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Appendix A Possible origins of long memory in the

price–dividend ratio

In this section we consider several explanations that could account for the presence of

long memory in the price–dividend ratio. Robinson (1978) and Granger (1980) showed that

fractionally integrated series can occur from realistic aggregation situations. For instance,

independent series generated by a first-order autoregressive process can result in a fraction-

ally integrated series when aggregated. Considering that the aggregate stock market index

consists of hundreds of individual stock series, the aggregation result seems a very plausible

explanation of the long-range persistence in the price–dividend ratio.

Alternatively, long memory could be induced within a learning framework in which agents

update their beliefs using linear algorithms. Chevillon and Mavroeidis (2017) showed that

a realistic degree of long memory can arise in the price–dividend ratio without any persis-

tence in the exogenous shocks, if agents learn according to the constant gain least squares

algorithm. Chevillon and Mavroeidis (2017), with annual S&P 500 data for the period from

1871–2011 and using two semiparametric estimators, found the long-memory parameter at

about 0.8, which is close to our estimates in Table 1, Panel C.

Another explanation is that long memory in the price–dividend ratio could be a result

of structural breaks. As shown by Diebold and Inoue (2001), in some circumstances rare

structural breaks and long memory are really two sides of the same coin, and they cannot

be distinguished from each other in finite samples. Lettau and Van Nieuwerburgh (2008)

claimed that strong persistence in the price–dividend ratio could be generated by structural

breaks (or shifts) in the steady-state mean of the economy. They showed that if the shifts

are accounted for, then the return forecasting ability of the price–dividend ratio is stable

over time. However, in an earlier study, Granger and Hyung (2004) established that if the

true series is a long-memory process, it is very likely that spurious breaks will be detected.

Conversely, even if the true process was generated by occasional breaks, the long-memory

process can successfully reproduce many features of the true series and (under some condi-
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tions) can yield better forecasts. Indeed, Lettau and Van Nieuwerburgh (2008) report that

difficulties with detecting the breaks in real time make it hard to forecast stock returns.

These findings reinforce the long-memory argument in the price–dividend ratio.

As a result of the price–dividend being persistent and exhibiting long memory, expected

returns and the expected dividend growth rate are likely to be mean-reverting and anit-

persistent. This results from the first difference of the price–dividend ratio. Since both

expected returns and dividend growth are latent series, the antipersistence can be observed

by applying the first difference on the price–dividend ratio.

Appendix B Proofs of Theorems 1 and 2

Proof of Theorem 1 i. Re-write the spectral density (10) as:

f(λ) =
1

2π

∣∣∣∣∣
∞∑
j=0

ψje
−iλj

∣∣∣∣∣
2

, (A-1)

which shows explicitly that at λ = 0, the spectral density at zero is determined by the sum

of moving-average coefficients. Taking the first derivative of (A-1) with respect to λ yields:

2πf
′
(λ) = i

(
∞∑
j=0

jψje
iλj

)(
∞∑
j=0

ψje
−iλj

)
− i

(
∞∑
j=0

ψje
iλj

)(
∞∑
j=0

jψje
−iλj

)
. (A-2)

Taking the limit at λ→ 0+ and applying the algebraic limit theorem gives:

lim
λ→0+

2πf
′
(λ) = lim

λ→0+

[
i

(
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j=0

jψje
iλj

)(
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ψje
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)(
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jψje
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)]
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(
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j=0

ψje
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)
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(
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jψje
−iλj
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)
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= i

(
∞∑
j=0

ψj

)
lim
λ→0+

[(
∞∑
j=0

jψj (cosλj + i sinλj)

)
−

(
∞∑
j=0

jψj (cosλj − i sinλj)

)]

= i

(
∞∑
j=0

ψj

)
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λ→0+

[
2i

(
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j=0

jψj sinλj

)]

= −2

(
∞∑
j=0

ψj

)
lim
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(
∞∑
j=0

jψj sinλj

)
(A-3)

Since φj ∼ c0j
δ−1 and

lim
λ→0+

∞∑
j=0

jδ−1 sinλj → ∞ for δ > 0,

we find that

lim
λ→0+

∞∑
j=0

jφj sinλj →

+∞ for δ > 0

−∞ for δ ∈ (−1, 0)

(A-4)

and therefore, for δ ∈ (−1, 0),

lim
λ→0+

∞∑
j=0

jψj sinλj = lim
λ→0+

∞∑
j=0

j

(
∞∑
k=0

ρkφk+j

)
sinλj

= lim
λ→0+

∞∑
k=0

ρk

(
∞∑
j=0

jφk+j sinλj

)
(A-5)

diverges to −∞. Since
∑∞

j=0 ψj < 0, we conclude that

lim
λ→0+

f
′
(λ) → −∞. (A-6)

Q.E.D.

