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Caenorhabditis elegans is a free-living, bacterivorous nematode that frequently encounters

pathogens while foraging for food in decomposing vegetation. Like other invertebrates, C. ele-
gans entirely relies on its innate immune system to combat invading pathogens. A basal flight

or fight response of animals is also observed in worms against infection. The former is an aver-

sion response of C. elegans against select pathogens, and the latter is an inducible innate

response comprising of pathogen-specific effectors including lysozymes, lectins, antimicrobial

peptides (AMPs), and cytoprotective molecules. Although pathogen recognition in worms is

poorly understood, various signaling pathways and immune effectors facilitating defense

response are well studied, making this nematode an excellent model to study host–microbe

interactions. In higher vertebrates such as mice and humans, sensing of infection through

pathogen-associated molecular patterns (PAMPs) or host damage-associated molecular pat-

terns (DAMPs) is primarily mediated by the toll-like receptors (TLRs), nod-like receptors

(NLRs), RIG-I like receptors (RLRs), C-type lectin domain (CTLD) proteins, and AIM-like

receptors (ALRs) [1]. Humans have 10 TLRs that sense PAMPs and DAMPs. However, TOL-

1, the only TLR homolog in C. elegans, does not seem to be essential during infections with

most pathogens, except during Salmonella enterica [2] and Serratia marcescens [3] infections.

The C. elegans RIG-I like receptor DRH-1 detects products of viral replication and activates an

intracellular pathogen response [4]. CLEC-39 and CLEC-49, two CTLD proteins in C. elegans,
are essential for immune responses against S. marcescens and are known to bind live bacteria

[5]. Despite all these findings, the molecular mechanisms involved in pattern recognition by C.

elegans during a majority of infections remain elusive. In this review, we examine the roles of

G protein-coupled receptors (GPCRs) as noncanonical pattern recognition receptors (PRRs)

and also discuss how GPCR signaling in C. elegans regulates various immune processes.

GPCRs form the largest superfamily of cell surface receptors in eukaryotes; C. elegans
encodes approximately 1,300 genes encoding putative GPCRs [6]. They are involved in a vari-

ety of physiological processes [7] and also for detecting various environmental cues, including

bacterial secondary metabolites [8]. In recent years, several studies on infection in C. elegans
have revealed the importance of GPCRs and their signaling in host defense. In this review, we

examine the role of GPCRs in innate immunity via the modulation of “flight” or “fight”

responses of C. elegans.

Neuronal GPCRs as regulators of innate immunity

The nervous system is the primary site of sensory perception and signal integration in animals,

making it ideal for systemic regulation of immune responses. The search for PRRs and
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immune regulators in C. elegans prompted many research groups on a quest to identify neuro-

nal GPCRs or GPCR signaling components that are involved in immune regulation. A screen

of 40 GPCR mutants by Styer and colleagues in 2008 led to the first demonstration of a neuro-

nal GPCR as a regulator of innate immunity in C. elegans [9]. A mutation in NPR-1, homolog

of the human Neuropeptide Y receptor, led to enhanced susceptibility of worms to bacterial

infection by Pseudomonas aeruginosa, Enterococcus faecalis, and S. enterica [9]. NPR-1 activity

in AQR, PQR, and URX sensory neurons was necessary for the activation of p38/MAP kinase

pathway, a pro-immunity pathway in C. elegans (Fig 1A–1C). In contrast, OCTR-1, a catechol-

amine receptor expressed in a different subset of neurons, was found to regulate innate

immunity against P. aeruginosa negatively [10]. OCTR-1 activity in ASH and ASI neurons sup-

pressed the activation of p38/MAP kinase pathway and a noncanonical unfolded protein

response (UPR) pathway (Fig 1A and 1C). The latter consisted of pqn/abu family of proteins

regulated by the phagocyte receptor CED-1 [10]. The β-arrestin ARR-1, a component of GPCR

desensitization mechanism in the nervous system, is necessary for the regulation of immune

responses to P. aeruginosa, S. enterica, and E. faecalis. Arrestin signaling in ASH and ASI neu-

rons also regulates pqn/abu expression during P. aeruginosa infection [11]. NPR-1 and OCTR-1

provide an example of opposing regulation of p38/MAP kinase pathway by sensory GPCRs.

