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We demonstrate the existence of Entropic Stochastic Resonance (ESR) of passive Brownian par-
ticles with finite size in a double/triple-circular confined cavity, and compare the similarities and
differences of ESR in the double-circular cavity and triple-circular cavity. When the diffusion
of Brownian particles is constrained to the double/triple-circular cavity, the presence of irregular
boundaries leads to entropic barriers. The interplay between the entropic barriers, a periodic input
signal, the gravity of particles and intrinsic thermal noise may give rise to a peak in the spectral
amplification factor and therefore to the appearance of the ESR phenomenon. It is shown that ESR
can occur in both double-circular cavity and triple-circular cavity, and by adjusting some parame-
ters of the system the response of the system can be optimized. The differences are that the spectral
amplification factor in triple-circular cavity is significantly larger than that in double-circular cav-
ity, and compared with the ESR in double-circular cavity, the ESR effect in triple-circular cavity
occurs within a wider range of external force parameters. In addition, the strength of ESR also
depends on the particle radius, and smaller particles can induce more obvious ESR, indicating that
size effect cannot be safely neglected. The ESR phenomenon usually occurs in small-scale systems
where confinement and noise play an important role. Therefore, the mechanism found could be used
to manipulate and control nanodevices and biomolecules.

I. INTRODUCTION

Stochastic resonance (SR), in the 1980s, was first pro-
posed to explain the periodic-like alternation between the
glacial and warm periods of the glacial climate [1, 2],
describing a counterintuitive phenomenon, in which, in
some nonlinear systems, noise is not always harmful for
detecting or transducing an incoming weak signal, and
that an appropriate dose of noise can amplify the weak
signals. Since then, SR has been observed in various sys-
tems in different disciplines such as physics, engineering,
and biomedicine [3–12]. It is worth noting that these are
SR phenomena that occur in pure energetic potentials.
However, in practical systems, the diffusion of particles
often occurs in confined regions, which can be modeled
by cavities of various shapes. The irregular boundary of
the confined region gives rise to an entropic contribution
to the potential, which has an important influence on
the diffusion of particles [13–16]. Previous studies have
shown that entropic rectification and current reversal oc-
cur when particles diffuse in a confined channel [17–21].
Similarly, the existence and shape of the boundary of the
restricted region would also play an important role in the
SR dynamics of the particles [22–27].

Burada et al. first studied the SR dynamics of Brown-
ian particles in a dumbbell-shaped channel [22], demon-
strating that the irregularities in the form of restricted,
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curved boundaries in the system under consideration can
lead to an entropy barrier and can induce noise-assisted
resonance behavior. They defined the SR of Brownian
particles in a confined space as Entropic Stochastic Res-
onance ( ESR ). Since then, the study of ESR in con-
fined space has attracted extensive interest and atten-
tion. These studies mainly focus on analyzing the effects
of boundary unevenness [23] and different types of noise
on ESR [24–27], ESR induced by applying different forces
in the longitudinal and transversal directions [28–31], the
double entropic stochastic resonance caused by adding a
longitudinal constant static force to the system [32], and
ESR in time-varying channels [33, 34].

However, most of the studies focus on the ESR of point-
like Brownian particles without considering the size of
the particles. In fact, the size of the particles has an
important influence on the diffusion of the particles in
the confined structure [35–38]. In addition, most of the
confined structures are double cavities, and there are few
studies on the confined mediums of more than two units,
except for the study of ESR in a confined channel with
four units [23], trapping particles by ESR under peri-
odic confinement [39], and characterizing stochastic res-
onance in a triple cavity [40]. These results have con-
firmed that the non-double cavities can affect particle
capture, transit time and ESR. Therefore, motivated by
this and the extension from point-like Brownian particles
to finite-size Brownian particles, this work investigates
the ESR in double and triple circular cavities. The noise
inside the cavities is Gaussian white noise. Based on
the assumption of diffusion equilibrium and dimension-
ality reduction method, an effective potential function
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that describes the influence of cavity boundaries is first
proposed. Secondly, Brownian dynamics simulation is
adopted to calculate the motion trajectories of Brownian
particles in these two cavities to obtain the mean sam-
ple. Next, an ESR indicator, the spectral amplification,
can be obtained by performing Fourier expansion on the
average trajectory of particles. Then, the influences of
external force parameters on ESR in the double-circular
cavity are addressed, including amplitude and frequency
of the external force, meanwhile, the ESR phenomena in
the these two types of cavities are compared. Finally,
the dependence of entropic stochastic resonance on the
radius of Brownian particles in a triple-circular cavity is
discussed.

The structure of this paper is as follows. The model
description and physical theory, including the spectral
amplification and method to calculate an ESR indicator,
is given in Sec. II. In Sec. III, major results and associ-
ated analysis are presented. In Sec. IV, a conclusion of
the results ends the paper.

