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A B S T R A C T

There are potentially infinite gene expression markers for Lung Squamous Cell Carcinoma. This results in a
high-dimensional data with a large number of features. The selection of relevant markers for analysis is thus,
of utmost importance. In our study, we have aimed to select a subset of prominent and significant features
from 31918 features of gene expressions. Analysis is then performed on the selected features using the Cox
Proportional Hazards Model to know how each marker affects the survival estimates of a patient. We have
employed a two-step selection process to select a subset of markers. The first step is done by L1 regularized
Cox PH. Then the selected markers are screened a second time by running a univariate Cox PH model and
checking for the 𝑝-value of each bio-marker via Wald inference (𝑝 < 0.05). Once the final selection is made,
we estimate the Hazard Ratio and Confidence intervals using Maximum Likelihood Estimates (MLE) and the
Bayesian Approach with the Cox Proportional Hazards Model (CPH) and the Accelerated Failure Time Model
(AFT) as an alternative. A forest plot has also been generated to show the graphical representation of the
meta-analysis done in the study. With the proposed selection procedure we have managed to find a suitable
subset out of a large number of variables available. The features selected have been analyzed and their validity
has been confirmed by using survival models.
. Introduction

Lung Cancer has been regarded to be the most common category
f cancer worldwide since 1958, both in terms of incidence and mor-
ality [1]. Generally speaking, Lung cancer, can be classified as small
ell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC).
espite the accuracy of today, there has been an underestimation of

tatistics portrayed. The American Cancer Society estimated that in
022, 236,740 new cases of lung cancer were detected and 130,180
eaths are directly linked to lung cancer in both men and women.
lthough it is debatable approximately how many people die of Lung
ancer, WHO says that numbers have been steadily increasing since the

ast decade.
NSCLC is classified into Squamous Cell Lung Carcinoma (LUSC),

denocarcinoma and Large Cell Carcinoma. Squamous Cell Lung Car-
inoma also known as just Squamous Cell Carcinoma begins in the
ain air way, such as the right or left bronchi or in the central part

f the lung. Statistics say most squamous cell lung carcinoma occur
ue to the concerned person’s history of smoking. Squamous cell car-
inoma tends to occur near the central airways of the lungs. Thereby,
omparisons have been drawn between Squamous cell carcinoma and

∗ Corresponding author.
E-mail address: 20375046@pondiuni.ac.in (S. Basak).

Adenocarcinoma, another type of NSCLC. As such, prognostically, Ade-
nocarcinoma was considered to be poorer as compared to Squamous
cell carcinoma [2,3]. In comparison, recently, it has been shown that
there was no difference in the development of recurrence between these
two; however, there was a huge difference when it came to overall
survival [4]. In medical research, knowing the death of an individ-
ual due to an ongoing disease or infection helps doctors prescribe
medication and perform surgeries with efficiency. Survival analysis
helps us answer such questions. However, each genomic sequence can
potentially have thousands of permutations, and selecting the relevant
ones is crucial. The main problem at hand is that although personalized
therapy for Lung Adenocarcinoma have improved it has not been the
same for LUSC. Recently, FAM83B was recognized as the candidate
marker through a comprehensive gene expression analysis [5]. The
most important thing to point out here is that extensive research is
needed to identify gene expression markers that are responsible for
accelerating the death of a patient diagnosed with LUSC. Over the
years, biomarker identification have been easier however the process
of identification still remains exhaustive. A few methods used are
Tumour and Non-tumour tissue samples, RNA isolation and microarray
ttps://doi.org/10.1016/j.health.2023.100168
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procedures, microarray data analysis, Quantitative real time RT-PCR
analysis etc [6]. Identification is of utmost importance because this
will lead to precise treatments and better quality of life for patients. In
order to do so, the time taken for diagnosis needs to be minimized and
with the advancement of computational prowess, Machine Learning has
been the leading candidate since the early 2010’s.

In cancer research, survival analysis has helped predict the prob-
ability that the patient will survive with or without intervention. By
knowing the probability of the patient’s survival, it is easier to predict
how effective the intervention of the medical team will be and thus,
improve the quality of life of the patient for a certain time interval.

This has been previously discussed by inspecting the survival rate of
130 patients with non-small cell lung cancer that was left untreated [7].
Predicting the survivability depends on the Status and the survival time
of records on significant bio-markers in Non-small cell lung cancer
research. However, individuals might have many permutations of genes
and hence, an enormous number of bio-markers. This results in a
dataset that has high dimensionality. Historically, Statistical models
have always supported medical research by individualizing outcome
prognostication on individual variables or by estimating the effects
of risk factors that are adjusted for covariates. However, theory of
statistical modeling is well defined only if the set of variables is small
and fixed [8]. When the number of available features becomes largely
greater than the number of sample observations (n≫p) analysts face
the problems of ‘‘High-dimensionality’’.

