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Abstract
In some medical imaging tasks and other settings
where only small parts of the image are informa-
tive for the classification task, traditional CNNs
can sometimes struggle to generalise. Manually
annotated Regions of Interest (ROI) are some-
times used to isolate the most informative parts
of the image. However, these are expensive to
collect and may vary significantly across anno-
tators. To overcome these issues, we propose a
framework that employs saliency maps to obtain
soft spatial attention masks that modulate the im-
age features at different scales. We refer to our
method as Adversarial Counterfactual Attention
(ACAT). ACAT increases the baseline classifica-
tion accuracy of lesions in brain CT scans from
71.39% to 72.55% and of COVID-19 related find-
ings in lung CT scans from 67.71% to 70.84%
and exceeds the performance of competing meth-
ods. We investigate the best way to generate the
saliency maps employed in our architecture and
propose a way to obtain them from adversarially
generated counterfactual images. They are able
to isolate the area of interest in brain and lung CT
scans without using any manual annotations. In
the task of localising the lesion location out of 6
possible regions, they obtain a score of 65.05%
on brain CT scans, improving the score of 61.29%
obtained with the best competing method.

1. Introduction
In computer vision classification problems, it is often as-
sumed that an object that represents a class occupies a large
part of an image. However, in other image domains, such
as medical imaging or histopathology, only a small frac-
tion of the image contains information that is relevant for
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the classification task (Kimeswenger et al., 2019). With
object-centric images, using wider contextual information
(e.g. planes fly in the sky) and global features can aid the
classification decision. In medical images, variations in
parts of the image away from the local pathology are often
normal, and using any apparent signal from such regions
is usually spurious and unhelpful in building robust classi-
fiers. Convolutional Neural Networks (CNNs) (Krizhevsky
et al., 2012; He et al., 2016; Szegedy et al., 2017; Huang
et al., 2017a) can struggle to generalise well in such settings,
especially when training cannot be performed on a very
large amount of data (Pawlowski et al., 2019). This is at
least partly because the convolutional structure necessitates
some additional ‘noisy’ statistical response to filters away
from the informative ‘signal’ regions. Because the ‘signal’
response region is small, and the noise region is potentially
large, this can result in low signal to noise in convolutional
networks, impacting performance.

To help localisation of the most informative parts of the
image in medical imaging applications, Region Of Interest
(ROI) annotations are often collected (Cheng et al., 2011;
Papanastasopoulos et al., 2020). However, these annotations
require expert knowledge, are expensive to collect, and
opinions on ROI of a particular case may vary significantly
across annotators (Grünberg et al., 2017).

Alternatively, attention systems could be applied to locate
the critical regions and aid classification. Previous work has
explored the application of attention mechanisms over im-
age features, either aiming to capture the spatial relationship
between features (Bell et al., 2016; Newell et al., 2016; San-
toro et al., 2017), the channel relationship (Hu et al., 2018)
or both (Woo et al., 2018; Wang et al., 2017). Other authors
employed self-attention to model non-local properties of
images (Wang et al., 2018; Zhang et al., 2019). However,
in our experiments, attention methods applied on the image
features failed to improve the baseline accuracy in brain
and lung CT scans classification. Other authors employed
saliency maps to promote the isolation of the most informa-
tive regions during training of a classification network. They
sometimes employed target ground-truth maps to generate
these saliency maps (Murabito et al., 2018). Moreover, by
fusing salient information with the image branch at a single
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Figure 1. Architecture of the framework proposed for 3D volumes. The slices of each volume are first processed separately and then
combined by applying an attention module over the slices. For each volume we also consider as input the corresponding saliency map.
From the saliency branch, we obtain soft spatial attention masks that are used to modulate the image features. The salient attention
modules capture information at different scales of the network and are combined through an attention fusion layer to better inform the
final classification.

point of the network (Murabito et al., 2018; Flores et al.,
2019; Figueroa-Flores et al., 2020), these approaches may
miss important data. Indeed, when the signal is low, key in-
formation could be captured by local features at a particular
stage of the network, but not by features at a different scale.
For this reason, in our architecture, as shown in Figure 1,
we employ the saliency maps to obtain soft spatial attention
masks that modulate the image features at different stages of
the network and also combine the attention masks through
an attention fusion layer. This architecture allows to capture
information at different scales and to better inform the final
decision of the network. Moreover, it makes the model more
robust to perturbations of the inputs by reducing the variance
of the pre-activations of the network (cfr. Section 4.6).

Finally, we investigate the best technique to generate the
saliency maps that are needed for our architecture and we
find that the use of counterfactual images, acquired with
a technique similar to adversarial attacks (Huang et al.,
2017b), is able to highlight useful information about a par-
ticular patient’s case. In particular, for generating counter-
factual examples, we employ an autoencoder and a trained
classifier to find the minimal movement in latent space that
shifts the input image towards the target class, according to
the output of the classifier.

The main contributions of this paper are the following: 1)
we propose ACAT, a framework that employs saliency maps
as attention mechanisms at different scales and show that it
makes the network more robust to input perturbations and
improves the baseline classification accuracy in two medical
imaging tasks (from 71.39% to 72.55% on brain CT scans
and from 67.71% to 70.84% in lung CT scans) and exceeds

the performance of competing methods, 2) we show how
ACAT can also be used to evaluate saliency generation meth-
ods, 3) we investigate how different methods to generate
saliency maps are able to isolate small areas of interest in
large images and to better accomplish the task we introduce
a method to generate counterfactual examples, from which
we obtain saliency maps that outperform competing meth-
ods in localising the lesion location out of 6 possible regions
in brain CT scans (achieving a score of 65.05% vs. 61.29%
obtained with the best competing method)

2. Related Work
An overview of the methods used to generate saliency maps
and counterfactual examples can be found in (Guidotti,
2022) and (Linardatos et al., 2020) respectively. Here, we
briefly summarise some of the approaches most commonly
used in medical imaging.

