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Abstract: Tidal energy is a rapidly developing area of the marine renewable energy sector that
requires converters to be placed within areas of fast current speeds to be commercially viable. Tidal
environments are also utilised by marine fauna (marine mammals, seabirds and fish) for foraging
purposes, with usage patterns observed at fine spatiotemporal scales (seconds and metres). An
overlap between tidal developments and fauna creates uncertainty regarding the environmental
impact of converters. Due to the limited number of tidal energy converters in operation, there is
inadequate knowledge of marine megafaunal usage of tidal stream environments, especially the
collection of fine-scale empirical evidence required to inform on and predict potential environmental
effects. This review details the suitability of using multirotor unmanned aerial vehicles within
tidal stream environments as a tool for capturing fine-scale biophysical interactions. This includes
presenting the advantages and disadvantages of use, highlighting complementary image processing
and automation techniques, and showcasing the limited current examples of usage within tidal
stream environments. These considerations help to demonstrate the appropriateness of unmanned
aerial vehicles, alongside applicable image processing, for use as a survey tool to further quantify the
potential environmental impacts of marine renewable energy developments.

Keywords: marine renewable energy; tidal energy; turbulence; drones; marine top predators; foraging
area

1. Introduction

In 2019, the UK legislated to reach net zero carbon emissions by 2050, with all elec-
tricity to come from low-carbon sources by 2035 [1]. To achieve these targets, there has
been significant investment and development in marine renewable energy (MRE) tech-
nologies [2]. Tidal energy is a growing area of the MRE sector that, in its most general
form, uses subsurface turbines to generate electricity from tidally driven currents within
high flow areas (called tidal stream environments from hereon) where current speeds often
exceed 2 m/s [3]. Horizontal-axis turbines are the most common design, accounting for
over 70% of current global research and development efforts, but more unique adaptations,
such as tidal kites, are also being trialled [4,5].

The estimated energy potential from tidal stream energy could exceed 120 GW, as
observed with countries including Canada, China, Argentina, France, Russia, and South
Korea developing technologies and the UK having the greatest capacity of 10 GW [6]. Since
the mid-1980s, there has been an interest in using the UK’s strong tidal energy potential [7].
It is currently estimated that a practical resource of 34 TWh/yr, or approximately 11% of
the UK’s annual electricity demand, is available [8]. This has led to major investments and
development to push the UK to the forefront of the global tidal energy field, with 18 MW of
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capacity currently installed [8]. As of writing, there are 31 tidal stream lease sites in the UK,
with the largest fully consented example being the MeyGen project within the Pentland
Firth, Scotland [9,10].

While the tidal energy sector has witnessed rapid development and practical imple-
mentation in recent years, there are several existing constraints (engineering, environmental,
economic and social) that limit commercially viable upscaling [5]. Environmental concerns
are of particular importance, as in order to give consent, regulators require satisfactory
data collection of baseline conditions, evidence-based findings detailing minimal impact
on sensitive receptors and evidence of mitigation efforts to offset unavoidable impacts [11].
Within an emerging industry in which environmental impact assessments (EIAs) and post-
consent monitoring protocols are still in development, compared to other sectors such as oil
and gas, there is still a significant lack of data to understand the environmental implications
of new developments [11]. This is necessary information to identify key receptors (e.g.,
fish, crustaceans, invertebrates and algae), accurately inform decision makers and allow
the continued sustainable development of tidal energy converters [12].

Due to their status in conservation legislation in the UK, the potential to interact with
tidal energy converters (TECs) and the public’s heightened perception of them, marine
top predators (seabirds, marine mammals and sharks) are of particular importance with
regard to environmental monitoring [11]. Coastal shelf seas support many top predator
species in the northern hemisphere due to high productivity, maintaining spatiotemporally
predictable concentrations of prey (fish) [13]. Within the European Union, protection under
law is afforded to marine mammals and seabirds through Directive 2009/147/EC, which
states that species “must be afforded protection within Special Protection Areas (SPAs)” [14].
In the UK, this protection is now afforded through the Conservation of Habitats and Species
(Amendment) (EU Exit) Regulations 2019 [15]. However, many SPAs are in proximity to
marine renewable developments, creating a potential conflict between energy extraction
and species conservation [16]. It is, therefore, crucial to understand top predator usage
patterns to inform on the level of overlap, understand variation at a species level and
determine sensitivity to anthropogenic developments [17].