While dealing with data in high-dimensional space, feature selection
is of utmost importance. Bellman [9] coined the problems of organizing
and analyzing high dimensional data sets as the ‘‘curse of dimensional-
ity’’. High-dimensional data came into existence with the rise of modern
technology. At present, the measurement of many variables simulta-
neously is possible, which has led scientists and researchers to build
data sets that have far more number of covariates than the sample size.
While such data sets can provide a flood of information, researchers
have faced a plethora of challenges while dealing with them [10]. Pires
and Branco [11] explains how whilst high dimensionality is beneficial
sometimes it is regarded as one of the latest challenges faced by data
analysts. Another challenge is that when the number of observations is
less as compared to the number of co-variates(or features), the model
runs the risk of being overfitted. Also, with the increase in the number
of features, the observations become harder to cluster, and overall
knowledge discovery becomes difficult.

It is thus, in the interest of analysts to extract a subset of relevant
variables (or features) that are deemed to be the most relevant for the
analysis. Thus, over the years variable selection methods have been pro-
posed and applied in various fields of research including computational
biology and health sciences, especially for genomic data. Variable se-
lection methods are numerous and they all work in different algorithm
schemes covering from fast correlation based filtering methods [12]
to classical embedded methods [13] to more modern and complex
methods such as LASSO [14], Lars [15], Sure Independence Screen-
ing [16]. Some of these methods can deal with high-dimensionality
quite well while others cannot. Wasserman and Roeder [17] explores
the possibilities of the above-mentioned variable selection methods in
high-dimensional models.

Whilst there are an extensive number of machine learning algo-
rithms that are quite useful for feature selection, no method is con-
sidered to be the best. It all comes down to the data set we have in
hand. The Partial likelihood method was prevalent for a long time
for estimating parameters for the Cox model however, lately, neural
network algorithms such as the Coxnnet [18] have gained popularity.
In a different perspective, selection of features can also be considered
to be imbalanced classification problems and gradient boosting decision
tree algorithms such as the LightGBM [19] prove to be a great solution.
LightGBM used as a feature selection algorithm has been previously
used in studies related to predicting Drug Target interactions [20]

and Phage Virion Protein classification [21]. Another efficient method,

2

while still in their infancy has proved to be quite useful in identifying
pneumonia-related compounds is the CapsNet [22,23]. CapsNet is in-
teresting because it strongly highlights the generalization capabilities
of capsules over traditional neural networks and may prove to work
better in identifying relevant gene expressions as well. Needless to say
neural network methods work best for classification problems but they
are computationally much more exhausting.

Another interesting application that is a strong candidate for the
future would be to evaluate different algorithms based on an en-
sembling method. Bao et al. [24] have demonstrated this with their
study on identification of Lysine 2-hydroxyisobutyrylation by gener-
ating interaction ranking lists and then evaluating their performances
by 3 ensembling methods. Algorithms like the VIKOR method [25] has
been used as a feature evaluation method as different decision-making
criteria [26], integration of multiple ranking information with an SVM
ensemble model [27] and a tree-based stacked ensemble technique
(SET) [28] have been previously studied and has proven to work
in numerous fields. However, ensembling methods also reduces the
interpretability of the model for analysis and thus, a comprehensive
study is needed to test their accuracy in survival and censored data
sets.

The Lasso Cox model [29] has worked wonders previously with
survival and censored data sets and moreover, is a much easier alterna-
tive than advanced neural network methods. To demonstrate this, Qian
et al. [30] studied the prognosis of breast cancer and incorporated the
Univariate Cox PH and Lasso cox regression model to identify the 17-
gene signatures. A similar study was also done by Zhang et al. [31]
where the Lasso Cox regression model was utilized for constructing a
prognosis prediction model for Lung adenocarcinoma.

In this study, we have thus, attempted to utilize a two-step selection
procedure which includes the Lasso Cox Model [29] to select a subset
of features from high-dimensional gene expression data of patients
diagnosed with Squamous Cell Lung Carcinoma. The main objective of
this study is to find relevant biomarkers and then validate them using
2 survival models.