II. MODEL DESCRIPTION AND PHYSICAL
THEORY

A. Model of particle diffusion

The dynamic of a Brownian particle in a confined chan-
nel subjected to a constant gravity G acting along the
transverse direction and a sinusoidal oscillating force F (t)
along the axis of the channel can be described by means
of the Langevin equation written [41], in the overdamped
limit [42], as

γr
dr⃗(t)

dt
= F (t)e⃗x −Ge⃗y +

√
γrkBT ξ⃗(t), (1)

where r⃗(t) = (x(t), y(t)) is the position of the particle
at time t, e⃗x and e⃗y represent the unit vectors along the
x and y directions, kB is the Boltzmann constant and T
refers to the absolute temperature. γr denotes the fric-
tion coefficient and satisfies the Stokes’s law γr = 6πυrp,
which depends on the shear viscosity υ of the fluid
and the particle radius rp. ξ⃗(t) = (ξx(t), ξy(t)) is the
white Gaussian noise with zero mean which satisfies the
fluctuation-dissipation relation ⟨ξi(t)ξj(s)⟩ = 2δijδ(t− s)
for i, j = x, y. The explicit form of the driving force along
the x-axis is given by F (t) = A sin(σt), where A is the
amplitude and σ is the driving frequency.

B. Brownian transport system with a
double/triple-circular cavity

In the presence of constrained boundary, the Langevin
equations Eq. (1) should be solved by imposing reflecting
(no-flow) boundary conditions at the walls of the channel.
For the two-dimensional structure sketched in Fig. 1, the

wall of the double-circular cavity is defined by the half-
width yu1(x),

yu1(x) =


√

R1
2 − (x+ l1)

2
,−Xmax

u1 ≤ x ≤ 0√
R1

2 − (x− l1)
2
, 0 < x ≤ Xmax

u1

, (2)

where R1 represents the radius of a single circular cavity,
a1 is the half-width of the bottleneck, and l1 denotes the
horizontal distance from the bottleneck to the center of
the circle, its length is l1 =

√
R1

2 − a12. In addition,
Xmax

u1 refers to the maximum position that the point-like
particles can reach along the x direction in the cavity
shown in Fig. 1 and its length is Xmax

u1 = R1 + l1. Ac-
cording to the symmetry of the double-circular cavity,
it is clear that the lower boundary function is yl1(x) =
−yu1(x). For an incompressible particle of radius rp in-
side the cavity, the available space for its center can be
described by the effective half-width we1+(x),

we1+(x) =
√

(R1 − rp)
2 − (x+ l1)

2
, −Xmax

e1 ≤ x < −Lp1

a1 −
√
rp2 − x2 , − Lp1 ≤ x ≤ Lp1√

(R1 − rp)
2 − (x− l1)

2
, Lp1 < x ≤ Xmax

e1

,

(3)
where Lp1 = l1rp/R1 and Xmax

e1 = R1 + l1 − rp. In
the double-circular cavity depicted in Fig. 1, Xmax

e1 de-
notes the maximum value that the center of a parti-
cle with radius rp can reach in x direction. The lower
effective boundary is just we1−(x) = −we1+(x), and
2w1(x) = we1+(x)−we1−(x) gives the local width of the
channel accessible for the center of a hard particle with
radius rp. The choice of this structure is intended to re-
semble the classical setup for Stochastic Resonance (SR)
in the context of energetic barriers. When the gravity
G is sufficiently large, the diffusion region of all particles
will be very close to the lower boundary of the channel,
recovering the effect of an energetic bistable potential.

For the two-dimensional structure sketched in Fig. 2,
the wall of the triple-circular cavity is defined by the half-
width yu2(x),

yu2(x) =


√

R2
2 − (x+ 2l2)

2
,−Xmax

u2 ≤ x ≤ −l2√
R2

2 − x2 ,−l2 < x ≤ l2√
R2

2 − (x− 2l2)
2
, l2 < x ≤ Xmax

u2

,

(4)
where R2, a2, l2 and Xmax

u2 have the same meanings
as those in the double-circular cavity. In the triple-
circular cavity depicted in Fig. 2, R2 represents the ra-
dius of a single circular cavity, a2 is the half-width of
the bottleneck, and l2 denotes the horizontal distance
from the bottleneck to the center of the circle, its length
is l2 =

√
R2

2 − a22. Xmax
u2 also represents the maxi-

mum value that the point-like particles can reach in the
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FIG. 1. Sketch of a double-circular cavity, the forces F (t) and
G are applied on the overdamped particles (the orange and
green balls in the cavity). The orange dotted line represents
the effective boundary that can be reached by the particle
center with limited size. The radius of the circular cavity is
R1, and the width of the hole between the two circular cavities
is 2a1.

x direction, and there is Xmax
u2 = R2 + 2l2. In addition,

the lower boundary function of triple-circular cavity is
yl2(x) = −yu2(x). For an incompressible particle of ra-
dius rp inside the cavity, the available space for its center
can be described by the effective half-width we2+(x),

we2+(x) =

√
(R2 − rp)

2 − (x+ 2l2)
2
, −Xmax

e2 ≤ x < −(Lp2 + l2)

a2 −
√
rp2 − (x+ l2)

2
,−(Lp2 + l2) ≤ x ≤ −(l2 − Lp2)√

(R− rp)
2 − x2,−(l2 − Lp2) < x ≤ l2 − Lp2

a2 −
√
rp2 − (x− l2)

2
, l2 − Lp2 ≤ x ≤ l2 + Lp2√

(R2 − rp)
2 − (x− 2l2)

2
, l2 + Lp2 < x ≤ Xmax

e2

,

(5)
where Lp2 = l2rp/R2 and Xmax

e2 = R2 +2l2 − rp. Similar
to the double-circular cavity, the lower effective boundary
of the triple-circular cavity drawn in Fig. 2 is we2−(x) =
−we2+(x).