A recent study illustrated the role for yet another neuronal GPCR in the regulation of innate

immunity by modulating intestinal p38/MAPK activity. OLRN-1 is a GPCR required for dif-

ferentiation of AWC olfactory neurons during larval development. Foster and colleagues

showed that OLRN-1 also represses p38/MAPK signaling in the intestine, thereby suppressing

unchecked immune activation [12] (Fig 1A and 1C). Another GPCR that suppresses immune

responses by inhibiting the p38/MAPK pathway is the D1-like dopamine receptor, DOP-4

[13]. Dopamine secreted from the CEP neurons activates DOP-4 in the ASG neurons. Activa-

tion of DOP-4 results in the suppression of the p38/MAPK pathway in a cell-nonautonomous

manner (Fig 1A and 1C). Immune regulatory roles of OCTR-1, OLRN-1, and DOP-4

Fig 1. G protein-coupled receptors in Caenorhabditis elegans regulate innate immunity in the worm. (A) A lateral view of the head region,

representing the neurons expressing the immunomodulatory GPCRs, NPR-1, NPR-8, NPR-9, OLRN-1, DOP-4, and OCTR-1. (B) A lateral view of

the posterior end representing the regions/cells expressing the immunomodulatory GPCRs, FSHR-1, DCAR-1, PCDR-1, and NPR-1. (C) A schematic

overview of GPCRs regulating various immune response components in C. elegans. AMP, antimicrobial peptides; DAMP, damage-associated

molecular pattern; GPCR, G protein-coupled receptor; HPLA, 4-hydroxyphenyllactic acid; UPR, unfolded protein response.

https://doi.org/10.1371/journal.ppat.1009151.g001
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represent homeostatic mechanisms to suppress hyperimmune activation or inflammation.

This mechanism appears to be crucial in worms, because the hyperactivation of p38/MAPK

hampers C. elegans growth and development [14], and the hyperactivation of DAF-16 causes

inflammation-like death in worms [15]. Two additional neuronal GPCRs also suppress

immune activation in worms. Yu and colleagues showed that NPR-9, the human gastrin-

releasing peptide receptor ortholog expressed in AIB interneurons (Fig 1A), antagonizes the

pro-immune role of AIB interneurons [16]. AIB interneurons prevent the colonization of C.

elegans intestine by P. aeruginosa (Fig 1C). Meanwhile, NPR-8 GPCR in the AWB, ASJ, and

AWC neurons (Fig 1A) is required during infections with P. aeruginosa, Staphylococcus
aureus, or S. enterica. It negatively regulates immunity by suppressing the expression of cuticu-

lar collagens such as COL-101, COL-160, and COL-179 involved in the maintenance of cuticle

integrity [17] (Fig 1C). All these studies suggest that several neuronal GPCRs are indispensable

for survival and immunity in C. elegans during infection. It is interesting to note that majority

of the neuronal GPCRs studied so far repress immune responses.

Intestinal GPCRs involved in host defense

A unique feature of many PRRs is the presence of a conserved leucine-rich region (LRR) in the

ligand-binding domain. Powell and colleagues screened for LRR domain-containing receptors

in C. elegans to identify potential PRRs. They identified FSHR-1 GPCR, ortholog of human fol-

licle stimulating hormone receptor, as a critical regulator of immune response [18]. fshr-1
mutants show enhanced susceptibility to infection with P. aeruginosa, S. aureus, and E. faecalis.
FSHR-1 acts in parallel with the p38/MAPK and regulates a subset of P. aeruginosa immune-