Once the biomarkers are selected, we estimate the respective Hazard
Ratios and their confidence intervals using both Maximum Likelihood
Estimates (MLE) and Bayesian approaches using the Cox Proportional
Hazards (CPH) Model and the Accelerated Time Failure (AFT) Model.
The Cox proportional hazards model, developed by Sir David Cox in
1972, is a semi-parametric model used to predict overall survival on
multiple predictors [32]. It has been extended in the past for analyzing
known clinical prognostic variables. Herndon et al. [33] made use of
it in their study of whether the quality of life is predictive of survival
of patients with advanced non-small cell lung carcinoma. Estimation
of the parameters for the CPH model is done via both MLE and the
Bayesian approach. [34] explains how the Bayesian approach estimates
parameters in the Cox model by maximizing partial likelihood functions
on the basis of previously known information in their study of the
HACE1 gene in the onset of Alzheimer’s disease.

Alternatively, the Accelerated Failure Time model is also applied to
find the regression coefficients. Unlike the CPH model, the AFT model is
a parametric model and it assumes that the effect of a co-variate either
will accelerate or decelerate the event time by a constant [35,36]. The
AFT model is used to compare and validate our findings.

2. Models and methods

2.1. Data motivation

For this study, we have used a high-dimensional gene expression
data set of 242 unique patients suffering from Lung Squamous Cell
Carcinoma (LUSC) obtained from The Cancer Genome Atlas Program
(TCGA), available online at https://portal.gdc.cancer.gov. The data set
used has more than 31,000 unique variables providing information
focused on patient history. Variables of interest are Event and Overall

https://portal.gdc.cancer.gov
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Fig. 1. Flowchart for selection of variables and analysis.
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urvival (OS) along with 31,918 markers or gene expressions for each
atient. The OS (in days) has been calculated for each patient which
ignifies the number of days the patient has lived and the Event
ariables shows whether that patient is alive or dead (dichotomous in
ature). For our study, we consider the Event to be 1 for all patients,
ignifying that none of the patients have survived. Pre-processing of
he data is first done by removing columns that have more than 30%
issing values. The total number of variables are thus found to be
1,920 which includes our variables of interest, OS and Event along
ith 31,918 markers or gene expressions. It is important to note, that in
ur considered data set, the OS time has been counted in days. Approval
nd consent of patients have been taken in the creation of the data set
nd the data set is on an open access space and is available for public
esearch purposes.

In this paper, we have utilized a two-step filtration method for
eature selection. The method is based on the Lasso Cox Model (L1 regu-
arized Cox PH) followed by testing the significance using a univariate
ox model screening step. Variables with p-values less than 0.05 are
elected for our final data set which are then analyzed. The method of
asso has been around for a long time since its inception in the late 90’s
nd is a reliable method for feature selection which is later discussed
n the paper. A detailed flowchart of the pre-processing, selection and
nalysis pertaining to the study is given in Fig. 1.

.2. Model formulation

.2.1. Lasso Cox Model
The lasso or Least absolute shrinkage and selection operator is

xtremely useful in statistics and machine learning for the purpose of
oth variable selection and regularization. As discussed, the presence
f a large number of variables in a model can makes for the model
o be interpreted. It is, thus, quite clear why variable selection is
eneficial in the model building stage. Tibshirani [14] addressed the
roblems that analysts face while dealing with the interpretability of
rdinary Least Squares (OLS) estimates. The first problem faced is that
f accuracy in prediction. Least Squares estimates tend to have low
3

bias and large variance. It has been observed that prediction accuracy
improves when some coefficients are set to 0. The second problem is
that of interpretation. In the presence of high number of co-variates or
features, the model becomes extremely difficult to interpret.

We consider a data set consisting of n subjects. Now, let us assume
that we have X = 𝑥1, 𝑥2, . . . , 𝑥𝑚 set of possible features in our data
set. Out of these m features, we need to select a set of, say, k features,
𝑘 < 𝑚, that are deemed to be relevant. We assume Y is the variable
to be predicted. Thus, the equation for the prediction can be predicted
by:

𝑌 = 𝑓 (𝛽0, 𝛽, 𝑋, 𝜖) (1)

where, 𝛽0 is the intercept, 𝛽 = 𝛽1, 𝛽2, 𝛽3, . . . , 𝛽𝑚 are the possible
oefficients of X and 𝜖 is the error term. The lasso regularization meth-
ds adds a penalization factor to the maximum likelihood estimation
unction. The lasso function consists of a constant, say, 𝜆𝑙. It is then
ultiplied with the absolute values of the parameter estimates. The

orresponding value is thus denoted by

𝑙𝛴𝑖|(𝛽𝑖)| (2)