Saliency maps Saliency maps are a tool often employed by
researchers for post-hoc interpretability of neural networks.
They help to interpret CNN predictions by highlighting pix-
els that are important for model predictions. Simonyan
et al. (2013) compute the gradient of the score of the class
of interest with respect to the input image. The Guided
Backpropagation method (Springenberg et al., 2014) only
backpropagates positive gradients, while the Integrated Gra-
dient method (Sundararajan et al., 2017) integrates gradients
between the input image and a baseline black image. In
SmoothGrad (Smilkov et al., 2017), the authors propose
to smooth the gradients through a Gaussian kernel. Grad-
CAM (Selvaraju et al., 2017) builds on the Class Activation
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Mapping (CAM) (Zhou et al., 2016) approach and uses the
gradients of the score of a certain class with respect to the
feature activations of the last convolutional layer to calculate
the importance of the spatial locations.

Counterfactuals for visual explanation Methods that gen-
erate saliency maps using the gradients of the predictions
of a neural network have some limitations. Some of these
methods have been shown to be independent of the model
parameters and the training data (Adebayo et al., 2018; Arun
et al., 2021) and not reliable in detecting the key regions in
medical imaging (Eitel et al., 2019; Arun et al., 2021). For
this reason, alternative methods based on the generation of
counterfactuals for visual explanation have been developed.
They are usually based on a mapping that is learned be-
tween images of multiple classes to highlight the areas more
relevant for the class of each image. The map is modeled
as a CNN and is trained using a Wasserstein GAN (Baum-
gartner et al., 2018) or a Conditional GAN (Singla et al.,
2021). Most close to our proposed approach to generate
counterfactuals, is the latent shift method by Cohen et al.
(2021). An autoencoder and classifier are trained separately
to reconstruct and classify images respectively. Then, the
input images are perturbed to create λ-shifted versions of
the original image that increase or decrease the probability
of a class of interest according to the output of the classifier.

Saliency maps to improve classification and object detec-
tion Previous work has tried to incorporate saliency maps
to improve classification or object detection performance in
neural networks. Ren et al. (2013) used saliency maps to
weigh features. Murabito et al. (2018) introduced SalClass-
Net, a framework consisting of two CNNs jointly trained
to compute saliency maps from input images and using the
learned saliency maps together with the RGB images for
classification tasks. In particular, the saliency map generated
by the first CNN is concatenated with the input image across
the channel dimension and fed to the second network that is
trained on a classification task. Flores et al. (2019) proposed
to use a network with two branches: one to process the input
image and the other to process the corresponding saliency
map, which is pre-computed and given as input. The two
branches are fused through a modulation layer which per-
forms an element-wise product between saliency and image
features. They observe that the gradients which are back-
propagated are concentrated on the regions which have high
attention. In (Figueroa-Flores et al., 2020) the authors use
the same modulation layer, but replace the saliency branch
that was trained with pre-computed saliency images with
a branch that is used to learn the saliency maps, given the
RGB image as input.

Adversarial examples and adversarial training Machine
learning models have been shown to be vulnerable to adver-
sarial examples (Papernot et al., 2016). These are created

by adding perturbations to the inputs to fool a learned clas-
sifier. They resemble the original data but are misclassified
by the classifier (Szegedy et al., 2013; Goodfellow et al.,
2014). Approaches proposed for the generation of adver-
sarial examples include gradient methods (Kurakin et al.,
2018; Moosavi-Dezfooli et al., 2016) and generative meth-
ods (Zhao et al., 2017). In Qi et al. (2021), the authors
propose an adversarial attack method to produce adversarial
perturbations on medical images employing a loss deviation
term and a loss stabilization term. In general, adversarial
examples and counterfactual explanations can be created
with similar methods. Adversarial training, in which each
minibatch of training data is augmented with adversarial
examples, promotes adversarial robustness in classifiers
(Madry et al., 2017). Tsipras et al. (2018) observe that gra-
dients for adversarially trained networks are well aligned
with perceptually relevant features. However, adversarial
training usually also decreases the accuracy of the classifier
(Raghunathan et al., 2019; Etmann et al., 2019).

3. Methods
We wish to automatically generate and make use of RoI
information in the absence of hand-labelled annotations. In
order to do so, we employ saliency maps that are given as in-
put and processed by the saliency branch of our architecture
(see Figure 1). The saliency features are used to produce at-
tention masks that modulate the image features. The salient
attention modules capture information at different scales of
the network and are combined through an attention fusion
layer to better inform the final classification. In Figure 2,
we show the saliency map and the attention masks obtained
with a trained network on a brain scan. As we can observe,
the saliency map is sparse and covers broad areas of the scan.
On the other hand, the attention masks progressively refine
the RoI emphasised by the original saliency map, better
highlighting the area of interest.