response genes such as F56D6.2, C17H12.8, and F49F1.6 [18] (Fig 1C). Using tissue-specific

knockdown, the authors demonstrated that FSHR-1 primarily acts in the intestine to regulate

survival of worms during infection (Fig 1B). FSHR-1 is also implicated in response to heavy

metal and oxidative stress and induces the expression of GCS-2 (an enzyme involved in gluta-

thione biosynthesis) [19]. Further, intestinal FSHR-1 is required for aversion response of

worms to P. aeruginosa [19]. These studies suggest that FSHR-1 may recognize a DAMP

released during infection and also during oxidative injury. Thus far, FSHR-1 remains the only

intestinal GPCR with an immunomodulatory function.

Epidermal GPCR regulates defense against fungal invasion

Drechmeria coniospora is an ascomycetes fungus and a natural pathogen of C. elegans. The fun-

gal conidia attach to the worm’s cuticle and germinate, causing the hyphae to penetrate the

cuticle, eventually colonizing the entire body of the worm. In response to this invasion, worms

up-regulate several AMPs such as neuropeptide-like protein NLP-29 in the epidermis. NLPs in

this cluster are also up-regulated during epidermal wounding. The NLP-29 up-regulation dur-

ing wounding and D. coniospora infection relies on Gα subunit GPA-12 and Gβ subunit

RACK-1 [20] suggesting the involvement of GPCRs. In an RNA interference (RNAi) screen of

1,150 GPCR encoding genes, dihydrocaffeic acid receptor-1 (DCAR-1) was found necessary

for NLP-29 up-regulation via p38/MAPK pathway. DCAR-1 responds to the endogenous

ligand, 4-hydroxyphenyllactic acid (HPLA), a product of tyrosine degradation in C. elegans
hypodermis. HPLA levels increase during injury and D. coniospora infection, activating

DCAR-1, and subsequently induces immune response in the hypodermis (Fig 1C). Although

DCAR-1 is expressed in sensory neurons as well, it is the hypodermal DCAR-1 that responds

to injury and infection. Thus, DCAR-1 has a hypodermis-specific function during D. conios-
pora infection and wounding [21] (Fig 1B). So far, DCAR-1 remains the only GPCR identified

as a DAMP sensor in worms.
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Regulation of immune response by GPCR signaling in the rectal epithelium

Infections with coryneform bacterium Microbacterium nematophilum, a natural pathogen of

C. elegans, results in deformed anal region (Dar). The Dar phenotype can be easily visualized

due to the swelling in the rectal epithelium, adjacent to the tail of worms. This is caused by

the attachment of bacterial cells to the rectal and post-anal cuticle, and the colonization of the

rectal opening, causing swelling, a classic signature of inflammation. During M. nematophi-
lum infection, Gαq subunit EGL-30 in the rectal epithelium initiates a cascade of signaling

events leading to the Dar phenotype [22]. This cascade includes Ras signaling that activates

Raf-ERK-MAP kinase signaling cascade, resulting in cell morphology changes in the rectal

epithelium. The Dar phenotype promotes pathogen clearance in the rectum and protects the

host [23]. Serotonin signaling via SER-1 and SER-7 receptors activate GOA-1, a Gαo subunit,

in the rectal epithelium, thereby suppressing the Dar phenotype and immunity [23]. The

involvement of GOA-1 and EGL-30 suggested roles for one or more GPCRs in the rectal epi-

thelium. More recently, Anderson and colleagues found an orphan receptor PCDR-1 (patho-

gen clearance defective receptor-1) to be necessary for the clearance of M. nematophilum
from the rectal opening [24] (Fig 1C). PCDR-1 is expressed in B, F, K, and U rectal cells (Fig

1B). Its activity in these rectal epithelial cells, along with EGL-30, is critical for effective patho-

gen clearance in the rectum [24]. PCDR-1 also promotes aversion to M. nematophilum (Fig

1C), but the aversion phenotype does not fully account for the pathogen clearance defects in

the mutant [24]. Interestingly, EGL-30 loss-of-function (lf) mutation completely abrogates

the Dar phenotype, while PCDR-1 lf mutation only causes partial suppression of the Dar phe-

notype [24]. Given this, it is likely that other GPCRs are involved in the regulation of Dar

response.