37]. Now, as we minimize the negative log-likelihood function, for i
1,2,..,n, the LASSO function 𝐿𝑙 is defined as,

𝑙 = 𝐿 + 𝜆𝑙𝛴𝑖|(𝛽𝑖)|. (3)

here L is the corresponding likelihood function. When selecting spe-
ific bio-markers for a disease, it is important that we focus on the
ignificant ones and ignore the rest. It is already known that L2 reg-
larization fails to do that. This is because it reduces the impact of
ach factor on the model but it does not eliminate the factor altogether.
esearchers thus have preferred LASSO whenever they need to ignore
ertain factors or variables in a data set, especially one that is High-
imensional. L2 regularization can be used when the analyst has to

nclude all the variables present in the data set.
The data setup is considered to be in the usual survival form. The

ata is thus expressed in the form of: (𝑦 , 𝑥1, 𝛿 ), . . . , (𝑦 , 𝑥𝑁 , 𝛿 ), where
1 1 𝑁 𝑁



A. Bhattacharjee, S. Basak and P. Kumari Healthcare Analytics 3 (2023) 100168

w
f
d
m
t

𝛽

s
s
t
E
w
t

(

b

w
q
v
𝐻
1

m
e

T
t
t
M
t
l

t
C
f
D
t
c
M
u
w

2

s
m
u
t
p
f

T

𝑠

w
b
a
a
u
s
c
m
t
(
t
(
u

3

e
u
o
m

t
p

𝑦𝑖 is the survival time completed, if 𝛿𝑖 = 1 and is right censored if 𝛿𝑖 = 0,
with 𝑥𝑖 being the vector of predictors [29].

The cox model is expressed as:

𝜆(𝑡|𝑥) = 𝜆0(𝑡)𝑒
𝛴𝑗𝑥𝑗𝛽𝑗 (4)

where, t is the survival time and 𝜆(𝑡|𝑥) is the hazard function explained
by a group of predictors 𝑥 = (𝑥1, 𝑥2,… ., 𝑥𝑝). In order to estimate the
coefficients, 𝛽, we usually maximize the partial likelihood without the
specification of 𝜆0(𝑡). The partial likelihood function is defined by:

𝐿(𝛽) =
𝑏

∏

𝑖=𝑎
𝑓 (𝑖) 𝑒𝑠𝑖𝛽

[𝛴𝑚∈(𝑡𝑖)𝑒
𝑧𝑚𝛽 ]𝑑 𝑖

(5)

here, 𝑠𝑖 = 𝛴𝑧𝑖𝑞 is the sum of co-variates of the item observed at
ailure time 𝑡𝑖. The value of 𝛽 can be found by maximizing the Eq. (3). A
etailed explanation can be found in [29]. In the proportional hazards
odel with L1 penalization, the coefficient vector 𝛽, is estimated via

he criterion

̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑙(𝛽) (6)

ubjected to 𝛴|𝛽𝑗 | ≤ s. Here, s is a user-specified parameter. We con-
ider the maximizers of the partial likelihood to be 𝛽0𝑗 . It thus follows
hat if s ≥ 𝛴|𝛽0𝑗 |, the solutions to [6] are the partial likelihood estimates.
lse if s < 𝛴|𝛽0𝑗 | then the estimates are shrunken to zero. In other
ords, unlike the likelihood estimation, we use a parameter s, in order

o determine the coefficients, the following algorithm is followed.
The one-term Taylor series expansion is given as:

𝑧 − 𝜂)𝑇𝐴(𝑧 − 𝜂) (7)

The procedure we used from [29] for obtaining estimates of the
parameters of the PH model via Lasso is:
1: Fix value of 𝑠 and 𝛽 ← 0.
2: Compute 𝜂, u, A and z based on the current value of 𝛽.
3: Minimize (𝑧 −𝑋𝛽)𝑇 A (𝑧 −𝑋𝛽) subject to ∑

|𝛽𝑖| ≤ s.
4: Repeat steps 2 and 3 until the value of 𝛽 does not change.

2.2.2. Cox Proportional Hazards Model
The Cox Proportionals Hazards Model (CPH) is well known in the

field of Survival Analysis and Biostatistics. It is a semi-parametric
survival model that relates the time that passes before which an event
occurs. In a CPH model the unique effect of a unit increase in a covari-
ate is multiplicative with respect to the hazard rate. It was developed
by Sir David Cox in 1972 [38].

In this study, the CPH model is used as a secondary screening step
in our variable selection process and also to analyze the significance of
the chosen biomarkers.