3.1. Saliency based attention

We learn to process saliency maps into multiple levels of
attention modules to learn better local features and improve
the classification accuracy. We do so through a saliency
branch, which has attention modules that learn how to han-
dle the salient information coming into the system and use
it to obtain soft spatial attention masks that modulate the
image features. In particular, with reference to Figure 1, we
consider a network with two branches, one for the original
input images and the other for the corresponding saliency
maps, which are pre-computed and fixed during training
of the network. Given Si ∈ RC×H×W features of the
saliency branch at layer i, we first pool the features over
the channel dimension to obtain Si

p ∈ R1×H×W . Both
average or max-pooling can be applied. However, in pre-
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(a) Image (b) Saliency map (c) Attention mask Se
s (d) Attention mask Sm

s (e) Attention mask Sl
s

Figure 2. Image with lesion indicated by the red arrow (a) and pixels in the 95th percentile of the saliency map (b) and spatial attention
masks obtained after early (c), middle (d) and late (e) convolutional layers. The attention masks progressively tweak the original saliency
map focusing more precisely on the area of interest.

liminary experiments we found max-pooling to obtain a
slightly better performance. A convolution with 3 × 3 fil-
ters is applied on Si

p, followed by a sigmoid activation, to
obtain soft spatial attention masks based on salient features
Si
s ∈ R1×H×W . Finally, the features of the image branch

at layer i: F i ∈ RC×H×W are softly modulated by Si
s in

the following way:

F i
o = F i ⊙ Si

s (1)

where ⊙ is the Hadamard product, in which the spatial at-
tention values are broadcasted along the channel dimension,
and F i

o are the modulated features for the i − th layer of
the image branch. We also introduce skip connections be-
tween F i and F i

o to prevent gradient degradation and distill
information from the attention features, while also giving
the network the ability to bypass spurious signal coming
from the attention mask.Therefore, the output of the image
branch at layer i, is given by: Gi = F i + F i

o

The attention mask not only modulates the image features
during a forward pass of the network, but can also cancel
noisy signal coming from the image features during back-
propagation. Indeed, if we compute the gradient of Gi with
respect to the image parameters θ, we obtain:

∂Gi(θ; η)

∂θ
=

∂[F i(θ) + F i(θ)⊙ Si
s(η)]

∂θ
=

∂F i(θ)

∂θ
Si
s(η)

(2)

where η are the saliency parameters.

3.1.1. FUSION OF ATTENTION MASKS

Previous work attempting to exploit saliency maps in classi-
fication tasks, has fused salient information with the image
branch at a single point of the network, either directly con-
catenting attribution maps with the input images (Murabito

et al., 2018) or after a few layers of pre-processing (Flores
et al., 2019; Figueroa-Flores et al., 2020). On the other
hand, we position our salient attention modules at different
stages of the network, in order to capture information at
different scales. This is particularly important in low signal-
to-noise tasks, where the key information could be captured
by local features at a particular stage of the network, but
not by features at a different scale. For this reason, we use
three attention modules, after early, middle and late layers
of the network. Given Se

s , Sm
s and Sl

s the corresponding
spatial attention masks, we also reduce their height and
width to H ′ and W ′ through average pooling, obtaining
Se
s,p, Sm

s,p and Sl
s,p respectively. Then, we concatenate them

along the channel dimension, obtaining Ss,p ∈ R3×H′×W ′
.

An attention fusion layer Lf takes Ss,p as input and gen-
erates a fused spatial mask Sf ∈ R1×H′×W ′

by weighting
the three attention masks depending on their relative im-
portance. This final attention mask is applied before the
fully-connected classification layers, so that if critical infor-
mation was captured in early layers of the network, it can
better inform the final decision of the network. In practice,
Lf is implemented as a 1 × 1 convolution. In Section 4.5
we perform ablation studies to evaluate the contribution of
each component of our network and demonstrate that all
the components described are required to achieve the best
results.

3.2. Generation of saliency maps

In order to detect regions of interest in medical images, we
generate counterfactual examples for each datum and use
the difference with the original image to generate a saliency
map highlighting important information. In particular, given
a dataset D = (xi; i = 1, 2, . . . , ND) of size ND consisting
of input images xi, along with corresponding class labels
T = (yi; i = 1, 2, . . . , ND), counterfactual explanations
describe the change that has to be applied to an input for
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(f) Image (g) Ours (h) Latent shift (i) Gradient (j) Grad-CAM

Figure 3. (a) Ischaemic stroke lesion appears darker than normal brain. Sample saliency maps averaged over slices obtained with our
approach (b), the latent shift method (c), the Gradient method (d) and Grad-Cam (e).

the decision of a black-box model to flip. Let f be a neural
network that outputs a probability distribution over classes,
and let ŷi be the class designated maximum probability by
f . A counterfactual explanation displays how xi should be
modified in order to be classified by the network as belong-
ing to a different class of interest ȳi (counterfactual class).
In order to generate saliency maps, we can consider the dif-
ference between the original image and the counterfactual
image of the opposite class. For example, to compute the
saliency map of a brain scan with a stroke lesion, we could
generate a counterfactual example that is classified by f
as not having a stroke lesion. In this way, we are able to
visualise the pixels with the biggest variation between the
two samples, which are the most important for the classi-
fication outcome. However, when using saliency maps to
improve the classification capability of our network, at test
time we don’t have access to class labels. For this reason, to
compute saliency maps in a class-agnostic way, we consider
the counterfactual examples of both classes (positive and
negative) and then compute the absolute difference between
the original image and each counterfactual image to get two
attribution maps. These are then normalised in [0, 1] and
averaged to obtain the final saliency map that can be used
in the classification pipeline.

As discussed, gradient-based counterfactual changes to im-
age pixels can just produce adversarial attacks. We alleviate
this by targeting gradients of a latent autoencoder. There-
fore, in addition to the network f , trained to classify im-
ages in D, we exploit an autoencoder, trained to reconstruct
the same inputs. xj ∈ D can be mapped to latent space

through the encoder E: E(xj) = zj . This can then be
mapped back to image space via decoder D: x′j = D(zj).
Suppose without loss of generality that the counterfactual
example we are interested in belongs to a single target
class. The neural network can be applied to this decoder
space, we denote the output of f(D(zj)) as a normalised
probability vector d(zj) = (d1(z

j), . . . , dk(z
j)) ∈ RK ,

where K is the number of classes. Suppose that f(xj)
outputs maximum probability for class l and we want to
shift the prediction of f towards a desired class m, with
l,m ∈ N : l,m ∈ [1,K]. To do so, we can take gradient
steps in the latent space of the autoencoder from initial po-
sition zj to shift the class distribution towards the desired
target vector t = (t1, . . . , tk) ∈ RK , where ti = 1i=m,
for i = 1, . . . ,K . In order to do so, we would like to
minimise the cross-entropy loss between the output of our
model, given D(zj) as input, and the target vector. I.e. we
target