Assessment of current evidence has highlighted a lack of understanding regarding top
predator usage patterns of tidal stream environments, particularly at fine spatiotemporal
scales (<1 m and <1 min), and a deficit of appropriate methods and instruments to capture
in situ measurements [18]. Fine-resolution information is required to accurately predict
and inform the full extent of TEC impacts (e.g., collision risk and habitat displacement)
with an increased degree of statistical power [12].

Fine-scale characterisation of turbulent features and top-predator associations with
them can provide novel insight into the physical cues underlying habitat usage [19–21].
For the example of seabirds, this level of detail would allow for increasingly accurate
predictions to be made with regard to seabird sensitivity towards habitat displacement
and the likelihood of direct collisions with tidal converters [22]. However, the resolution
required to capture habitat characteristics and seabird associations at fine spatiotemporal
scales can be challenging to achieve with traditional survey methods [23,24]. Novel method-
ology will, therefore, have to be developed that can capture and quantify fine-scale habitat
characteristics and resultant biophysical interactions. Without this, empirical evidence
crucial to determining animal sensitivity towards tidal energy developments cannot be
collated. This paper examines the use of unmanned aerial vehicles (UAVs) and concurrent
image processing techniques as methodologies to collect relevant empirical data. It will
describe the advantages and limitations of multirotor UAVs, briefly detail complementary
image processing and automated techniques and display current examples of UAV usage
within tidal stream environments. Search terms for Section 2 included “multirotor UAVs”
within “environmental studies”; for Section 3, the literature included is specifically related
to “image processing techniques” utilised to process “aerial imagery”, and finally, Section 4
literature focusses on “multirotor UAV” research within “tidal stream environments”.
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2. Advantages and Limitations of Multirotor Unmanned Aerial Vehicle Usage
2.1. Background

Over the past decade, UAVs have experienced a rapid evolution from solely military
usage to full commercialisation, with many designs, sizes and capabilities now in exis-
tence [25]. Multirotor UAVs are capable of hovering and vertical take-off and landing,
and they are cost-effective and highly manoeuvrable [26]. These features make multirotor
UAVs a suitable tool for carrying out accurate photogrammetric assessments, as well as
vertical profiling and spatial surveys [26,27]. As this technology has developed, so have
relevant remote sensing instrumentation and image processing techniques [25,28]. Due
to the diversity of the range of platforms, sensor availability and operational capabilities,
UAVs have been successfully used in a range of wildlife applications (Table S1) [29].

Within the field of marine ecology, uses range from the monitoring of previously
inaccessible populations and locations to more novel applications like the noninvasive
collection of DNA and microbiota samples [30,31]. In many cases, the ability to access
restricted areas helps to provide a cost-effective alternative to existing data collection
methods both financially and in effort expenditure [32]. These capabilities make UAVs a
suitable tool for use within tidal stream environments, where fast current velocities and
turbulence provide a challenging environment to survey within and fine-scale biophysical
interactions require novel methods to capture [19]. However, as with all methodologies, it
is key to assess the advantages and limitations of use to understand their potential.

2.2. Advantages

Multirotor UAVs have the capability to hover, meaning increased stability and posi-
tional control, which provides the accuracy needed for species identification and individual
assessment using either high-resolution video or imagery [33]. The downward-facing cam-
era angle, provided from UAV imagery, means that targets within a frame have a decreased
chance of being obscured by other individuals or objects within the environment, such as
waves, than from shore-based vantage point surveys [34]. Images can also be broken down
into multiple subsections to increase the accuracy of manual processing [34]. These highly
accurate visual datasets can provide a novel way in which to approach existing research
questions related to aspects of marine top predators (life history, behaviour, abundance and
distribution) as well as a permanent record for users to return to and review [35,36].