Proof of Theorem 1 ii. Under Assumptions 1 and 2, the sum of the moving-average

coefficients is:

∞∑
j=0

ψj = ψ0 +
∞∑
j=1

∞∑
i=0

ρiφi+j
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∼
∞∑
j=1

∞∑
i=0

ρic(i+ j)δ−1

∼ c
∞∑
i=0

ρj
∞∑
j=1

(i+ j)δ−1

∼ −c
δ

∞∑
j=1

ρjjδ, (A-7)

where the last line follows from approximating the sum by an integral (see Abadir, Heijmans,

and Magnus, 2018, Section A.4.1). The sum in (A-7) is finite by the usual convergence

criteria. Q.E.D.

Proof of Theorem 1 iii. Under Assumptions 1 and 2′, the sum of the moving-average

coefficients is:

∞∑
j=0
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[
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∞∑
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∞∑
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ρj + . . .
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φ1ρ

1− ρ
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2
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+ . . .
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ρjφj

=
−ρ
1− ρ

ψ0. (A-8)

The third equality follows from the observation that for an ARFIMA(p, δ, q) process with
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δ < 0, the moving-average coefficients sum up to zero, i.e.
∑∞

j=0 φj = 0, and the sixth

line follows from applying the sum of a geometric series. The other equalities follow from

straightforward algebra. Substituting this result in the spectral density equation at zero

frequency, we obtain:

f(0) =
1

2π

ρ2ψ2
0

(1− ρ)2
. (A-9)

Q.E.D.

Proof of Theorem 2. Under Assumptions 1 and 2, the moving-average coefficients φk in

(5) decay hyperbolically at the following rate:

ln

(
φk+1

φk

)
∼ δ − 1

k
as k → ∞. (A-10)

Since ψk is asymptotically monotone in k, it can be approximated with the continuous-

time limit:

ψk =
∞∑
j=0

ρj(j + k)δ−1 ∼
∫ ∞

0

ρj(j + k)δ−1 as k → ∞. (A-11)

Its rate of decay is then:

∂ψk

ψk∂k
=

δ − 1

ψk

c0

∫ ∞

0

ρj(j + k)δ−2

∼ δ − 1

k

1

ψk

c0

∫ ∞

0

ρj(j + k)δ−1

∼ δ − 1

k
as k → ∞, (A-12)

which is the same as for φk. Q.E.D.
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Appendix C Identification of Σ

In this appendix we discuss the identification of the model parameters, focusing in partic-

ular on the elements of Σ. Consider a generalized version of the model presented in Section

3.2, with the expected returns and expected dividend growth following stationary and in-

vertible processes ARFIMA(pm, δm, qm) and ARFIMA(pg, δg, qg), respectively, such that they

have a state-space moving-average representation as in Eqs. (14a)–(14b) and (15a)–(15b).

The unconditional mean parameters µm and µg are identified trivially from µm = E[rt]

and µg = E[∆dt], respectively. The identifiability of other conditional mean parameters

follows from applying the Yule–Walker argument to the observable moments cov(rt, rt−j)

and cov(∆dt,∆dt−j) for j ≥ 1.

To determine the identifiability of the Σ parameters, first we need to determine the

relation between the shocks. Substituting the price–dividend Eq. (4) back to Eq. (3), we

obtain:

rt+1 −∆dt+1 = κ+
ρκ

1− ρ
− pdt + ρEt+1

∞∑
j=0

ρj (gt+1+j −mt+1+j) (A-13)

= κ+
ρκ

1− ρ
− pdt + ρw′Et+1

∞∑
j=0

ρj (Cg,t+1+j −Cm,t+1+j)

= κ+
ρκ

1− ρ
− pdt + ρw′

∞∑
j=0

ρjFj (Cg,t+1 −Cm,t+1)

= κ+
ρκ

1− ρ
− pdt + ρw′

∞∑
j=0

ρj
[
Fj+1 (Cg,t −Cm,t) + Fj (hgεg,t+1 − hmεm,t+1)

]
,

where we used the state-space representation and evaluated the expectation at time t + 1.

Subtracting from Eq. (A-13) its conditional expectation at time t yields:

εr,t+1 − εdt+1 = ρw′
∞∑
j=0

ρjFj (hgεg,t+1 − hmεm,t+1) (A-14)

= ρb′hgεg,t+1 − ρb′hmεm,t+1,
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or

εr,t = q1εm,t + q2εg,t + εd,t, (A-15)

where q1 = −ρb′hm = −
∑∞

k=0 ρ
k+1φm,k and q2 = ρb′hg =

∑∞
k=0 ρ

k+1φg,k.