For the sake of a dimensionless description, we hence-
forth rescale all lengths in units of LR = R, i.e., x̂ =
x/LR, ŷ = y/LR implying â = a/LR, ŷu1 = yu1/LR =
−ŷl1, ŷu2 = yu2/LR = −ŷl2, ŵe1+ = ωe1+/LR = −ŵe1−
and ŵe2+ = ωe2+/LR = −ŵe2−. We measure time
in units of τ = γmaxL

2
R

/
kBTR, where TR, as a refer-

ence temperature, is an arbitrary fixed temperature, i.e.,
t̂ = t/τ and σ̂ = στ . There is γmax = 6πυa in the expres-
sion of τ , where a is the maximum radius of particles
that can pass through the pores in the confined space. So
the friction coefficient of Brownian particles with radius
rp is given by γr = rγmax , where r = rp/a is the ratio
of the particle radius with radius rp to the bottleneck
half-width a, and there is 0 < r ≤ 1. We scale forces
by FR = γrLR/τ , i.e., the longitudinally acting, sinu-
soidal force reads F̂ (t̂) = F (t)/FR and the orthogonal
force Ĝ = G/FR. In the following we shall omit the tilde

FIG. 2. Sketch of a triple-circular cavity, the forces F (t) and
G are applied on the overdamped particles (the orange and
green balls in the cavity). The orange dotted line represents
the effective boundary that can be reached by the particle
center with limited size. The radius of the circular cavity is
R2, and the width of the hole between two adjacent circular
cavities is 2a2.

symbols for better legibility. In dimensionless form the
Langevin-equation Eq. (1) reads:

dr⃗(t)

dt
= F (t)e⃗x −Ge⃗y +

√
Dξ⃗(t), (6)

where we define D = T/TRr.
There are two assumptions that the particle density

is dilute and the fluid viscosity is strong, which guaran-
tee that all relevant hydrodynamic caused by particle-
particle interactions and wall-particle interactions are
small and can be safely neglected.

C. Reduction of dimensionality

Since there are reflection boundary conditions at the
boundary of the diffusion channel, it is very difficult
to derive the x coordinate x(t) and y coordinate y(t)
of Brownian particles analytically. Therefore, assuming
that the diffusion of particles in the y-direction reaches
an equilibrium state, we reduce the dimension of the dif-
fusion problem based on this assumption [43, 44].

At first, we consider the case in the absence of the
periodic forcing, i.e., F (t) = 0. Then, the 2D diffusion
dynamics is described by the following 2D Smoluchowski
equation [45, 46]:

∂

∂t
P (x, y, t) = D

∂

∂x
e−U(x,y)/D ∂

∂x
eU(x,y)/DP (x, y, t)

+D
∂

∂y
e−U(x,y)/D ∂

∂y
eU(x,y)/DP (x, y, t),

(7)
with reflecting boundary conditions at the channel walls
and where the potential function is given by U(x, y) =
Gy. Since we are mainly concerned with the dynamic
behavior of Brownian particles in the x-direction in this
diffusion system, we introduce the marginal probability
density function P (x, t) which is obtained by integration
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over the transverse coordinate:

P (x, t) =

∫ wei+(x)

−wei+(x)

P (x, y, t)dy, (8)

where wei+(x)(i = 1, 2) represents the effective upper
boundary of the double-circular cavity (i = 1) or triple-
circular cavity (i = 2).

On integrating Eq. (7) over the transverse direction,
we get

∂

∂t
P (x, t) =

D
∂

∂x

∫ +wei+(x)

−wei+(x)

[
e−U(x,y)/D ∂

∂x
eU(x,y)/DP (x, y, t)

]
dy.

(9)
Assuming local equilibrium in the y-direction, we de-

fine the x-dependent effective energy function Ai(x) (i =
1, 2) (omitting irrelevant constants) reading

e−Ai(x)/D =

∫ +wei+(x)

−wei+(x)

e−U(x,y)/Ddy. (10)

Consequently, from Eq. (10), one can get the normalized
probability distribution, i.e., ρ(y|x), reading

ρ(y|x) = e−U(x,y)/DeAi(x)/D, (11)

where ρ(y|x) represents the conditional local equilibrium
probability density of y at a given x. Therefore, the 2D
probability distribution P (x, y, t) can be approximately
expressed as

P (x, y, t) ∼= P (x, t)ρ(y|x). (12)

By substituting Eq. (12) into Eq. (9), the one-
dimensional Fokker-Planck equation describing the evo-
lution of particle probability density can be obtained, and
the specific expression is

∂

∂t
P (x, t) ∼= D

∂

∂x
e−Ai(x)/D

∂

∂x
eAi(x)/DP (x, t). (13)

When F (t) ≡ 0 and the particle is subjected to gravity
in the negative direction along the y-axis, the potential
function U(x, y) = Gy. By substituting U(x, y) = Gy
into Eq. (10), we get

e−Ai(x)/D =

∫ +wei+(x)

−wei+(x)

e−Gy/Ddy

=
2D

G

eGwei+(x)/D − e−Gwei+(x)/D

2

=
2D

G
sinh

(
Gwei+(x)

D

)
.

