 
been implicated [100, 213].

Glutamate excitotoxicity
Glutamate excitotoxicity has long been viewed as an 
important pathophysiological mechanism in ALS and 
FTD. Riluzole, which inhibits glutamate release, is  cur-
rently the only globally approved drug for ALS [84]. One 
reason for the particular susceptibility of motor neurons 
to AMPA-mediated glutamate excitotoxicity is thought 
to be their low buffering ability upon calcium influx [92]. 
This influx is promoted by permeability of the AMPA 
receptor, which can be affected by changes to its subu-
nit composition. For instance, reduced expression of the 
impermeable GluR2 subunit results in an increased influx 
of calcium ions, potentially contributing to neurodegen-
eration in ALS [91, 194].

Glutamate excitotoxicity could also be caused by 
direct overstimulation of glutamate receptors, due to an 
increased level of extracellular glutamate [92]. Although 
increased synaptic release has been suggested to contrib-
ute to raised glutamate levels, strong evidence supports 
the involvement of the glutamate transporter EAAT2, 
with studies demonstrating reduced EAAT2 expression 
in different ALS models, including in SOD1 mice [64, 77, 
164, 167, 203]. Intriguingly, a minor increase in gluta-
mate levels has also been found to trigger neurodegener-
ation [29, 71, 103], even when raised to levels comparable 
to that of ALS-CSF [42].

Whilst the cause of increased glutamate levels could 
result from several processes, the role of CSF in gluta-
mate regulation [6] could indicate a possible contribution 
in promoting potentially neurotoxic levels of glutamate 
in ALS [62, 185]. This could again be driven by the dif-
ferent aspects of ALS that affect CSF dynamics, including 
ageing, sleep disruption and vascular factors, amongst 
others. It should, however, be noted that CSF glutamate 
levels may not necessarily reflect extracellular levels, 
although increased CSF glutamate concentrations could 
likely affect exposed astrocytes.

Energy metabolism
Dysregulated energy metabolism is now a widely known 
feature of ALS, with patients generally suffering from 
weight loss, hypermetabolism and hyperlipidaemia [55]. 
Although the energy imbalance in ALS could stem from 
several processes, two important contributing factors are 
thought to be the higher basal energy expenditure in ALS 
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patients [50, 65], and reduced nutrition due to dysphagia 
[96]. The causes of hyperlipidaemia, which could further 
affect energy metabolism, also remain controversial [55]. 
Along with increased apoE levels [97] and type 2 diabetes 
[85, 118], hyperlipidaemia has in fact been shown to be 
protective in ALS [51, 54]. Nevertheless, the link between 
energy metabolism and ALS pathogenesis remains 
unclear despite animal studies providing a number of 
suggestions [55] with therapeutic promise [119].

Hence, given the recently characterised role of the 
glymphatic system in lipid transport [159], an impair-
ment in CSF circulation could potentially be a further 
underlying cause of the abnormal energy metabolism 
observed in ALS. BBB impermeability largely restricts 
influx of lipids and cholesterol, which are believed to 
be produced within the CNS by the choroid plexus and 
astrocytes [3, 31, 59, 209], with excess cholesterol being 
released into the blood circulation [24, 111]. Follow-
ing synthesis, apoE is observed to distribute through 
the perivascular space in order to reach the brain [159]. 
We speculate that impaired lipid regulation by the glym-
phatic system, coupled to increased BBB permeability in 
ALS, may well disrupt energy metabolism. This is sup-
ported by numerous studies demonstrating an altered 
CSF metabolome in ALS patients [25, 26, 69, 207]. Again 
however, whether these changes could contribute to ALS 
pathogenesis is difficult to answer.

Neuroinflammation
To date, several studies have helped to demonstrate the 
inflammatory profile of ALS-CSF, revealing raised levels 
of various immune components, including C3c, albumin 
and IgG in ALS-CSF [10, 11, 44, 67, 102]. Out of these, 
IgG, also present in post-mortem ALS samples, has been 
found to favour neurodegeneration, both in  vitro and 
in vivo [49, 155, 156]. IgG further possesses pro-inflam-
matory properties, promoting microglia recruitment and 
upregulation of inflammatory cytokines [124, 141, 142]. 
Some of the other chemokines found to be elevated in 
ALS-CSF include IL-6, TNF-α and TGF-β [81, 130, 172], 
with the finding of raised TNF-α levels being particularly 
interesting, given its associations with glutamate excito-
toxicity [43, 178, 218]. Whilst their direct involvement 
in ALS pathophysiology is still unknown, the presence 
of these different immune factors in ALS-CSF, some of 
which have been shown to be neurotoxic, could suggest 
an important role for CSF in neuroinflammation, with 
the neurotoxic environment possibly favoured by altered 
CSF dynamics and reduced clearance. This would in fact 
provide a potential explanation for the well-evidenced 
toxicity of ALS-CSF, which has, in turn, been suggested 
to possibly contribute to ALS pathophysiology [176]. 

Further studies are nevertheless required to confirm this 
association.