As in Rytchkov (2012), we define the transformed variables:

ỹt =

 r̃t

∆̃dt

 (A-16)

=

 (
∑∞

j=0 φm,jL
j)−1 (rt − µm)

(
∑∞

j=0 φg,jL
j)−1 (∆dt − µg)


which follows the process:

ỹt =

 (
∑∞

j=0 φm,jL
j)−1 (mt − µm + εr)

(
∑∞

j=0 φg,jL
j)−1 (gt − µg + εd)

 (A-17)

=

 (
∑∞

j=0 φm,jL
j)−1εr,t + εm,t−1

(
∑∞

j=0 φg,jL
j)−1εd,t + εg,t−1


=

 (1−
∑∞

j=1 ξm,jL
j)εr,t + εm,t−1

(1−
∑∞

j=1 ξg,jL
j)εd,t + εg,t−1

 ,
where ξm,j and ξg,t are the coefficients of the autoregressive representation of mt and gt,

respectively. Using Eq. (A-14) gives:

ỹt =

 (1−∑∞
j=1 ξm,jL

j
)
(q1εm,t + q2εg,t + εd,t) + εm,t−1(

1−
∑∞

j=1 ξg,jL
j
)
εd,t + εg,t−1

 (A-18)

=
∞∑
j=0

AjL
j


εm,t

εg,t

εd,t

 ,
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where

A0 =

 q1 q2 1

0 0 1

 , A1 =

 (1− ξm,1q1) −ξm,1q2 −ξm,1

0 1 −ξg,1


and

Aj =

 −ξj,1q1 −ξm,jq2 −ξm,j

0 0 −ξg,j

 for j ≥ 2.

Thus, given ρ and the conditional mean parameters ξ, from the moments of ỹt:

var(ỹt) =
∞∑
k=0

AkΣA′
k, (A-19)

cov(ỹt, ỹt−j) =
∞∑
k=0

AkΣA′
k+j, (A-20)

we can find a system of equations that allows us to identify the elements of Σ:

vech(var(ỹt)) = D+
2

(
∞∑
k=0

Ak ⊗Ak

)
D3 vech(Σ) = A0 vech(Σ), (A-21)

vec(cov(ỹt, ỹt−j)) =

(
∞∑
k=0

Ak ⊗Ak+j

)
D3 vech(Σ) = Aj vech(Σ), (A-22)

where ⊗ denotes the Kronecker product, vec and vech are the vec and half-vec opera-

tors, respectively, Dn denotes the duplication matrix such that, for an n × n symmetric

X, Dn vech(X) = vec(X), and D+ is its Moore–Penrose inverse.22 The 3× 7 matrix A0 and

4 × 7 matrices Aj (for j ≥ 1) are defined in Eqs. (A-21) and (A-22). The system can be

stacked into a system of 3 + 4p equations:

M vech(Σ) =
[
A

′
0,A

′
1, . . . ,A

′
p

]′
vech(Σ). (A-23)

The explicit expression of M for the AR(1) model is given in Rytchkov (2012). In this

specific case, the column rank of M is five, which indicates that only five parameters of Σ

22See Abadir and Magnus (2005), ch. 11.
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can be identified. Rytchkov (2012) shows that in this case, there exists a matrix Ω that

satisfies the restrictions:
∑1

k=0AkΣA′
k = 0 and A0ΣA′

1 = 0, such that replacing Σ with

Σ̃ = Σ+Ω yields observationally equivalent statistics.

For systems with richer autoregressive representation, such as AR(p) with p ≥ 2, the

explicit algebraic solution is not readily available, and we turn to brute-force numerical

methods to determine the rank of M.23 In this case, we verify that all Σ coefficients are

indeed identified. That is, the rank of M is six if we consider a sufficient number of moments.

In the special case when ϕm,j = ϕg,j for all j, to achieve identification we need the variance

and any two autoregressive moments: rank(
[
A

′
0,A

′
j,A

′
k

]′
) = 6 ∀ 1 ≤ j, k ≤ p, j ̸= k. In all

other cases, as long as the dynamics of mt are different from gt, i.e. ϕm,j ̸= ϕg,j for any j,

all parameters of Σ can be identified from the variance of ỹt and any other autoregressive

moment, i.e. rank(
[
A

′
0,A

′
j

]′
) = 6 ∀1 ≤ j ≤ p. The same result holds if mt and/or gt

follow a fractionally integrated process, even when there are no short-memory dynamics (i.e.

fractional noise) and δm = δg.