(14)

Taking logarithms on both sides of Eq. (14), we get the
expression of potential function Ai(x) as

Ai(x) = −D ln

[
2D

G
sinh

(
Gwei+(x)

D

)]
. (15)

Then, Eq. (13) can be rewritten as

∂P (x, t)

∂t
=

∂

∂x

[
D
∂P (x, t)

∂x
+A′

i(x)P (x, t)

]
, (16)

where Ai(x) is given by Eq. (15) and the prime refers
to the derivative with respect to x. In general, after the
coarse-graining the diffusion coefficient will depend on
the coordinate x, but since in our case

⟨
w′

ei+(x)
2
⟩
≪ 1,

the correction can be safely neglected [47, 48]. For a
2D structure shown in Fig. 1, the free energy A1(x) is
expressed as a double-well potential, cf. Fig. 3. Simi-
larly, for the triple-circular cavities depicted in Fig. 2,
A2(x) forms a triple-well potential, cf. Fig. 4. Therefore,
Eq. (16) describes the motion of a Brownian particle in
a bistable/tristable potential of entropic nature. It is
important to highlight that the potential function Ai(x)
does not only depend on the energetic contribution of the
gravity G, but also on the temperature D and the geom-
etry of the double/triple-circular cavity in a nontrivial
way. When the small hole connecting two adjacent circu-
lar cavities disappears, i.e., ai = 0(i = 1, 2), the particles
cannot diffuse into another circular cavity, and stochastic
resonance will not occur. It should be emphasized that
the bistable/tristable potential function does not exist in
the two-dimensional Langevin equations, but arises due
to the entropic restrictions associated to the confinement
of channel boundary.

FIG. 3. Schematic diagram of effective potential function
A1(x) and effective potential functions A11(x) and A12(x)
under two limit cases when three different noise intensities D
are taken in the double-circular cavity.

For potential function Ai(x), there are two limit-
ing cases, which can be obtained by changing the
value of the ratio between the energy associated to the
transversal force G and the thermal energy D . When
Gwei+(x)/D ≫ 1 , it can be obtained from Eq. (15)
that the potential function Ai(x) turns into Ai(x) ≈
−Gwei+(x) = Ai1(x) (neglecting irrelevant constants),
which means that the boundary of the confined space
wei+(x) acts as a double/triple-well potential under
the action of gravity G, cf. Fig. 3 and Fig. 4. At
the same time, as shown in Fig. 3(a) and Fig. 4(a),
when the thermal energy D is very small (D = 0.005),
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FIG. 4. Schematic diagram of effective potential function
A2(x) and effective potential functions A21(x) and A22(x)
under two limit cases when three different noise intensities D
are taken in the triple-circular cavity.

Gwei+(x)/D ≫ 1 is satisfied, and the effective poten-
tial function Ai(x) (solid blue line) is completely con-
sistent with Ai1(x) (dotted orange line). In this energy-
dominated case, the 1D Fokker-Planck equation Eq. (16)
becomes
∂P (x, t)

∂t
=

∂

∂x

[
D
∂P (x, t)

∂x
−Gw′

ei+(x)P (x, t)

]
, (17)

which describes the diffusion of Brownian particles in a
pure energy potential. When Gwei+(x)/D ≪ 1, the po-
tential function Ai(x) can be approximately rewritten
as Ai(x) ≈ −D ln [2wei+(x)] = Ai2(x), which implies
that the effective potential function Ai(x) is dominated
by the purely entropic contribution. In Fig. 3(c) and
Fig. 4(c), the thermal energy D is set to D = 2. When
Gwei+(x)/D ≪ 1 is established, it can be seen that the
potential functions Ai(x) (solid blue line) and Ai2(x)
(yellow dash dot line) are consistent. In this entropy-
dominated case, Eq. (16) turns into

∂P (x, t)

∂t
=

∂

∂x

[
D
∂P (x, t)

∂x
−D

w′
ei+(x)

wei+(x)
P (x, t)

]
, (18)

which is a Fick-Jacobs equation [43, 49].

D. Spectratiol amplifican

In the case of Brownian particles diffusing in a double-
circular cavity, it is instructive to analyze the occurrence
of stochastic resonance in the context of the two-state
approximation. For a potential A(x) with barrier height
∆A the escape rate of an overdamped Brownian particle
from one cavity to the other in the presence of thermal
noise, and in the absence of a force, is given by the over-
damped Kramers rate [50–52], reading

rK(D) =

√
A′′(xmin) |A′′(xmax)|

2π
exp

(
−∆A

D

)
, (19)

where A′′(x) is the second derivative of the effective po-
tential function, and with xmax and xmin indicating the

position of the maximum and minimum of the poten-
tial, respectively. The expression of barrier height is
∆A = A(xmax) − A(xmin). For the potential given by
Eq. (15) and the shape defined by Eq. (3), the corre-
sponding Kramers rate for transitions from one basin to
the other reads, in dimensionless units,

rK(D) =

G

√
sinh

[
2G(R1 − rp)

D

]
sinh

(
2Ga1
D

)
4π

√
rp(R1 − rp)

3
sinh2

[
G(R1 − rp)

D

] . (20)

The occurrence of stochastic resonance can be detected
in the spectral amplification η. It is defined by the ratio
of the power stored in the response of the system at fre-
quency σ and the power of the driving signal [3, 53, 54],
and which reads

η =
1

D2

4r2K(D)

4r2K(D) + σ2
. (21)

In the presence of an oscillating force F (t) in the x direc-
tion, there is an additional contribution to the effective
potential function in Eq. (15). We define the new effec-
tive potential function as V (x) and its expression is

V (x) = A(x)− F (t)x

= −D ln

[
2D

G
sinh

(
Gwei+(x)

D

)]
− F (t)x.