UAV systems are also appropriate for use in marine environments that may be lo-
gistically challenging to monitor [37–40]. Within any ecological survey, maximising and
optimising effort is important to collect representative data with significant statistical power.
UAVs have the potential to allow for this by offering a safer, more cost-effective research
tool compared with existing low-altitude aerial survey techniques [41]. Safe operation
of flights can occur within a broader range of environmental and logistical conditions,
such as areas of shallow water or challenging coastline, which may be difficult to access
through manned aerial or vessel surveys [42]. In many cases, this allows for UAVs to
bridge the gap between satellite observations and ground-based measurements to provide
supplementary data to abundance studies by working in conjunction with existing survey
techniques [43,44]. Sweeney et al. [38] emphasised this by using a UAV during annual
pinniped abundance surveys within the Aleutian Islands chain in Alaska to allow full
coverage of the 23 survey sites where, in some cases, vessel or aircraft usage was not
possible. In this instance, the highly portable nature of UAVs meant that the cost and effort
of mobilisation for surveys were significantly reduced [38,45]. This helps to highlight the
potential of multirotor UAVs to increase survey frequency, meaning a resultant increase in
overall coverage monitoring capabilities [32]. This is highly advantageous when research
questions in tidal stream environments are focussed on fine-scale associations, with a
requirement for multiple surveys of localised areas across diel and tidal cycles.

The ability to collect fine-scale spatial and temporal data to examine relevant ecological
variables is also an important benefit of using multirotor UAVs [26]. This is often at
finer spatiotemporal resolutions than conventional aerial imagery (taken from an aircraft)
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and places it within a niche that sits between that and ground-based measurements [32].
Within tidal stream environments, multirotor UAVs allow for surveys of marine megafauna
to be conducted at a range of differing altitudes, from 10–120 m, dependent on survey
requirements and species [23,31,42,45–49]. Data collection in this manner has generally
been at the spatiotemporal scales of <100 m and <10 min and has allowed for examinations
into potentially undescribed drivers of habitat use [23].

Digital imagery collected at these altitudes also increases the accuracy of object locali-
sation and detection, thus allowing for increased precision in abundance and distribution
modelling [50]. UAV surveys within tidal stream environments have the potential to
provide detailed insights into faunal spatial and temporal habitat usage patterns, which
could begin to direct more relevant data collection when assessing species associations
with localised habitat features. However, there is still a need for further quantifiable inves-
tigations into potential UAV disturbance to separate any impacts of noise and visual cues
in eliciting behavioural responses [41]. This is becoming increasingly important to examine
to fully inform future legislation and regulations pertaining to UAV usage within scientific
research [28]. With increased UAV usage within environmental research, suggested codes
of best practice and standardised methodological recommendations have become increas-
ingly prevalent and robust [29,51]. This has created a visible shift as UAV usage becomes
increasingly “main-stream”, from novel drone operation and methodology development
towards normalised scientific inference-based work [29].

A final benefit of UAV usage within tidal stream environments is its adaptability as a
survey tool. This highlights its potential to meet current and future research requirements.
In terms of marine megafauna, there are relevant examples of novel usage that differ from
the previously described fine-scale abundance and distribution studies. This can involve
new derivations from current data (e.g., imagery or other sensory modalities) or by cre-
ating a novel methodology to capture additional information [43]. An investigation into
reef shark (Carcharhinus melanopterus) swimming and shoaling behaviour at two differing
microhabitats off the coast of Moorea Island, French Polynesia, provides an example [47].
Findings from the resultant imagery indicated significant differences in shark alignment
(p < 0.05), dependent on microhabitat [47]. This study provides insights into animal be-
haviour that were not previously possible to collect and highlights adaptability in the usage
of UAV-derived data.

However, adaptability also lies within the physical alteration of equipment use. This
has been presented through the use of a UAV technique being developed and adapted from
a pre-existing method to characterise viruses within free-ranging whale species [52,53].
Whale blow samples collected from 19 individuals via the use of a sterile petri dish placed
upon the bottom of a UAV highlighted 42 classified viral families and led to the identi-
fication of six new virus species [53]. These studies help to highlight the adaptability of
multirotor UAVs for current uses and their potential to be used with emerging methodolo-
gies. These are likely to be requirements driven by ecological knowledge gaps or questions.