L(d(zj), t) = −
K∑

k=1

tk log(dk(z
j)). (3)

Moreover, we aim to keep the counterfactual image as close
as possible to the original image in latent space, so that the
transformation only captures changes that are relevant for
the class shift. Otherwise, simply optimising Eq. (3) could
lead to substantial changes in the image that compromise
its individual characteristics. Therefore, we also include,
as part of the objective, the L1 norm between the latent
spaces of the original image xj and the counterfactual image:
||z − E(xj)||L1 . Putting things together, we wish to find
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Table 1. Test accuracy by infarct size. Our framework, ACAT, improves the performance of competing methods in the detection of scans
with no infarct lesion, small and medium lesions (size 1-2)

No Lesion IS-1 IS-2 IS-3 IS-4
Baseline 81.41% 23.66% 54.16% 72.09% 87.74%
SMIC 79.24% 25.55% 54.82% 65.71% 88.36%

SalClassNet 76.71% 29.24% 54.48% 64.95% 82.71%
HSM 80.37% 27.28% 53.86% 71.60% 89.10%
SpAtt 82.56% 21.33% 51.58% 67.86% 86.77%
SeAtt 83.49% 27.03% 52.05% 65.54% 84.42%
ViT 76.79% 11.67% 41.04% 53.12% 61.54%

ACAT (Ours) 84.30% 30.23% 55.02% 68.67% 84.93%

the minimum of the function:

g(z) = L(d(z), t) + α||z − E(xj)||L1 (4)

where α is a hyperparameter that was set to 100 in our
experiments. We can minimise this function by running
gradient descent for a fixed number of steps (20 in our
experiments). Then, for the minimizer of Eq. (4), denoted
by z′, the counterfactual example is given by D(z′).

By defining an optimisation procedure over the latent space
that progressively optimises the target classification prob-
ability of the reconstructed image, we are able to explain
the predictions of the classifier and obtain adequate coun-
terfactuals. A bound on the distance between original and
counterfactual images in latent space is also important to
keep the generated samples within the data manifold.

4. Experiments
4.1. Data

We performed our experiments on two datasets: IST-3
(Sandercock et al., 2011) and MosMed (Morozov et al.,
2020). Both datasets were divided into training, validation
and test sets with a 70-15-15 split and three runs with differ-
ent random seeds were performed. More details about the
data are provided in Appendix A.

4.2. Experimental setup

The baseline model for the classification of stroke lesions
in CT scans of the brain employs the same base multi-
task learning (MTL) architecture of Anonymous Author
(s), while for classification of lung CT scans, we employed
a ResNet-50 architecture (with 4 convolutional blocks).
Further details about the architectures are provided in Ap-
pendix B. In our framework, the attention branches follow
the same architecture of the baseline architectures (removing
the classification layers). In the MTL model, the attention
layers are added after the first, third and fifth convolutional
layer. For the ResNet architecture, attention modules are

added after each one of the first three convolutional blocks.
The attention fusion layer is always placed after the last
convolutional layer of each architecture. Moreover, instead
of averaging the slices of each scan, in our framework we
consider an attention mask over slices. This is obtained
from image features by considering an MLP with one hid-
den layer. The hidden layer is followed by a leaky ReLU
activation and dropout with p = 0.1. After the output layer
of the MLP, we apply a sigmoid function to get the attention
mask. Further training details are provided in Appendix C.

4.3. Classification results

We compare the proposed framework with competing meth-
ods incorporating saliency maps into the classification
pipeline, methods employing attention from the input image
features, a vision transformer and the baseline model trained
without saliency maps on the classification of brain and lung
CT scans. In the former case, the possible classes are: no
lesion, lesion in the left half of the brain, lesion in the right
half of the brain or lesion in both sides. In the latter case, we
perform binary classification between scans with or with-
out COVID-19 related findings. In methods where saliency
maps are needed, for a fair comparison of the different ar-
chitectures, we always compute them with our approach. In
particular, we compare our method with saliency-modulated
image classification (SMIC) (Flores et al., 2019), SalClass-
Net (Murabito et al., 2018), hallucination of saliency maps
(HSM) (Figueroa-Flores et al., 2020), spatial attention from
the image features (SpAtt), self-attention (SeAtt) and the
vision transformer (ViT) (Dosovitskiy et al., 2020). Imple-
mentation details are provided in Appendix E.

As we can observe in Table 2, our approach improves the av-
erage classification accuracy of the baseline from 71.39% to
72.55% on IST-3 and from 67.71% to 70.84% on MosMed.
Our framework is also the best performing in both cases.
SMIC performs slightly worse than the baseline on IST-
3 (with 70.85% accuracy) and better on MosMed (with
69.27% accuracy). HSM is close to the baseline results
on IST-3 but worse than the baseline on MosMed, while
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SalClassNet is worse than the baseline on both tasks. The
methods incorporating attention from the image features
have also similar or worse performance than the baseline,
highlighting how the use of attention from the saliency maps
is key for the method to work. ViT obtains the worse per-
formance on IST3, confirming the results from previous
work that vision transformers often require a very large
amount of training data to learn good visual representations
(Neyshabur, 2020) and are often outperformed by CNNs on
medical imaging tasks (Matsoukas et al., 2021). While it
is easier to detect large stroke lesions, these can also be de-
tected easily by humans. For this reason, we aim to test the
capabilities of these models to flag scans with very subtle
lesions. In order to do so, we evaluate their classification
accuracy by infarct size (IS). As we can observe in Table 1
our approach obtains the best classification performance
on the scans with no infarct lesion, as well as small and
medium lesions (size 1-2). This confirms how our saliency
based attention mechanism promotes the learning of local
features that better detect subtle areas of interest.