(22)

Thus, the 1D kinetic equation turns into

∂P (x, t)

∂t
=

∂

∂x

[
D
∂P (x, t)

∂x
+ [A′(x)− F (t)]P (x, t)

]
.

(23)
In order to study the appearance of stochastic resonance,
one can analyze the response of the system to the applied
sinusoidal signal F (t) in terms of the spectral amplifica-
tion η. By spatial discretization, using a Chebyshev col-
location method, and employing the method of lines, the
1D kinetic equation Eq. (23) can be reduced to a system
of ordinary differential equations. Then, Eq. (23) can be
solved using a backward differentiation formula method.
With this approach, the probability density distribution
varying with time P (x, t) can be obtained. Next, the
time-dependent average position of particles ⟨x(t)⟩ can
be solved, and its expression is defined as

⟨x(t)⟩ =
∫

xP (x, t) dx . (24)

In the long-time limit, this mean position of particles
⟨x(t)⟩ approaches the periodicity of external driving
force [53] with angular frequency σ. After a Fourier ex-
pansion of ⟨x(t)⟩, one can get the amplitude Mσ of the
first harmonic of the output signal. Hence, the spectral
amplification η [54] for the fundamental oscillation reads:

η =

[
Mσ

A

]2
. (25)
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It can be seen from Eq. (25) that the key to solv-
ing the spectral amplification η by numerical simulation
method is to obtain the output signal ⟨x(t)⟩, i.e., the
time-dependent average position of particles. Since the
diffusion of Brownian particles in the confined cavity is
described by Eq. (1), and there are reflection boundary
conditions at the wall, the Brownian dynamics simula-
tion method can be used to simulate the diffusion process
of Brownian particles. By simulating a large number of
sample paths for a long time, many time-dependent po-
sition of particles x(t) can be obtained. After averaging
them, one can get the mean value ⟨x(t)⟩, and then the
spectral amplification η can be calculated according to
the above method.

III. RESULTS AND ANALYSIS

At first, we fix the basic parameters of the restricted
channels. The radius of double/triple-circular cavity is
Ri = 1(i = 1, 2), the half width of the hole connecting
adjacent units is ai = 0.3Ri, and the radius of particles
in the channel is taken as rpi

= 0.3ai.

A. ESR in double-circular cavity

Figure 5 depicts the change of the spectral amplifica-
tion η with the noise intensity D when the driving signal
frequencies are σ = 0.01, 0.001, and 0.0001. The results
shown by the three solid lines in Fig. 5 are obtained from
Eq. (21), which is the analytical expression for calculat-
ing the spectral amplification η derived by the two-state
approximation. The results indicated by three different
types of symbols in Fig. 5 are obtained by numerically
integrating the one-dimensional probability density equa-
tion Eq. (23) to obtain the output signal ⟨x(t)⟩, which is
then calculated by Eq. (25) after Fourier transformation.
The amplitude of periodic signal set here is A = 10−3. It
can be seen from Fig. 5 that the spectral amplification η
presents a non-monotonic change trend with the increase
of noise intensity D. There is an optimal noise intensity
D to maximize the spectral amplification η, indicating
that entropic stochastic resonance occurs in the system
at this time. When the frequency of the periodic signal is
σ = 0.0001, the results obtained by the two methods are
in good agreement. When the frequency of the periodic
signal is large, that is, σ = 0.001 and σ = 0.01, the re-
sults obtained by the two methods have the same trend,
but the specific results are in poor agreement, which in-
dicates that the two-state approximation has a good de-
scription for the diffusion system with small amplitude
and frequency of the driving signal.

When there is a large amplitude and frequency of the
driving signal in the diffusion system, the output signal
⟨x(t)⟩ can be solved by numerical integration of Eq. (23)
and Brownian dynamics simulation respectively, and the

FIG. 5. Schematic diagram of the change of spectral amplifi-
cation η with noise intensity D when taking different periodic
driving signal frequencies σ (σ = 0.01, 0.001, 0.0001), for the
input signal amplitude A = 10−4, the transversal force G = 1,
and for the radius of double-circular cavity R1 = 1. For small
driving frequencies and amplitudes, the spectral amplification
η is calculated by two-state approximation and Brownian dy-
namics simulation. The corresponding results of solid lines
with different colors are obtained by two-state approxima-
tion, i.e., Eqs. (19)-(21), while the corresponding results of
symbols with different shapes are calculated by Brownian dy-
namics simulation.

spectral amplification η can be calculated according to
Eq. (25) after Fourier transformation of ⟨x(t)⟩.