Oxidative stress
Given their high metabolic rate as well as their inability 
to divide, motor neurons could be particularly vulnerable 
to accumulation of toxic metabolites, including lactate, 
4-hydroxynonenal (HNE) and peroxynitrite [176]. High 
lactic acid levels have been shown to induce neuronal 
degeneration and promote inflammation [72, 134], whilst 
HNE, a marker of lipid peroxidation, results in oxidative 
stress in cultured motor neuron hybrid cells at levels sim-
ilar to those of ALS-CSF [183]. Peroxynitrite, although 
controversial, has also been suggested to promote oxida-
tive stress [191]. It is therefore possible that CSF, which 
is known to regulate the level of metabolites, including 
that of lactate [75, 110], could potentially help to prevent 
the accumulation of waste products that would otherwise 
result in a highly neurotoxic extracellular environment.

CSF circulation and spread
The variable sites of disease onset and subsequent disease 
evolution have raised the question as to what determines 
ALS disease spread. This is unknown and debate has 
hitherto focussed on questions of anterograde or retro-
grade spread [41, 57]. Some general patterns can, how-
ever, be noted. Specifically, the disease is localised focally 
during early stages and spreads outwards in a contiguous 
pattern. The spread is more often directed caudally than 
rostrally. Additionally, the pattern of spread is heteroge-
neous in nature, making it difficult to predict [161].

More recently, a growing body of literature suggests 
that ALS spread could be explained by a prion-like mech-
anism. Notably, the mutant SOD1 protein, which has 
been demonstrated to possess high fibril-forming pro-
pensity under certain conditions, can promote fibrilla-
tion in wild-type SOD1 [39]. TDP-43 is also able to form 
aggregates in vitro, although the factors that predispose 
TDP-43 to aggregation are still incompletely understood 
[153]. Evidence further indicates that these proper-
ties could be shared by FUS [140] as well as DPRs [205]. 
These observations suggest a close similarity with other 
neurodegenerative diseases, such as Alzheimer’s disease 
and Parkinson’s disease, which have also been character-
ised as proteinopathies.

Although the prion-like properties of the different ALS 
proteins are starting to gain acceptance within the scien-
tific community, less is known about how intercellular 
spread could take place in  vivo. Trans-synaptic trans-
mission has been suggested as one possible mechanism 
[13, 32]. Another possibility is through exosome propa-
gation. It has in fact been shown that SOD1-containing 
exosomes could be secreted into the extracellular space 



Page 10 of 18Ng Kee Kwong et al. Acta Neuropathol Commun           (2020) 8:140 

[192], with possible uptake by macropinocytosis [132]. 
There is evidence that TDP-43 could also spread via 
exosomes [60], although further studies are required to 
establish this. Another recently proposed model is that 
of corticofugal axonal spread, for which strong support 
arises from the particular vulnerability of neurons receiv-
ing connections from pyramidal cells of the neocortex 
[32].

A further pathway already described by others is that 
spread of the disease could occur via the CSF circula-
tion [182]. The presence of misfolded proteins, including 
TDP-43 and SOD1, has already been demonstrated in 
ALS-CSF, and, whilst neurons could potentially directly 
ingest these proteins through phagocytic mechanisms 
[30], another plausible mechanism previously suggested 
would be via uptake of exosomes containing the mis-
folded proteins [90]. Indeed, CSF exosomes from Alzhei-
mer’s disease and Parkinson’s disease patients have been 
shown to contain alpha-synuclein and misfolded tau 
respectively [188, 201]. Protein-containing exosomes are 
also known to be present in ALS-CSF [74] but whether 
they specifically contain TDP-43 or SOD1 remains to be 
established.

Hence, whilst we do not propose that spread of the dis-
ease occurs solely through CSF pathways, such a mecha-
nism of spread could clearly complement other proposed 
models. It would also help to explain the non-contiguous 
pattern of spread and the multifocal pattern of initia-
tion observed in some ALS cases [171], and even provide 
a potential link between ALS and FTD, by providing a 
direct route of spread from the brain to the spinal cord. 
Other arguments have also been made in support of 
spread via CSF; for instance, the proximity of vulnerable 
neurons to CSF and also the susceptibility of particular 
cranial nerves to the disease [182].

Towards a glymphatic system model in ALS
One major caveat in considering glymphatic involvement 
in ALS is that its function has so far only been demon-
strated in the brain, with its contribution in the spinal 
cord still unclear. Indeed, spinal cord and brain anatomy 
differ considerably both in terms of parenchymal and 
leptomeningeal organisation, suggesting possible mech-
anistic differences in waste clearance. Whether clear-
ance from the brain and  clearance from the spinal cord 
are influenced by similar factors and could therefore be 
modulated via similar mechanisms are also not known. 
These distinctions may therefore need to be further 
explored, given their possible importance with regard to 
spinal cord involvement in ALS. Another point to con-
sider is that most studies on the glymphatic system have 
been carried out in rodents, with definitive evidence for 
its existence in humans yet to be established. However, 

results have indicated a high possibility of this being the 
case, with some studies reporting a number of inter-
species similarities, not only in terms of the associated 
anatomical structures, but also the factors affecting clear-
ance, such as sleep [21, 56, 120, 163, 216].