Chemosensory GPCRs in flight response

C. elegans has a well-developed chemosensory system that enables it to detect food cues and

pheromones. The nematode is repelled by various pathogens, a response termed as “aversion.”

It is an example of the flight response, a behavioral strategy conserved in the animal kingdom.

Aversion can be categorized into innate and learned aversion. The former is reliant on the

worm’s innate ability to detect naturally repulsive components of the pathogen, thereby trig-

gering an innate aversive response. On the other hand, learned aversion involves the process

of associative learning upon exposure to pathogens, resulting in the ability to avoid the patho-

gen on subsequent encounters. Innate aversion is observed when worms are exposed to a lawn

of pathogenic bacterium S. marcescens [3,25]. This response is dependent on the detection of

serrawettin W2 (a surfactant secreted by S. marcescens) [25] and also requires the activity of

TOL-1, since tol-1 mutants are defective in the aversion response toward S. marcescens [3]. An

unidentified chemosensory GPCR in the AWB neurons likely detects Serrawettin W2 [25].

Other examples of flight response-regulating GPCRs are NPR-1 and PCDR-1. Mutations in

NPR-1 result in defective “flight” response to P. aeruginosa [26], while that in PCDR-1 impairs

aversion to M. nematophilum [24] (Fig 1C). Aversion to P. aeruginosa is of the “learned”

nature. Worms are initially attracted to a lawn of P. aeruginosa, and only begin to avoid the

pathogen after a prolonged exposure [10]. Recent studies have shown that this learned aversion

is contributed by detection of the metabolites of the pathogens and also by the bloating of the

intestine during intestinal infection by P. aeruginosa. Intestinal infection and the subsequent

bloating of the lumen trigger feedback systems that modulate the NPR-1 GPCR pathway that

facilitates the regulation of aversive learning [27,28]. The sensors that recognize intestinal

bloating are yet to be identified, and it would be interesting to see if FSHR-1 (an intestinal

DAMP sensor discussed in a previous section) plays any role in this process.
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Interestingly, there are evidences that some pathogens exploit the nematode’s chemosen-

sory system by secreting attractive metabolites to trap them. For example, S. marcescens
secretes 2-butanol and acetone that initially attracts worms, perhaps facilitating an opportunity

for the bacteria to establish infection [29]. Similarly, 2-heptanone secreted by Bacillus nemato-
cida B16 attracts nematodes via the neuronal GPCR STR-2 [30]. Remarkably, STR-2 GPCR

also regulates longevity, through its control of lipid metabolism in the intestine [31]. Since

stored fats can boost immune responses [32], it remains to be investigated if STR-2 can regu-

late survival of worms on B. nematocida and other Bacillus species. The identification of

microbial ligands inducing behavioral response in C. elegans is an area of active investigations

in many labs with a promise to elucidate a GPCR-based model of pattern recognition in the

animal kingdom.

Perspective

In this review, we examined a number of elegant studies in C. elegans demonstrating immune-

modulatory roles of neuronal and nonneuronal GPCRs. Notably, some studies in drosophila,

mice, and humans [7] also suggest the involvement of GPCRs in immune responses although

not in the same level of detail as in worms. The future holds great promise with the possibility

that abundant bacterial metabolites such as ketones, alcohols, esters, sensed by C. elegans sen-

sory neurons, serve as PAMPs in C. elegans and other animals. Worms provide us with a

unique opportunity to identify additional GPCRs and their ligands with the view of devising

pharmacological strategies for boosting innate immune responses and for suppressing

inflammation.
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