Appendix D Kalman equations

In this section we discuss the Kalman filtering procedure and then present the log-

likelihood function which will subsequently be maximized.

In order to obtain the Kalman equations, it is convenient to write the measurement

equations in the form where the shocks are lagged relatively to the state vector. Therefore

we define the new state variables xm,t+1 = Cm,t and xg,t+1 = Cg,t, so the transition equations

are now

xm,t+1 = Fxm,t + hmεm,t, (A-24)

xg,t+1 = Fxg,t + hgεg,t, (A-25)

23We use Matlab’s Symbolic Math Toolbox.
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and the measurement equations are:

∆dt = µg +w′xg,t + εd,t, (A-26)

pdt = A+ b′Fxg,t − b′Fxm,t + b′hgεg,t − b′hmεm,t. (A-27)

In general notation, the transition and measurement equations are

xt+1 = Fxt + vt, (A-28)

yt = e+Wxt + zt, (A-29)

with

xt =

 xm,t

xg,t

 ,F =

 F 0

0 F

 ,vt =

 hmεm,t

hgεg,t

 ,
yt =

 ∆dt

pdt

 , e =

 µg

A

 , W =

 w′ 0

b′F −b′F

 , zt =

 εd,t

b′hgεg,t − b′hmεm,t

 ,
where 0 is an infinite-dimensional matrix of zeros.

The Kalman recursive equations of the model are:

∆t = WΩtW
′
+R

Θt = FΩtW
′
+ S

Ωt+1 = FΩtF
′
+Q−Θt∆

−1
t Θ′

t

x̂t+1 = Fx̂t +Θt∆
−1
t

(
yt − e−Wx̂t

)


(A-30)

where

Q =

 hgh
′
gσ

2
g hgh

′
mρmgσmσg

hmh
′
gρmgσmσg hmh

′
mσ

2
m

 ,
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R =

 σ2
d b′hgρgdσgσd − b′hmρmdσmσd

b′hgρgdσgσd − b′hmρmdσmσd (b′hg)
2σ2

g + (b′hm)
2σ2

m − 2b′hgb
′hmρmgσmσg

 ,
S =

 hgρgdσgσd hgb
′hgσ

2
g − hgb

′hmρmgσmσg

hmρmdσmσd hmb
′hgρmgσmσg − hmb

′hmσ
2
m

 ,
using as initial condition x1 = 0.

The log-likelihood function is then given by:

ℓ = (2π)−kT/2

(
T∏
t=1

det∆t

)−1/2

exp

(
−1

2

T∑
t=1

(yt − ŷt)
′∆−1

j (yt − ŷt)

)
(A-31)

with ŷt = e+Wx̂t, where T is the sample size, and k is the size of the system.

Appendix E Simulation results

Although fractional integration is a phenomenon that, by definition, is manifested through

long-range dependence, the estimation techniques allow us to estimate the parameters of the

process reliably from relatively short samples.

To that end, we simulated 5000 samples of the variables using the estimates of the

PV-AR model and the PV-ARFIMA model set out in Section 3, using the truncation lag

l = 1000. For each simulated dividend growth series, we estimated the fractional integration

parameter. The graphical results for the Robinson (1995) estimator and the Shimotsu (2010)

estimator are presented in Figures A-6(a) and (b), respectively. (The results for the Geweke

and Porter-Hudak (1983) estimator look very similar and are available upon request.) The

results show that the hypothesis of no fractional integration in expected dividend growth

is rejected by both estimators at the 5% significance level (p-values equal to 8.78% and

5.52% for the Robinson and the Shimotsu estimators, respectively). Thus, the results for the

dividend growth process provide strong evidence in favor of including a fractional integration

component in the present-value model.
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Figure A-6: Histogram for the Robinson (1995) (a) and Shimotsu (2010) (b) estimates for
the return series generated by 5000 bootstrap simulations of the PV-AR model. The black
line indicates the empirical estimate and the dashed line represents the 10th percentile of
the distribution.
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In addition, we calculated the bootstrap p-value for the likelihood ratio test reported in

Table 4. In Figure A-7 we plot the histogram of the bootstrap LR test, with vertical lines

indicating the value of the LR test and the 10% bootstrap cut-off. The bootstrap p-value

amounts to 6.38%.

Taken together, the results indicate that it is unlikely that we could observe the results

for the long-memory model as reported in the paper if they were a random feature of the

short-memory data-generating process.

Figure A-7: Histogram of the likelihood ratio test generated by 10,000 bootstrap simula-
tions of the PV-AR model. The black line represents the empirical estimate and the dashed
line shows the 10th percentile of the distribution.
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