Hence, the glymphatic system could play an important 
role in reconciling disease mechanism with epidemiol-
ogy and other currently unexplained aspects of ALS. It 
would firstly support the existence of a threshold effect 
suggested by the significance of ageing as a risk factor. 
Secondly, it could help to explain the intriguing gender 
disparity in ALS, with the established protective influence 
of oestrogen in preserving vascular, and therefore glym-
phatic, function possibly accounting for the lower female 
incidence. This could further underlie the postmenopau-
sal increase in female:male ratio observed by some stud-
ies [38, 117]. Adopting a glymphatic system model could 
not only suggest a primary, or at least contributory, cause 
for the disease, but also offer potential explanations for 
the clinical features of ALS, including its progression and 
heterogeneity.

Whether the intriguing difficulty in generating 
C9ORF72 mouse models  that recapitulate the disease 
phenotype bears a connection to glymphatic function 
also deserves mention. Both CSF production and turno-
ver rate are much greater in mice than in humans [87], 
and when coupled to the significantly higher basal heart 
rate in mice, have been suggested to result in improved 
waste clearance and therefore a reduction in the accumu-
lation of toxic products [21]. This could possibly explain 
why C9ORF72 mouse models have failed to exhibit 
motor dysfunction. Interestingly, however, cognitive 
defects have been observed both in mutant TDP-43 and 
C9ORF72 mouse models [9, 20], although whether this 
can be attributed to the comparatively higher metabolic 
rate inherent to the mouse brain is unclear [21].

Understandably, many areas need to be addressed 
before acknowledging glymphatic dysfunction as a con-
tributor to ALS pathophysiology. Despite the involve-
ment of certain angiogenic genes, evidence for a clear 
genetic link between ALS and genes implicated in glym-
phatic function is still missing. Furthermore, definitive 
evidence for the significance of sleep [184] and hyperten-
sion as risk factors for ALS is also yet to be established. 
It is also unclear, according to this model, why ALS inci-
dence would decrease above the age of about 70 [8, 107].

Glymphatic system and ALS neurotherapeutics
Whilst the glymphatic system has more often than not 
been associated with waste clearance from the brain, reg-
ulating glymphatic influx could also significantly impact 
ALS neurotherapeutics. With BBB impermeability act-
ing as a major hurdle to drug delivery in ALS and other 
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neurological disorders, intrathecal therapy has emerged 
as a promising treatment modality in recent years. 
Indeed, administering the drug directly into the cerebro-
spinal circulation has multiple advantages, such as allow-
ing for more accurate monitoring of drug levels, thereby 
ensuring better pharmacokinetic results [193]. The obvi-
ous downside to intrathecal administration, however, is 
the risk of complications owing to its invasive nature.

Several intrathecal therapies are currently being trialled 
in ALS, including anti-sense oligonucleotides (ASOs), 
mesenchymal stem cells (MSCs) and growth factors, such 
as brain-derived neurotrophic factor (BDNF), ciliary neu-
rotrophic factor (CNTF) and vascular endothelial growth 
factor (VEGF) [193]. Promisingly, these have shown posi-
tive safety profiles so far, although evidence for their effi-
cacy remains to be established [123, 143, 144, 186]. Based 
on this, further studies may be required to investigate 
the influence of CSF dynamics on the pharmacokinetics 
of intrathecal drugs. Key considerations include whether 
the intrathecally administered drug is appropriately taken 
up by the spinal cord, and, perhaps more importantly, 
whether it can penetrate the brain parenchyma. Pre-
clinical studies in mice have indicated widespread trans-
duction following intrathecal delivery [14, 146, 200]. This 
has, however, been more difficult to confirm in humans, 
with pharmacokinetic analysis being largely restricted to 
monitoring CSF drug levels [193].

To further emphasise the significance of achieving 
more efficient drug delivery, different variables, such as 
diffusion rate and anatomical constraints, have been sug-
gested to limit drug access to deeper parts of the brain 
and the spinal cord [206]. Additionally, many of the fac-
tors impacting on CSF dynamics in ALS patients, includ-
ing ageing and hypertension, could potentially affect 
drug distribution following intrathecal injection. How-
ever, studies performed in mice have shown that CSF 
influx into the brain parenchyma could be improved by 
administering hypertonic saline or mannitol, which both 
increase plasma osmolality, or ketamine-xylazine, a mod-
ulator of slow-wave activity [150, 208]. A more recent 
study further demonstrated that dexmedetomidine, an 
α2-adrenergic agonist, which also affects slow-wave 
oscillations, could enhance brain distribution following 
intrathecal delivery [104].

Conclusion
The glymphatic system has promise in potentially uni-
fying many different aspects of ALS, and may therefore 
be viewed as a novel paradigm when considering ALS 
pathophysiology. We suggest that further avenues be 
explored to specifically examine features of disease onset 
and spread. Several lines of enquiry from pre-clinical to 
epidemiological studies are thus required to shed light on 

the extent of CSF contribution in ALS, with the hope of 
ultimately identifying new treatment options for  people 
with ALS.
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