4.4. Evaluation of saliency maps

We evaluate quantitatively how the saliency maps generated
with our approach described in Section 3.2, the latent shift
method (Cohen et al., 2021), the gradient method (Simonyan
et al., 2013) and Grad-CAM (Selvaraju et al., 2017) are able
to detect the areas related to the stroke lesion. The maps
were created employing the baseline model and positive
scans which were not used during training. In particular,
we generated negative counterfactuals with our approach
and the latent shift method and computed the difference
between the original image and the generated images to
obtain the saliency maps. Grad-CAM is applied using the
last convolutional layer of the network. The lesion loca-
tion, which is used for evaluation, but is not known to the
network, is one of the 6 classes: MCA left, MCA right,
ACA left, ACA right, PCA left, PCA right. The attribu-
tion maps are evaluated as in Zhang et al. (2018), with the

Table 2. Average test accuracy over 3 runs on the classification
of brain (IST-3) and lung (MosMed) CT scans. Our framework,
ACAT, outperforms competing methods that employ saliency maps
to aid classification and other alternative methods.

IST-3 MosMed
Baseline 71.39% (0.23) 67.71% (3.48)
SMIC 70.85% (0.63) 69.27% (1.13)

SalClassNet 69.43% (1.81) 62.50% (2.66)
HSM 71.38% (0.94) 65.63% (1.28)
SpAtt 70.96% (0.10) 66.67% (2.98)
SeAtt 71.23% (0.10) 67.71% (1.70)
ViT 57.87% (0.87) 66.67% (2.98)

ACAT (Ours) 72.55% (0.82) 70.84% (1.53)

formula: S = Hits
Hits+Misses . A hit is counted if the pixel

with the greatest value in each CT scan lies in the correct
region, a miss is counted otherwise. The saliency maps gen-
erated with our approach obtain the highest average score of
65.05% (with 2.03 standard error), improving the scores of
58.39% (2.00) and 61.29% (2.06) obtained with the latent
shift and the gradient methods respectively. Grad-CAM has
the worst score, with 11.67% (1.28). Sample saliency maps
are showed in Figure 3 with a red color map. The red arrows
indicate the lesion regions, which appear as a ‘shaded’ area
in the scans.

Furthermore, ACAT improves the lesion detection capabil-
ities of saliency maps further. Indeed, if we re-compute
the saliency maps with our approach and using ACAT as
classifier to generate the counterfactuals, we obtain a score
of 68.55% (1.94), without using the class labels. In fact, the
saliency maps are generated by averaging the absolute dif-
ferences between the original image and the counterfactual
examples of both classes (positive and negative).

4.5. Ablation studies

On IST-3, we compare the performance of ACAT when
saliency maps obtained with different approaches are em-
ployed. When using saliency maps obtained with our ap-
proach we obtain the highest accuracy of 72.55% (0.72).
The relative ranking of the saliency generation approaches
is the same that was obtained with the evaluation of
saliency maps with the score presented in Section 4.4,
with the gradient method obtaining 72.16% (0.88) accu-
racy, the latent shift method 72.04% (1.07) and Grad-CAM
69.42% (1.19).

On MosMed, we ablate the components of our architecture.
In the proposed approach, attention masks are obtained from
the saliency branch at three different stages of the network
(early, middle and late) and finally an attention fusion layer
weighs the three masks and is applied before the classi-
fication layers. Therefore, we progressively removed the
fusion layer, the late attention mask and the middle attention
mask to test the contribution of each component. While
the classification accuracy of the full ACAT architecture
was 70.84%(1.53), by removing the attention fusion layer
it decreased to 69.79%(2.78). Moreover, by also removing
the late attention layer it further decreased to 68.75%(1.48),
reaching 68.23%(0.85) when the middle attention layer was
eliminated as well.

4.6. ACAT makes the network more robust to input
perturbations

We investigate the mechanism through which ACAT helps
the improvement of prediction performance. Consider a
neural network with M layers. Given ϕ activation func-
tion: Xm+1 = ϕ(Zm+1),with m ∈ [1,M ] and Zm+1 =
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(f) Image with mask (g) Ours (h) Latent shift (i) Gradient (j) Grad-CAM

Figure 4. Input image with masks depicting regions of interests (a) and saliency maps averaged over slices obtained with our approach (b),
the latent shift method(c), the Gradient method (d) and Grad-Cam (e)

WmXm + Bm pre-activations, Wm and Bm being the
weight and bias matrices respectively. We compare the
mean variances of the pre-activations of IST-3 test samples
in each layer for the baseline model and ACAT trained from
scratch. As we can observe in Table 3, ACAT significantly
reduces the pre-activation variances σ2,m of the baseline
model. As a consequence, perturbations of the inputs will
have a smaller effect on the output of the classifier, increas-
ing its robustness and smoothing the optimisation landscape
(Ghorbani et al., 2019; Littwin & Wolf, 2018; Santurkar
et al., 2018). In fact, if we add random noise sampled from
a standard Gaussian distribution to the inputs, the mitigating
effect of ACAT on the pre-activations variance is even more
pronounced, as displayed in Table 3.

Table 3. Variances of the pre-activations of the 7 layers of the
baseline model and of ACAT for original and noised input images.
ACAT makes the model more robust by decreasing these variances

Original inputs Noised inputs
Baseline ACAT Baseline ACAT

σ2,1 0.017 0.035 0.36 0.39
σ2,2 17.68 0.03 33.92 0.97
σ2,3 7.22 0.09 10.14 2.62
σ2,4 0.97 0.04 17.04 2.46
σ2,5 1.91 0.15 336.04 15.28
σ2,6 3.05 0.05 5958.12 11.64
σ2,7 0.23 0.17 831.92 77.98

4.7. ACAT is not random regularisation

We employed dropout to test if the improvements obtained
with ACAT are only due to regularization effects that can be
replicated by dropping random parts of the image features.