The cox model is given as:

𝜆(𝑡|𝑥) = 𝜆0(𝑡)𝑒
𝛴𝑗𝑥𝑗𝛽𝑗 (8)

where, t is the survival time and 𝜆(𝑡|𝑥) is the hazard function explained
y a group of predictors 𝑥 = (𝑥1, 𝑥2,… ., 𝑥𝑝). In order to estimate

the coefficients, 𝛽, we usually maximize the partial likelihood without
the specification of 𝜆0(𝑡). The performance of the selected markers
is analyzed with the Hazard Ratio (HR). The Hazard ratio for two
co-variates is defined by:

𝐻𝑅 =
ℎ𝑦1(𝑡)
ℎ𝑦2(𝑡)

= 𝑒𝑦1𝛽

𝑒𝑦2𝛽
(9)

here, y1(t) and y2t are the two co-variates. The Hazard Ratio, thus,
uantifies the measure of difference between the two groups of co-
ariates. The likelihood of occurrence of the event or risk increases if
𝑅 > 1 by (𝐻𝑅 − 1) × 100% and it decreases if 𝐻𝑅 < 1 by (1-HR)×

00%. If 𝐻𝑅 = 1, there is a lack of association [37].
In addition to utilizing the Proportional Hazards Model via Maxi-

um Likelihood Estimation, a Bayesian approach is also executed. This
stimation procedure is based on prior information about the data set.
4

he advantage of using Bayesian Survival Analysis(BSA) is that the Bias
ends to be very less, and the standard error is also far smaller than
he Cox Regression Analysis regardless of the sample size. Unlike the
aximum Likelihood approach, where inferences are drawn based on

he likelihood function of the data, the Bayesian model considers the
ikelihood to be a function of a set of parameters 𝛽 given the co-variates
𝑥𝑖. Let us consider the likelihood of the given observations 𝑥 given a
set of parameters 𝛽 as 𝑝(𝑥|𝛽). We also consider the prior information
density is given by 𝜋(𝛽). Therefore, the simple relationship between the
densities would be given by:

𝑝(𝛽|𝑥) ∝ 𝑝(𝑥|𝛽) × 𝜋(𝛽) (10)

The need to generate samples to know the updated information of
he parameters 𝛽 is crucial. Generating samples can be done by Markov
hain Monte Carlo (MCMC) simulation where the sample is generated

rom an underlying target distribution most commonly the Normal
istribution or maybe a mixture of several distributions. It is important

o note that prior information is vital in BSA. The regression coeffi-
ients are considered to be the parameters in the Proportional Hazards
odel [37]. The estimates using the Bayesian approach are found by

sing the ‘‘SurvMC’’ function in the ‘‘SurviMChd’’ package [39] in R
ith 10000 iterations.

.2.3. Accelerated Failure Time Model
The Accelerated Failure Time (AFT) model is sometimes used as a

ubstitute to the Proportional Hazards Model. The AFT is a parametric
odel as opposed to the semi-parametric Cox PH model, and it is
sed to define the relationship among the response and the survival
ime. The AFT model assumes that the effect of the co-variates act
roportionally with respect to the survival time, which a stark contrast
rom the CPH model. We consider, 𝑇𝑖 to be the failure time for the 𝑖th

patient, i = 1, . . . ,n. We consider 𝑥𝑖 to be a p×1 of co-variates for 𝑇𝑖.
Now, 𝑙𝑜𝑔10(𝑇𝑖) is linearly related to 𝑥𝑖 and there exists a constant theta,
such that,

𝑙𝑜𝑔𝑇𝑖 = 𝜃𝑥𝑖 + 𝜖𝑖 (11)

Therefore, the equation for the AFT model can be expressed as:

𝜆(𝑡|𝑥) = 𝜃𝜆0(𝜃𝑡) (12)

he assumption of the AFT model can also be expressed as:

(𝑡|𝑥) = 𝑠0(𝑒(𝛽
′𝑥)𝑡) (13)

here, s(t|x) denotes the survival function and 𝑠0(𝑒(𝛽
′𝑥)𝑡) denotes the

aseline survival function at time t. The factor by which the surviv-
bility of a patient increases or decreases is 𝑒(𝛽′𝑥) and is known as the
cceleration factor. Thus, unlike the CPH model, the AFT model gives
s the effect of covariates that proportionally acts with respect to the
urvival time [35,36]. We can interpret the coefficients estimated by
onsidering the unit increase in covariates will increase the mean (or
edian) survival time by 𝑒𝛽 . Therefore, if the coefficient is positive,

hen the 𝑒𝛽 > 1, will decelerate the event time and increase the mean
or median) survival time. On the contrary, if the coefficient is negative,
hen the 𝑒𝛽 < 1 accelerates the event time and decreases the mean
or median) survival time. The estimates of the AFT model is obtained
sing the ‘‘rglaft’’ function in the ‘‘afthd’’ package [40] in R.