Figure 6(a) describes the curve of spectral amplifica-
tion η versus noise intensity D when different amplitude
A of periodic driving signal is taken under the condi-
tion of gravity G = 5.5 and periodic driving signal fre-
quency σ = 0.1. The solid line in Fig. 6(a) corresponds
to the results of numerical integration through the one-
dimensional probability density equation Eq. (23), and
different symbols correspond to the results of numeri-
cal simulation using the Brownian dynamics simulation
method. The two results are in good agreement. It can
be seen from the change trend of the curve that the spec-
tral amplification η shows a non-monotonic change be-
havior with the noise intensity D. When three differ-
ent amplitude parameters A are taken, the spectral am-
plification η has a peak value, indicating that entropic
stochastic resonance phenomenon occurs at this time.
The peak value of the spectral amplification η and the
corresponding noise intensity D decrease with the in-
crease of the amplitude A of the periodic driving sig-
nal, indicating that the larger the amplitude A is, the
smaller the noise intensity required for entropic stochas-
tic resonance to occur, and the less obvious the entropic
stochastic resonance phenomenon is. It can also be found
from Fig. 6(a) that under the condition of weak noise, the
larger the amplitude A of the periodic driving signal is,
the larger the spectral amplification η is. When the noise
intensity increases to a critical value, this magnitude re-
lationship will reverse.

Figure 6(b) shows the change of spectral amplification
η with noise intensity D when taking different frequency
σ of periodic driving signal under the condition of gravity
G = 5.5 and amplitude A = 1.0 of periodic driving signal.
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FIG. 6. (a) The dependence of the spectral amplifica-
tion η on noise intensity D when different amplitude A
(A = 1.0, 2.0, 3.0) is taken, for the transversal force G = 5.5
and the periodic driving signal frequency σ = 0.1. (b) The
dependence of spectral amplification η on noise level D at
three different input signal frequencies σ (σ = 0.1, 0.3, 0.5),
at a constant input amplitude A = 1.0 and transversal force
G = 5.5. Different from the driving frequencies σ and am-
plitudes A in Fig. 5, for larger σ and A, the spectral ampli-
fication η is calculated by the one-dimensional modeling and
Brownian dynamics simulation. The solid line corresponds to
the result of numerical integration through one-dimensional
probability density equation, Eq. (23), and different types of
symbols are marked as the results obtained by Brownian dy-
namics simulation method.

It can be seen from Fig. 6(b) that under the three sets
of signal frequency parameters taken, the spectral ampli-
fication η shows a non-monotonic change trend. When
the noise intensity D is appropriate, the spectral amplifi-
cation η reaches the peak, which indicates that entropic
stochastic resonance occurs in the diffusion system at this
time. When gravity G and external signal amplitude A
are fixed, with the increase of periodic driving signal fre-
quency σ, the peak value of spectral amplification η be-
comes smaller and smaller, and entropic stochastic reso-
nance phenomenon becomes less and less obvious, which
indicates that small signal frequency σ is more likely to
induce entropic stochastic resonance in the system.

B. ESR in triple-circular cavity, and comparison of
ESR in triple and double circular cavities

In this part, a triple-circular cavity with the same scale
as the double-circular cavity for a given set of Ri and ai
is constructed, as shown in Fig. 2. The spectral amplifi-
cation η in both cavities has been shown in Fig. 7, which
is helpful to compare the similarities and differences of
their ESR.

Figure 7 depicts relations between the spectral ampli-
fication η and noise intensity D for different values of A,
σ and G in the triple and double circular cavities. First
of all, according to the value of the spectral amplification
η in Fig. 7, it can be seen that η for the triple-circular
cavity is much larger than that for the double-circular
cavity. This phenomenon can be explained by the jump

of Brownian particles in the two cavities. For the same
moderate noise intensity D (such as D = 0.8), Brownian
particles keep a regular jump between different units in
both cavities. In the double-circular cavity, however, one
Brownian particle jumps to the widest position (near ±1,
as shown in Fig. 1) of a unit and diffuses in a small range.
After a period of time, it jumps back and moves around.
Finally, after ensemble averaging the trajectories of these
Brownian particles, it appears as a periodic function with
an amplitude around 1. Then, for the triple-circular cav-
ity, the Brownian particles also maintain regular jump
between different units. Most Brownian particles cross
the intermediate unit, and jump directly from one side
unit to the other side unit. After that, the particles move
in a small range near the widest position (near ±2, as
shown in Fig. 2) of the unit they located, and then jump
back after a while. Therefore, after ensemble averaging,
the average trajectory of these Brownian particles is a
periodic function with an amplitude smaller than 2 but
much larger than 1, which leads to a larger η in the triple-
circular cavity. Secondly, in Fig. 7(a)-(b), the η−D curve
for the two circular cavities has a peak, which indicates
the occurrence of ESR. It is obvious that the peak value
of η in the triple-circular cavity is larger, which indicates
that a triple-circular structure is more conducive to in-
ducing stronger ESR for circular cavities with the same
radius Ri and half width of the hole connecting adjacent
units ai. Furthermore, the noise intensity D correspond-
ing to the occurrence of ESR in the triple-circular cavity
and double-circular cavity is different. Based on Fig. 7(a)
and Fig. 7(b), in the double-circular cavity, ESR occurs
when D is taken as 0.9 and 1.2, respectively. For the
triple-circular cavity, ESR occurs at a larger D (near 0.95
and 1.25, respectively). In Fig. 7(c), it can be seen that
there is a peak value for η in the triple-circular cavity,
which means the occurrence of ESR, but η in the double-
circular cavity shows a monotonically increasing trend,
and there is no peak, i.e., there is no ESR. Fig. 7(c) de-
scribes a phenomenon that for some of the same A, σ and
G, ESR does not occur simultaneously in both triple and
double circular cavities. Fig. 7(c) also illustrates that the
range of system parameters that can induce ESR in the
triple-circular cavity considered here is wider than that
in the double-circular cavity. According to Fig. 7(d), it
can be seen that there is no peak for η in both triple and
double circular cavities, indicating that for some certain
parameter conditions, ESR cannot occur in both circular
cavities.