In particular, we employed dropout with different values
of p on the image features at the same layers where the
attention masks are applied in ACAT. The accuracy obtained
was lower than in the baseline models. In particular, we
obtained 68.71%, 68.36% average accuracy on IST-3 for
p = 0.2, 0.6 respectively (vs 71.39% of the baseline) and
53.13%, 58.86% accuracy on MosMed for the same values
of p (vs 67.71% of the baseline). The results suggests that
spatial attention masks obtained from salient features in
ACAT are informative and the results obtained with ACAT
cannot be replicated by random dropping of features.

5. Conclusion
In this work, we proposed a method to employ saliency
maps to improve classification accuracy in two medical
imaging tasks (IST-3 and MosMed) by obtaining soft atten-
tion masks from salient features at different scales. These
attention masks modulate the image features and can cancel
noisy signal coming from them. They are also weighted
by an attention fusion layer in order to better inform the
classification outcome. We investigated the best approach to
generate saliency maps that capture small areas of interest
in low signal-to-noise samples and we presented a way to
obtain them from adversarially generated counterfactual im-
ages. A possible limitation of our approach is that a baseline
model is needed to compute the attribution masks that are
later employed during the training of our framework. How-
ever, we believe that this approach could still fit in a normal
research pipeline, as simple models are often implemented
as a starting point and for comparison with newly designed
approaches. While our approach has been tested on brain
and lung CT scans, we believe that it can generalise to many
other tasks and we leave further testing for future work.
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A. Data
IST-3 or the Third International Stroke Trial is a randomised-
controlled trial that collected brain imaging (predominantly
CT scans) from 3035 patients with stroke symptoms at two
time points, immediately after hospital presentation and
24-48 hours later. Among other things, radiologists regis-
tered the presence or absence of early ischemic signs. For
positive scans, they also coded the lesion location. In our
experiments, we only employed the labels for the following
classes: no lesion, lesion in the left side, lesion in the right
side, lesion in both sides of the brain. 46.31% of the scans
we considered are negative and the remaining are positive.
In particular, 28.80% have left lesion, 24.03% right lesion
and 0.86% lesion in both sides of the brain. The information
related to the more specific location of the lesion was only
employed to test the score of the saliency maps presented
in Section 3.2 and never used at training time. Further in-
formation about the trial protocol, data collection and the
data use agreement can be found at the following url: IST-3
information.

MosMed contains anonymised lung CT scans showing signs
of viral pneumonia or without such findings, collected from
1110 patients. In particular, 40.4% of the images we conis-
dered are positive and 59.6% are negative. In a small subset
of the scans, experts from the Research and Practical Clini-
cal Center for Diagnostics and Telemedicine Technologies
of the Moscow Health Care Department have annotated the
regions of interest with a binary mask. However, in our
experiments we didn’t employ these masks. Further infor-
mation about the dataset can be found in Morozov et al.
(2020).

B. Architectures
The MTL model classifies whether a brain scan has a lesion
(is positive) or not. If the scan is positive, it also predicts
the side of the lesion (left, right or both). In order to do
so, a MTL CNN with 7 convolutional layers and two clas-
sification heads is employed. In the first stage, the CNN
considers only half scans (left or right) and processes one
slice of each scan at a time. Then, the extracted features
from each side are concatenated and averaged across the
slices of each scan, before reaching the two classification
heads. The classification accuracy is computed considering
whether the final classification output identifies the correct
class out of the four possible or not. In the ResNet-50 ar-
chitecture used for the classification of lung CT scans, we
still process one slice at a time and average the slices before
the classification layer. In particular, we performed a binary
classification task between scans with with moderate to se-
vere COVID-19 related findings (CT-2, CT-3, CT-4) and
scans without such findings (CT-0). The autoencoder used
to reconstruct images has 3 ResNet convolutional blocks

both in the encoder and in the decoder parts, with 3 × 3
filters and no bottleneck.

C. Training details
The baseline models were trained for 200 epochs and then
employed, together with an autoencoder trained to recon-
struct the images, to obtain the saliency maps that are needed
for our framework. Our framework and the competing
methods were fine-tuned for 100 epochs, starting from the
weights of the baseline models. The training procedure of
ACAT is summarised in Algorithm 1.

Algorithm 1 ACAT training
Data: D = (xi; i = 1, 2, . . . , ND)
Train baseline classification network f and autoencoder
D(E) on D
Given E(xj) = zj , minimise: g(z) = L(d(z), t) +
α||z − E(xj)||L1

Decode the obtained latent vector to compute the coun-
terfactual D(z′)
Obtain saliency maps Sj from positive and negative coun-
terfactuals
Train ACAT on D using xj and Sj as input

In the case of IST-3 data, we uniformly sampled 11 slices
from each scan and resized each slice to 400× 500, while
for MosMed data we sampled 11 slices per scan and then
resized each slice to 128 × 128. All the networks were
trained using 8 NVIDIA GeForce RTX 2080 GPUs. For
each model, we performed three runs with different dataset
splits, in order to report average accuracy and standard error.