2.3. Limitations

Examination of methodological limitations is especially pertinent when examining
emerging techniques, as it will drive technological advancement, relevant legislation and
the development of scientifically robust best practices [41].

Potential disturbance from both visual and noise sources is the primary limitation
of using multirotor UAVs within an ecological context. Multirotor UAV functional noise
is present in both harmonic and subharmonic frequency bands and may impact animals
at the water surface and within the air depending on proximity or altitude [54]. This is
particularly significant to examine for studies of coastal-associating marine megafauna,
such as seabirds [31,55]. While many studies often deem disturbance to be negligible,
quantifiable justification for these statements is lacking, and the limited code of best
practices has been a long-standing issue [51,56]. Within the umbrella of UAV disturbance,
there are many factors to consider, including UAV type, ambient environmental noise,
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species-level responses and individual-level responses dependent on age, sex and biological
state [31,55]. Consideration also needs to be given to distinguishing between visual and
auditory cues [41]. The need for a standardised disturbance criterion is now evident as the
field continues to expand [29,51,57].

It is also important to consider the limitations of the technology itself. While the
utility of multirotor UAVs within ecological and tidal stream research continues to grow,
the primary technological limitation is the battery capabilities, which allow for flight
times of approximately 20–30 min depending on weight, payload type and environmental
conditions [45,57–59]. This can impact surveys requiring extended temporal coverage and
often limits UAV data collection to being supplementary to a larger collection effort [38].
It is thus advisable to employ a precautionary, battery-saving strategy to flight times and
survey design to assess whether the multirotor design is suitable on a use-by-use basis [33].

However, as technological advances continue, specific limitations may become less
significant. Battery capacity has continually developed at an annual rate of around 3% in
the past 60 years, and it is predicted that by 2030, average multirotor UAV flight times may
be averaging 40 min [60,61]. Battery technologies are also diversifying, with exploration
starting into the usage of hydrogen fuel, lithium–sulphur and lithium–air types to replace
existing commercially available lithium-ion batteries [61]. Novel solutions are also being
trialled in relation to charging and battery swapping to maximise existing resources. One
solution puts forward a concept design for “an autonomous battery swapping system” that
would enable battery swaps to automatically take place from a ground charging station
without the UAV system ever having to be powered down [62]. This would minimise
device downtime and increase useful flight time. Until technological advances unlock the
further potential and negate existing technical limitations, novel solutions such as this, in
combination with existing battery-saving strategies, are likely to be the key to maximising
multirotor UAV capabilities.

Environmental conditions that may impact the device and its outputs but are not a
direct result of the technology itself should also be considered when examining method-
ological limitations. Adverse weather conditions (heavy wind/rain) can negatively impact
UAV devices in multiple ways, including limiting flight capability, damaging electronic
components and increasing battery drain [63]. This can potentially cause limitations in
survey coverage, as flights should only be undertaken during periods that do not exceed
regulatory or manufacturer operational guidelines [64]. Methodologies incorporating UAVs
need to factor potential disruptions due to unfavourable environmental conditions into
survey design in order to mitigate this and capture appropriate levels of data.

UAV data outputs can also be restricted by environmental conditions. Conventional
aerial surveys are usually limited to wind speeds of <7 knots and Beaufort sea states of 3
(characterised as large wavelets, breaking crests and scattered whitecaps) or less and can
incur costs in keeping aircraft and crew on standby for acceptable survey conditions [65].
While the operational costs of UAVs will be far less than conventional aircraft, the image
datasets, particularly within highly turbulent environments, such as tidal streams, will still
be similarly impacted by increased sea state and turbidity levels, causing low levels of de-
tection. Sun glare, causing a glinting effect on the water’s surface, is another environmental
factor to consider. Sun glare can cause blurring and degradation in photogrammetric out-
puts and limit the detectability of objects of interest [39]. Image processing techniques can
counter these issues by using brightness or contrast adjustments, but consideration should
also be given during the flight planning and data collection phases to mitigate the impact
of environmental conditions (sea state, turbidity and sun glare) on UAV imagery [66].