Although the intensity of ESR in the triple and double
circular cavities is different, there are still some common
rules regarding ESR in these two types of cavities. In
Fig. 7(a)-(b), when σ changes from 0.1 to 0.3, both η and
its peak in the two circular cavities decrease, indicating
that an increase in σ will lead to a decrease in η and a
weaker ESR. Similarly, in Fig. 7(b)-(c), when G changes
from 5.5 to 7.0, η and its maximum in these two circular
cavities decrease, i.e., an increase of G leads to a smaller
η and weaker ESR. The difference is that even though the
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FIG. 7. The dependence of spectral amplification η on noise
level D in the triple-circular cavity (TC) and the double-
circular cavity (DC) at different external force parameters
( including transvesal force G, input signal amplitude A and
frequency σ). For the double and triple circular cavity, the
radius of the cavity Ri (i = 1, 2) and the half width of the hole
connecting adjacent circular cavities ai are the same, which
are Ri = 1 and ai = 0.3Ri, respectively. The radius of the
Brownian particles diffused in the two cavities is rpi = 0.3ai.

increase in G leads to a weakening of ESR in the triple-
circular cavity, ESR still exists, while ESR disappears
in the double-circular cavity, indicating that ESR in the
triple-circular cavity can appear within a wider range
of parameters related to G. In Fig. 7(b) and (d), the
influence of A on ESR in these two circular cavities is
presented. The simulation results show an increase of A
can cause a decrease of η and the disappearance of ESR
in these two types of cavities.

Overall, for the triple and double circular cavities given
in Fig. 2 and Fig. 1, the results indicate that only in-
creasing the number of circular cavity units can enable
the ESR effect to occur within a wider range of external
force parameters. In addition, an increase in the number
of cavity units can also lead to the increase of the spectral
amplification η and its peak, i.e., the more pronounced
ESR effect can be induced.

C. ESR of Brownian particles with different radii
in triple-circular cavity

The Brownian particles that diffuse in a confined space
are of finite size, and the factor of particle size cannot be
ignored in many cases. Particles with different sizes are
subject to different constraints from the channel bound-
ary, and the entropic barrier is also different, which leads
that particles of different sizes may have different diffu-
sion velocities, diffusion coefficients, etc., which directly
or indirectly affects the entropic stochastic resonance of
particles. In this part, we focus on particle size by fixing
other parameters, and study the entropic stochastic res-
onance phenomenon of Brownian particles with different
sizes in a three-circular cavity, as shown in Fig. 2. The
diffusion of particles in the cavity is governed by Eq. (6).
The values of transverse force G, input signal amplitude

A, and frequency σ of the input signal are consistent
with those in Fig. 7(a), which are G = 5.5, A = 1.0, and
σ = 0.1.

Figure 8 describes in detail the variation of the spectral
amplification factor η with the noise intensity D for dif-
ferent sizes of Brownian particles. It can be understood
from Fig. 8 that the spectral amplification factor η shows
a non-monotonic trend with the noise intensity D, and
there is a peak demonstrating that ESR occurs in the
system. The smaller the particle radius is, the larger the
peak value of the spectral amplification factor η is, which
indicates that the ESR is more pronounced. As the size of
the Brownian particle increases, the peak of the spectral
amplification factor η begins to decrease, and the ESR in
the system becomes weaker and weaker. In addition, it
can be seen from Fig. 8 that the smaller the radius of the
Brownian particle, the smaller the noise D required for
ESR. As the particle size increases, the noise intensity D
corresponding to the ESR also increases. When the par-
ticle radius rp3 > a3, this means that the radius of the
particle rp3 exceeds the half width of the channel pore
a3, the particle is limited to a certain cavity, unable to
diffuse from one cavity in the channel to another cavity,
and the ESR phenomenon does not occur.

FIG. 8. The dependence of spectral amplification η of Brow-
nian particles of different sizes on noise level D in the triple-
circular cavity (TC) with the same external force parameters
(including transvesal force G, input signal amplitude A and
frequency σ). The radius of the Brownian particles diffused
in the cavity is rp3 = 0.1a3, 0.3a3, 0.5a3, 0.7a3, 0.9a3.

In summary, the ESR of Brownian particles of different
sizes has been studied in a triple-circular cavity. It has
been shown that the smaller the radius of a particle, the
more noticeable ESR is, and the lower the noise intensity
D required for ESR to occur. Therefore, the size effect
is an important feature that cannot be neglected in the
study of such problems.