D. Societal impact
Several countries are experiencing a lack of radiologists
(Dall, 2018) compared to the amount of patients that need
care. This can lead to several undesirable consequences,
such as delays in diagnosis and subsequent treatment. Ma-
chine learning tools that automate some clinically relevant
tasks and provide assistance to doctors, can lower the work-
load of physicians and improve the standard of care. How-
ever, many of these are black-box models and require ROI
masks, which have to be annotated by specialists, to be
trained. On the other hand, our framework can be trained
without ROI annotations, while still being able to localise
the most informative parts of the images. Moreover, the cre-
ation of saliency maps is an integral part of our pipeline. By
explaning the inner workings of a neural network, saliency
maps can increase trust in the model’s predictions and sup-
port the decisions of clinicians.

https://datashare.ed.ac.uk/handle/10283/1931
https://datashare.ed.ac.uk/handle/10283/1931
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(a) (b)

(c) Latent shift (d) Ours

Figure 5. Probability of lesion obtained with one step-gradient updates in the latent space (Cohen et al., 2021) for different values of the
step size λ for two samples ((a) and (c)) and with gradient descent minimising Eq. (4) ((b) and (d))

E. Competing methods for saliency-aided
classification

In the saliency-modulated image classification (SMIC) (Flo-
res et al., 2019), the branch that is used to pre-process the
saliency maps has two convolutional layers. For the other
implementation details, we follow Flores et al. (2019). For
SalClassNet (Murabito et al., 2018), we tried to follow the
original implementation by using the saliency maps gener-
ated with our approach as targets for the saliency branch,
since we don’t have the ground-truth saliency maps avail-
able, but this led to poor results. For this reason, rather than
generating the saliency maps with the saliency branch, we
compute them with our approach. Then, as in Murabito et al.
(2018) we concatenate them with the input images along the
channel dimension. For the hallucination of saliency maps
(HSM) approach, following Figueroa-Flores et al. (2020),
the saliency detector has four convolutional layers. In SpAtt
we consider a network with only one branch and compute
the soft spatial attention masks directly from the image
features, at the same stage of the network where saliency
attention masks are computed in our framework. SeAtt

employes self-attention modules from Zhang et al. (2019),
which are placed after the third and fifth convolutional layer
in the MTL architecture and after the third and fourth convo-
lutional block in the ResNet-50. For the Vision Transformer
(ViT) we employed 6 transformer blocks with 16 heads in
the multi-head attention layer and patch sizes of 50 and 16
for IST-3 and MosMed data respectively.

F. Failure modes of competing methods for the
generation of counterfactuals

Following the same notation as before, given an input image
xk, with latent space zk = E(xk), Cohen et al. (2021)
propose a method to generate counterfactuals by creat-
ing perturbations of the latent space in the following way:
zkλ = zk + λ∂f(D(zk))

∂zk , where λ is a sample-specific hy-
perparameter that needs to be found by grid search. These
representations can be used to create λ-shifted versions of
the original image: xk

λ = D
(
zkλ

)
. For positive values of λ,

the new image xk
λ will produce a higher prediction, while

for negative values of λ, it will produce a lower prediction.
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(f) h = −10 (g) h = −3 (h) h = −1 (i) h = −0.1 (j) h = −0.01

Figure 6. In the top panel are shown the probability of lesion obtained with progressive gradient updates in the latent space, with the
step size value fixed to -10 (a), -3 (b), -1 (c), -0.1 (d), -0.01 (e) and no bound on the latent move. In the bottom panel are displayed the
counterfactual examples obtained at the gradient step where p is minimal

Depending on the landscape of the loss, the latent shift
approach may be unsuitable to reach areas close to a lo-
cal minimum and fail to correctly generate counterfactuals.
The reason is that this method can be interpreted as a one-
step gradient-based approach, trying to minimise the loss of
f(D(zk)) with respect to the target probability for the class
of interest, with one single step of size λ in latent space.
To solve this issue, we propose an optimisation procedure
employing small progressive shifts in latent space, rather
than a single step of size λ from the input image. In this way,
the probability of the class of interest converges smoothly
to the target value. Below we show examples of the failure
modes of the latent shift method, where the probability of
the class of interest does not converge to the target value,
that are fixed by our progressive optimisation. Another issue
of the latent shift method is that it doesn’t introduce a bound
on the distance between original and counterfactual images.
Therefore, the generated samples are not always kept on the
data manifold and may differ considerably from the original
image. To solve this issue, we add a regularisation term that,
limiting the move in latent space, ensures that the changes
that we observe can be attributed to the class shift and the
image doesn’t lose important characteristics.

We observed that in several cases, when generating coun-
terfactual examples, the latent shift method is not able to
achieve low values for the probability of the class of interest
p. We consider two examples of positive brain scans, for
which we attempt to generate counterfactuals with low prob-
ability of lesion according to the classifer f , starting from a
probability close to 1 . We apply one-step gradient updates
as in Cohen et al. (2021), starting with the step size value

λ = 1e − 5 and multiplying λ by two at each successive
attempt. In Figure 5(a) and (c), we show the probability
of lesion as a function of λ for these two samples. We can
observe that the minimum value obtained for p is 0.51 for
the first sample and 0.46 for the second one. On the other
hand, by following our approach and minimising Eq. (4) by
gradient descent, with target class ‘no lesion’, p reaches a
value lower than 0.2 with 20 gradient updates in both cases
and then converges to 0 (Figure 5(b) and (d)). In these runs
we employed a step size of 1. However, different step sizes
yield similar results for the probability functions.

For the first sample, we also test a method where we per-
form small progressive updates of size h in latent space,
but without a bound on the distance between original and
counterfactual images. P of the resulting images is shown
in Figure 6 for values of h in {−10,−3,−1,−0.1,−0.01}.
With h = −10, h = −3 and partially with h = −1, we are
able to reach low values of p , but the probability function
has an unstable behaviour and later starts increasing, rather
then converging to 0. With the other values of h, we are
never able to achieve low values of p. The graphs are shown
in the top panel of Figure 6. The counterfactual images
obtained at the gradient update steps where p is minimal
in these optimisation runs, are showed in the bottom panel
of the same Figure. In all cases, the images largely differ
from the original brain scan, displayed in Figure 7(a) and
are not semantically meaningful. On the other hand, with
our approach we are able to obtain a credible counterfac-
tual, displayed in Figure 7(b) , together with its regions of
change with respect to the original image 7(c). We can ob-
serve that the regions of change largely overlap with the area
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of the lesion highlighted in red in Figure 7(a), suggesting
that the counterfactuals generated with our approach are
semantically meaningful.