3. Complementary Image Processing and Automation Techniques
3.1. Background

UAVs can collect hundreds of images and large volumes of video footage within a
single survey, making them highly suitable for the continuous capture of fine-scale data [67].
It is thus important to consider the methods used to process imagery to extract accurate
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data that is collected within feasible time and monetary constraints [36]. Manual review
and analysis of large imagery datasets is time-consuming and could negate any efficiency
gained through using UAVs as a data collection method [68]. However, image processing is
a rapidly advancing field, with many semiautomated and automated approaches available
for integration.

3.2. Image Segmentation and Thresholding

The simplest and most widely used form of image processing is image segmentation,
which uses a technique called thresholding to separate an object from its background
(Table 1) [69]. This is achieved by creating a binary image and selecting objects of interest
by examining levels of spectral reflectance to then obtain a global lower limit whereby
anything below it is discounted (Figure 1) [70]. This technique can be applied to greyscale
images in which the threshold is dictated by brightness values or to colour images in
which a different threshold value can be applied to each colour band. The most common
issue with this is when other elements within the image are at the same spectral range
as the target object, leading to the creation of false positive detections [68]. However,
by implementing stringent filtering and sieving techniques, such as applying secondary
thresholds and manually assessing any remaining questionable pixels, the reliability of this
method can be significantly increased [71,72]. Applications of image segmentation have
included medical image analysis, autonomous vehicles, video surveillance and augmented
reality applications [73].

Table 1. Literature examined in relation to relevant image segmentation and thresholding techniques
detailing origin, purpose, image processing techniques and summary of work.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Computer-
automated bird
detection and

counts in
high-resolution
aerial images

[68] droneMetrics,
Ontario, Canada

To review the
literature on
automated

approaches for
counting birds in

aerial images

Thresholding,
spectral

thresholding and
object-based image

analysis (OBIA)

There have been major
advances over the past three

decades, from performing
rudimentary spectral analysis
of scanned film photographs

to developing elaborate
algorithms capable of

detecting multiple species in
thousands of digital images
with complex backgrounds.

Image analysis and
three-dimensional
modelling of pores
in soil aggregates

[69]
University of
Edinburgh,

Edinburgh, UK

Image analysis and
three-dimensional
modelling of pores
in soil aggregates

Mathematical
morphology
thresholding

The three-dimensional
simulation of soil aggregates

using image analysis based on
some characteristics measured
in two-dimensional sections
of soil aggregates appears to

be possible.

Automated
wildlife counts
from remotely

sensed imagery

[70]
Oregon State

University,
Corvallis, USA

To develop an
image processing

technique for
detection and

automated counts
of wildlife from

aerial photos

Thresholding

The techniques are simple to
use and require only basic

image analysis knowledge. In
addition, all the analyses

could be performed using a
public domain programme

accessible for download from
the Internet.
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Table 1. Cont.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Image analysis of
colour aerial

photography to
estimate penguin
population size

[71]
British Antarctic

Survey,
Cambridge, UK

To develop a
method of
estimating
penguin

population size
(with confidence
intervals) from

colour aerial
photography using

image analysis
techniques

Segmentation
thresholding

The image analysis techniques
described provide a reliable

method, but the use of
segmentation and threshold

filters may be inefficient.

How do you find
the green sheep? A

critical review of
the use of remotely
sensed imagery to
detect and count

animals

[72]

University of
Melbourne,
Melbourne,
Australia

To examine
methods for

analysing remotely
sensed imagery to

estimate the
abundance of wild

and domestic
animals by directly

detecting,
identifying and

counting
individuals

Thresholding,
image

segmentation,
supervised

classification,
OBIA,

linear discriminant
analysis,

birth-and-death
algorithm,

morphological-
based detection,
artificial neural

network,
image differencing

using principal
components
analysis and
supervised

spectral
classification

The direct detection and
counting of individual
animals to establish an

accurate population measure
using automated and

semiautomated techniques is
still problematic in most
situations, particularly in

nonhomogeneous
environments, and is

currently ineffective for most
large-scale applications.