. Results

The data set we have used for this study consists of 31918 gene
xpressions along with Overall Survival (OS) and Event status for 242
nique patients. After the variable selection process, the total number
f variables is 17, which includes OS, Event, and 15 gene expression
arkers.

We have used L1 regularized Cox PH for the initial screening of
he markers. The L1 regularized Cox PH procedure is given in the
revious section. After the initial screening, we got 160 variables that
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Table 1
Selected markers with respective gene names.

Probe ID Gene name

ENSG00000099860_7 GADD45B
ENSG00000118515_10 SGK1
ENSG00000125503_11 PPP1R12C
ENSG00000165424_6 ZCCHC24
ENSG00000182325_9 FBXL6
ENSG00000185168_5 LINC00482
ENSG00000196295_10 AC005154.6
ENSG00000204967_9 PCDHA4
ENSG00000221571_3 RNU6ATAC35P
ENSG00000250995_1 RP13
ENSG00000259083_1 RP11
ENSG00000259954_1 IL21R-AS1
ENSG00000269836_1 CTD-3032J10.4
ENSG00000270890_1 RP3-468K18.6
ENSG00000276570_1 CTD

Table 2
Estimates of Hazard Ratio using the Cox proportional hazard model.

Variable HR Confidence Interval (95%) P-Value

GADD45B 1.12 (1.02, 1.22) 0.01
SGK1 1.12 (1.01, 1.24) 0.04
PPP1R12C 1.21 (1.05, 1.39) 0.00
ZCCHC24 1.10 (1.01, 1.20) 0.03
FBXL6 1.21 (1.05, 1.38) 0.00
LINC00482 1.09 (1.02, 1.17) 0.00
AC005154.6 1.18 (1.02, 1.37) 0.02
PCDHA4 1.07 (1.02, 1.14) 0.01
RNU6ATAC35P 0.88 (0.79, 0.99) 0.03
RP13 1.24 (1.11, 1.39) 0.00
RP11 1.13 (1.01, 1.28) 0.03
IL21R-AS1 1.13 (1.02, 1.26) 0.02
CTD-3032J10.4 1.16 (1.03, 1.31) 0.01
RP3-468K18.6 1.13 (1.01, 1.26) 0.03
CTD 1.15 (1.02, 1.31) 0.01

were selected via the Lasso method. We then use a univariate Cox PH
filtration based on the Wald test to determine the statistical significance
of the markers. In the end, 15 prominent and significant markers were
selected.

The selected markers with their respective Gene names are given in
Table 1.

After selection of prominent markers, parameters have been esti-
mated using both the CPH and AFT model. The CPH model has a robust
nature that allows us to find estimates of a parameter using the correct
parametric model.

For our analysis, we make use of both the Cox Proportional Hazards
model and the Accelerated Failure Time model. The equations for
both the models is given by Eqs. (5) and (8), respectively. For the
PH model, we first estimate the Hazard Ratios using the conventional
method, i.e., by Maximum likelihood Estimates and then by Bayesian
Survival Analysis. The estimates of the Hazard Ratio calculated by
the conventional method, along with their confidence intervals and
P-values, are given in Table 2.

A forest plot is obtained for easily visualized interpretation of esti-
mates obtained for Maximum Likelihood Estimates of the CPH model
and shown in Fig. 2. Hazard ratios and their corresponding P-values
(from Table 1) are used to get the forest plot. We have constructed
a forest plot based on the results obtained in Table 2. The forest plot
is a visualization tool used for meta analysis. It is also often used to
summarize the effects of many variables in a single image format. The
vertical axis represents the line of null effect (𝐻𝑅 = 1, in our case).
The horizontal axis denotes the scale for the statistics being displayed.
The plot will thus show us which selected markers have a positive (or
negative) impact on the event (death).

Table 2 shows that all the co-variates are more significant than 1,
except for RNU6ATAC35P, which estimates 0.89. The co-variates hav-

ing a Hazard Ratio (HR) greater than 1 are accountable for increasing
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Table 3
Posterior estimates of Hazard Ratio(HR) in Cox proportional hazard model.