IV. CONCLUSION

We have studied the phenomenon of Entropic stochas-
tic resonance in double and triple circular cavities.
In double-circular cavity, the two-state approximation
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method has been shown to be suitable for calculating
the spectral amplification for small input signal ampli-
tudes and frequencies. By calculating the spectral am-
plification η numerically, influences of the external force
paremeters on ESR are explored. The spectral amplifi-
cation shows a non-monotonic trend with the noise level.
When the noise intensity is appropriate, the spectral am-
plification reaches the peak, which means that ESR oc-
curs.

Meanwhile, the influence of triple-circular cavity struc-
ture on ESR is studied, and new phenomena different
from ESR in double-circular cavity with same cavity ra-
dius and same pore width as the triple-circular cavity
are presented. Interestingly, the triple-circular structure
of confinements can induce a larger maximum in the η
versus D curve, which indicates that there is more obvi-
ous ESR in triple-circular cavity. In addition, ESR does
not occur simultaneously in double-circular cavity and
triple-circular cavity. When some external force param-
eters are taken, ESR only occurs in triple-circular cavity
but not in double-circular cavity. The triple-circular cav-
ity can induce a wider parameter region that can induce
the maximum and ESR, but does not affect the trend of
the spectral amplification induced by external forces.

Finally, by simulating the diffusion of five different
sizes of Brownian particles in the triple-circular cavity,
the curves of spectral amplification factor with noise in-
tensity are obtained. It can be seen that the particle
radius size is also an important factor affecting the ESR
phenomenon. We learn that the smaller the particle size,
the higher the peak value of the spectral amplification
factor, corresponding to a more remarkable ESR phe-
nomenon. In addition, for small-sized particles, the noise
intensity required for ESR is smaller. Consequently, in
many micro/nano-scale systems, the size effect of parti-
cles is an important attribute affecting the response of
the system, which cannot be safely omitted.

Our results show the dependence of ESR and the noise
intensity that induces ESR on the external force param-
eters and the structure of confinements, which provides
the possibility for a design of stylized channels wherein
response and transport become efficiently optimized.
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APPENDIX: BROWNIAN DYNAMICS
SIMULATION

When the particle diffuses in a confined space, the
space where the particle is located has a boundary limit.
When the particle collides with the obstacle, the size and

direction of the particle diffusion velocity will change.
The boundary in Fig. 1 and Fig. 2 is the reflection bound-
ary. The particle and the obstacle collide completely elas-
tically. After the rebound, the particle has without en-
ergy loss, the diffusion velocity remains unchanged, and
the diffusion direction is similar to the specular reflection,
as shown in Fig. A1. Because the particle is considered
to diffuse in low Reynolds number fluid environment, the
interaction between the particles is ignored here.

FIG. A1. Realization of reflection boundary conditions. (a)
Check whether the particles move outside the channel. (b)
Calculate the collision point, and the tangent vector and nor-
mal vector at the collision point when the particles diffuse
outside the channel. (c) Calculate the new position coordi-
nates of the particles after collision with the wall according
to the reflection boundary condition.

Let r⃗k = (xk, yk) denote the position of the particle at
time (k − 1)h and h refers the time step. The reflection
boundary condition, i.e., updating the particle position
from (a) to (b) at each time step, is implemented accord-
ing to the following algorithm:

1) set the initial position of the particle r⃗1 = (x1, y1);
2) update the position r⃗k+1 = (xk+1, yk+1) of the par-

ticle at time kh according to Eq. (6), and determine
whether the position of the particle is in the confined
media. If r⃗k+1 = (xk+1, yk+1) is located in the restricted
space, the position r⃗k+2 = (xk+2, yk+2) of the particle
is continuously updated according to Eq. (6), otherwise
steps 3) - 6) are performed;

3) calculate the intersection point P⃗ = (xp, yp) be-
tween the boundary and the line from r⃗k to r⃗k+1, and
r⃗k = (xk, yk) represents the position of the particle at
time (k − 1)h;

4) calculate the tangent line l at the intersection point
P⃗ = (xp, yp), and calculate the tangent unit vector t⃗ and
the normal unit vector n⃗ (outgoing from the wall), as
shown in Fig. A1(b);

5) calculate the position point r⃗′k+1 = (x′
k+1, y

′
k+1)

after the collision according to the reflection bound-
ary condition, and the calculation formula is r⃗′k+1 =

r⃗k+1 − 2
[
(r⃗k+1 − P⃗ ) · n⃗

]
n⃗ ;

6) assign the coordinates of the reflection point r⃗′k+1 =
(x′

k+1, y
′
k+1) to r⃗k+1 = (xk+1, yk+1), and determine the
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positional relationship between the new r⃗k+1 and the
channel. If the new r⃗k+1 is in the restricted space, re-
turn step 2). Otherwise, assign the coordinates of P⃗ to
r⃗k, repeat steps 3) - 6) until the reflection point inside
the confined space is calculated, and then return step 2)
to continue to update the position of the particle.

Brownian dynamics simulation requires that the time
step h should be small enough. If the time step h is too

large, it will lead to numerical instability of particles at
some sharp boundaries in the process of numerical simu-
lation, and multiple reflections occur at the sharp bound-
aries. In addition, the trajectory of particles may break
through the boundary of confined space unnaturally. In
order to make the simulation results of Brownian dy-
namics more accurate, the selected time step h is less
than 10−4, and the number of simulated sample orbits is
greater than 103.
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