(a) Image (b) Counterfactual (c) Change

Figure 7. Counterfactual example with p = 0.08 generated with
our approach (b) and regions of change (c), with respect to the
original image (a), highlighted with a red color map. The regions
of change have a good overlap with the area of the lesion indicated
in red in (a).

G. Further evaluation of saliency maps
In Section 4.4 we observed how the saliency maps generated
with Grad-CAM obtain a poor score. We test if more recent
improvements of the method can have a significant impact
on the score obtained. In particular, we considered Grad-
CAM++ (Chattopadhay et al., 2018) and Score-CAM (Wang
et al., 2020). The former, in order to provide a measure of
the importance of each pixel in a feature map for the clas-
sification decision, introduces pixel-wise weighting of the
gradients of the output with respect to a particular spatial po-
sition in the final convolutional layer. On the other hand, the
latter removes the dependence on gradients by obtaining the
weights of each activation map through a forward passing
score for the target class. We observed that Grad-CAM++
very marginally improves the performance of Grad-CAM
(from 11.67% (1.28) to 11.78% (0.46)), while Score-CAM
obtains the worst score with 9.90% (0.78). Finally, we
also tested the Integrated Gradient method (Sundararajan
et al., 2017), in which the gradients are integrated between
the input image and a baseline image, achieving a score
of 37.52%(4.11). These methods obtain scores that are
considerably lower than the ones of adversarial approaches.

H. Visualisation of counterfactual examples
In Figure 8, we display the counterfactual examples of the
images displayed in Fig. 3, obtained with our approach and
the latent shift method. Saliency maps of the change are
displayed in Figure 3.

(d) Image (e) Ours (f) Latent shift

Figure 8. (a) Ischaemic stroke lesion appears darker than normal
brain. Counterfactual examples for the negative class obtained
with our approach (b) and the latent shift method (c)

I. IoU and Dice score of saliency maps
We compared the proposed method against competing
saliency generation approaches, including the latent shift
method and progressive gradient descent updates but with
no reconstruction loss or limitation of the move in the la-
tent space (NoRec). In particular, we considered 50 test
samples in the MosMed dataset for which annotation masks
are available and evaluated the IoU score (Jaccard Index)
and the Dice coefficient (F1 score). Following Cohen et al.
(2021) and Viviano et al. (2019), we binarized the saliency
maps by setting the pixels in the top p percentile to 1, where
p is chosen dynamically depending on the number of pixels
in the ground truth it is being compared to. The results
are shown in Table 5. Out of the methods considered, our
approach achieves both the best IoU and Dice coefficient
(0.5203 and 0.5372 respectively). NoRec slightly improves
the scores obtained with the latent shift method.

J. Limited data
We study how the performance of the different methods on
IST-3 is affected by varying amounts of training data. In
Table 4, we present the average accuracy obtained when 50,
100, 200, 300 or 500 scans are available at training time.
SMIC and HSM obtain the best performance when 100 and
500 scans are available respectively, while ACAT when 50,
200 or 300 images are available.

K. Roc Curve
We computed Receiver Operating Characteristic (ROC)
curves and Area Under the Curve (AUC) to better eval-
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Table 4. Average test accuracy (and standard error) over 3 runs on the classification of brain (IST-3) when limited training data is available
50 scans 100 scans 200 scans 300 scans 500 scans

Baseline 34.84% (1.10) 33.26% (2.83) 40.45% (2.88) 42.68% (1.66) 63.42% (3.10)
SMIC 37.85% (1.43) 40.77% (2.34) 40.82% (0.58) 47.19% (0.79) 61.84% (0.68)

SalClassNet 35.21% (0.31) 33.70% (0.30) 42.30% (0.99) 45.66% (2.68) 63.92% (2.11)
HSM 32.18% (1.07) 38.93% (1.02) 46.72% (4.16) 47.49% (2.89) 64.36% (1.98)
SpAtt 36.71% (1.05) 34.40% (2.32) 40.43% (0.55) 41.67% (2.54) 62.82% (4.42)
SeAtt 33.70% (0.80) 37.74% (3.30) 38.19% (1.30) 42.30% (0.99) 60.43% (1.89)
ViT 35.68% (0.90) 35.60% (0.90) 36.50% (0.55) 38.01% (1.23) 47.36% (0.65)

ACAT (Ours) 39.81% (1.06) 39.08% (2.37) 46.93% (1.68) 49.55% (2.69) 63.80% (2.74)

Table 5. Dice coefficient and IoU score computed on 50 test scans
on MosMed to compare different saliency generation approaches.
Our approach achieved the best score in both evaluation metrics

IoU Dice
Gradient 0.5022 (0.0005) 0.5071 (0.0009)

Grad-CAM 0.4998 (0.0003) 0.5024 (0.0006)
Latent shift 0.5116 (0.0005) 0.5241 (0.001)

NoRec 0.5138 (0.0022) 0.5260 (0.0008)
Ours 0.5203 (0.001) 0.5372 (0.0012)

uate the different approaches on IST-3 data. The results are
displayed in Figure 9. ACAT achieves the best AUC with
0.932, while the other methods obtain results ranging from
0.806 (VIT) to 0.919 (baseline)

Figure 9. ROC curves on IST-3. ACAT achieves the best AUC