Variable Mean SD HPD interval

GADD45B 1.12 0.05 (1.02, 1.21)
SGK1 1.12 0.06 (1.00, 1.24)
PPP1R12C 1.21 0.08 (1.05, 1.38)
ZCCHC24 1.10 0.05 (1.00, 1.19)
FBXL6 1.21 0.08 (1.04, 1.37)
LINC00482 1.09 0.03 (1.02, 1.17)
AC005154.6 1.19 0.08 (1.02, 1.37)
PCDHA4 1.07 0.03 (1.01, 1.13)
RNU6ATAC35P 0.88 0.04 (0.79, 0.98)
RP13 1.24 0.07 (1.10, 1.38)
RP11 1.14 0.07 (1.00, 1.28)
IL21R-AS1 1.13 0.06 (1.01, 1.25)
CTD-3032J10.4 1.16 0.06 (1.03, 1.30)
RP3-468K18.6 1.13 0.06 (1.01, 1.20)
CTD 1.16 0.07 (1.02, 1.30)

Table 4
Estimates based on the Accelerated Failure Time Model.

Variable Estimate P-value

RP13 −0.21 0.00
FBXL6 −0.15 0.00
LINC00482 −0.10 0.00
PPP1R12C −0.14 0.00
CTD-3032J10.4 −0.16 0.00
CTD −0.15 0.01
PCDHA4 −0.07 0.01
RP11 −0.14 0.01
RP3-468K18.6 −0.13 0.01
GADD45B −0.11 0.02
AC005154.6 −0.14 0.02
RNU6ATAC35P 0.13 0.02
SGK1 −0.10 0.02
IL21R-AS1 −0.12 0.02
ZCCHC24 −0.08 0.06

the risk of death due to Squamous Cell Lung Carcinoma. Therefore,
the higher the Hazard Ratio, the higher the chances are that a patient
suffering from LUSC will die. Hence, all the bio-markers whose HR is
more significant than one are given in Tables 1 and 2. For bio-markers
with a value of HR > 1, those markers have a higher risk of the Event
ccurring than those whose value is < 1. For example, the marker
ADD45B has an HR of 1.12. This means that it has a 12% more chance
f causing the death of a patient related to LUSC. Thus, the co-variates
hat display a higher-valued hazard ratio are set to increase the risk of
eath. It is also noted that co-variates with hazard ratio =1 imply a lack
f association.

Fig. 2 shows that PCDHA4 and LINC00482 are the co-variates with
R closest to 1. Therefore, they are less significant than the other
iomarkers. Their 95% confidence intervals are also containing 1.
n the contrary, when the compliment of the Hazard Ratio is less

han 1, the survival chances of a patient increase. For example, for
NU6ATAC35P, the HR is 0.89. Therefore the chances of reaching
eath are decreased by 11% approximately.

We have used the Bayesian Approach of the CPH model to calculate
he Hazard Ratios’ estimates and their HPD (Higher Posterior Density)
ntervals, which are given in Table 3.

We also find the estimates of the coefficients using the Accelerated
ailure Time model as a substitute to the Proportional Hazards Model
ased on the selected markers.

In Table 4, we see that most of the estimates of the regression
oefficients are negative, except RNU6ATAC35P. This would imply that
ost of the bio-markers selected to increase the risk of the Event. Here,
e consider the Event to be death. Therefore, the negative values of

he estimates tell us that the event time will accelerate. For example,
he forecast of the bio-marker RP13 is −0.214443609, which implies
hat one unit increase in the value of this bio-marker changes the mean
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Fig. 2. Forest Plot of estimated Hazard ratios of selected markers.
survival time by a factor of 0.806986. This bio-marker accelerates the
event time or reduces the mean survival time. Similarly, the bio-marker
RNU6ATAC35P has an estimate of 0.13094308, which means one unit
increase in the value will change the mean(or median) survival time
by a factor of 1.1399028962. Therefore, we see that changes in most
of these bio-markers bring forth a decrease in mean(or median) survival
time except for RNU6ATAC35P.

4. Discussion

The problems of ultra-high dimensionality is infamous in the field of
statistics and machine learning and has been troubling researchers for
decades especially in the field of bio statistics. Diagnosis and detection
of the disease at an early stage is crucial for the improvement of the
quality of life of a patient. The detection of certain gene expression
levels can definitely be used for diagnosis, prognosis and overall treat-
ment [41]. In this study, we have incorporated a two-step feature
selection process to filter relevant gene markers for Squamous Cell
Lung Carcinoma. We incorporate the L1 regularized Cox Model for our
initial feature selection and univariate Cox Model with respect to Wald
inference for our second screening. Squamous Cell Lung Carcinoma
data (provided by TCGA) contains a large number of gene expressions
for each patient and the proposed selection method has provided
adequate results that has aided in variable selection. The L1 Cox Model
has been a viable option for feature selection and performs better than
L2 and L3 regularization. It has already been previously demonstrated
that the L1 regularization is a better variable selection method than the
L2 method [42]. Vishwakarma et al. [37] has also demonstrated and
stated that L1 regularization is in fact, a better option when features
have to be eliminated altogether because the L2 method only shrinks
the coefficient of the variables.

The initial feature selection step, thus, comprises of the L1 regular-
ized Cox Model that does a good job in reducing the number of features
from 31918 to 160. However, using all 160 features in our model is not
feasible because it is still too many at once to be considered. Therefore,
as a second selection step we use the univariate Cox PH model and
check for the 𝑝-value (≤ 0.05) for each gene expression marker. This
allows us to identify which of the markers are statistically significant.
The second step lets us narrow down the features from 160 to 15. It is
worth noting that the regularization methods in general does not define
the biological relationships or relevance of the markers selected [12].
Thus, we have validated the significance of the biomarkers selected
by performing Multivariate analysis of the CPH regression using both
the conventional Cox Proportional Hazards with Maximum Likelihood
Estimation and the Bayesian method. The Accelerated Failure Time
model is also used as an alternative.
6

Ghosh and Chinnaiyan [43] have previously used Lasso for the clas-
sification and selection of genomic markers in a combination of simu-
lated and prostate cancer gene expression data. Vasquez et al. [44] have
compared the Lasso to 5 Lasso-type methods on Tucson Epidemiological
Study of Airway Obstructive Disease (TESAOD) data with a group of
86 serum bio-markers and have concluded that based on the simulation
study no method had any overall superiority in performance. The Lasso
rightly identified more true signals and did not include noise variables
more than the Weighted Fusion method. Kim and Bredel [45] have also
demonstrated the Cox regression method with Lasso Optimization and
found that using whole-genome gene expression data demonstrated a
higher survival prediction power than other methods used such as 1-NN
method but was outperformed by the same method when using gene ex-
pression profiles of cancer pathway genes alone. Despite the practicality
and easiness of the L1 method, there may be some methods that are
computationally more powerful like the Iterative Sure Independence
screening method (ISIS) [16]. A combined Iterative Sure Independence
Screening and the Cox Proportional Hazard Model study has been done
to extract and analyze biomarkers for Lung Adenocarcinoma and has
been proved to be effective with ultra-high dimensional data sets [46].

Overall, the Lasso Cox Model works quite well when it comes to
a survival characteristic data combined with gene expression markers.
The univariate Cox Proportional Hazards model acts as a secondary
screening to finalize which gene markers are statistically significant in
the study. However, there are a few counter arguments. It has been
previously shown how L1 regularized Cox model have failed to work
for highly correlated data where the method fails to select any variables
at all [47]. An alternative is suggested using the Laplacian regularized
Cox PH Model. Thus, this needs to be further investigated to overcome
the issue of multi-collinearity.

5. Conclusion

In conclusion, the L1 regularized Cox model, combined with the uni-
variate Cox Model, provides a beneficial method for variable selection
in high-dimensional gene expression data. We have shown how the
two-step feature selection method implemented can be an efficient and
effective method in determining significant biomarkers from a high-
dimensional data set where the number of independent variables are
much larger than the sample size. Using the specified selection pro-
cedure method, we have identified 15 biomarkers that have significant
impact on overall survival time in patients diagnosed with LUSC. Based
on the results provided in Tables 2, 3 and 4, we observe that most of the
biomarkers impact the overall survival time of the patients negatively,
that is, they accelerate the time to death. It is important to note, that
since the data set is censored we have confirmation that all patients
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considered in the study had an Event of 1 and that implies that the
biomarkers selected by the selection procedure has accurately selected
the biomarkers. The statistical significance of the selected biomarkers
with their p-values are displayed in the forest plot to give readers a
better understanding.

It is known that there exists other machine learning algorithms
that can select a subset of features from a high-dimensional data set
but we have found a fast selection procedure that selects features
based on the form of the constraint. However, further study needs to
be done to counter multi-collinearity issues that may arise with the
Lasso. It is hopeful that the selected biomarkers may play a vital role
in determining significant prognostic factors of Squamous Cell Lung
Carcinoma. Observing and extracting relevant biomarkers that play a
significant part in a serious disease provides us a window to detect and
treat the disease in early stages and improve the overall quality of life
of patients.
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