Adaptive
thresholding for
the DigitalDesk

[74]
Rank Xerox

Research Centre,
Cambridge, UK

To describe the
various techniques

that were
developed and

tested for
thresholding on
the DigitalDesk
and end with a

description of an
algorithm that was

found to be
suitable

Global
thresholding,

adaptive
thresholding,

adaptive
thresholding based

on Wall’s
algorithm and
quick adaptive
thresholding

Several techniques are
explored, leading eventually

to a quick adaptive
thresholding algorithm that

has proven to be quite
suitable for current purposes.

Adaptive
thresholding using
the integral image

[75]
Carleton

University,
Canada

To present a very
simple and clear

adaptive
thresholding

technique using
integral images

Adaptive
thresholding

The technique is well-suited
for scenes with strong spatial
changes in illumination. The

main drawback to the method
is that images must be

processed twice.
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Table 1. Cont.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Testing methods
for using

high-resolution
satellite imagery to
monitor polar bear

abundance and
distribution

[76]

University of
Minnesota,

Minneapolis,
USA

To evaluate
opportunities for

expanding
large-scale

applications of
satellite imagery

Percent reflectance
and

image
thresholding

Very high-resolution satellite
imagery is among the new

tools available to estimate the
abundance of large mammals,
but more research is needed to
understand how this tool can
best be applied to studying

and managing wildlife.
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Figure 1. Schematic detailing the workflow of image segmentation using thresholding.

Advancements in image segmentation include adaptive thresholding, which applies
individual threshold values to each pixel rather than an entire image [74]. While this can
compensate for spatial and temporal variations in illumination and can be implemented in
real time, it is restricted by the need to process images twice [75]. Although both global
and adaptive thresholding methods can be automated, image segmentation still requires
significant user input to continually fine-tune thresholds, apply appropriate image enhance-
ments and assess potential misclassifications in which inappropriate pixel segmentation
has occurred [70]. This level of tuning can mean that manual processing times may still be
high compared with other less user-intensive methods.

3.3. Supervised and Unsupervised Classification

Another common image processing technique is supervised classification, in which
a user will classify known objects into different categories to train an image processing
algorithm (Table 2) [72]. A user will manually classify targets that are already known to
assemble a training dataset. The supervised classification algorithm will then use the mean
and variance values from the previously labelled targets within the training dataset to
assign classifications (Figure 2). However, this is dependent on human interpretation to
differentiate whether an object is a target and can be highly iterative, requiring multiple
classification attempts [77]. Reflectance values can be used to inform the process, although
this can lead to misidentification and the potential identification of increased false positive
results [76]. Image differentiation, the comparison of the differences between imagery
collected at different times, has been found to perform better in this regard but is highly
specific in its application due to requiring a previous image to refer to [76]. As with image
segmentation, automation can occur to a point, with manual inputs still required to initially
assign classifications, leading to the potential creation of user bias [78].
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Table 2. Literature examined in relation to relevant supervised and unsupervised classification
techniques detailing origin, purpose, image processing techniques and summary of work.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

How do you find
the green sheep? A

critical review of
the use of remotely
sensed imagery to
detect and count

animals

[72]

University of
Melbourne,
Melbourne,
Australia

To examine
methods for

analysing remotely
sensed imagery to

estimate the
abundance of wild

and domestic
animals by directly

detecting,
identifying and

counting
individuals

Thresholding,
image segmentation,

supervised classification,
OBIA,

linear discriminant
analysis,

birth-and-death
algorithm,

morphological-based
detection,

artificial neural network,
image differencing using

principal components
analysis and

supervised spectral
classification

The direct detection
and counting of

individual animals to
establish an accurate
population measure

using automated and
semiautomated

techniques is still
problematic in most

situations, particularly
in nonhomogeneous
environments, and is
currently ineffective
for most large-scale

applications.

An emperor
penguin

population
estimate: the first
global, synoptic

survey of a species
from space

[77]
British Antarctic

Survey,
Cambridge, UK

To present the first
synoptic survey of

the entire
population of a
single species
(breeding in a

single year) using
satellite remote

sensing

Supervised classification

The results of this
survey increase our

knowledge of species’
population and

distribution, and the
techniques developed
in this study may be
applicable to several

other animals.

Whales from space:
counting southern

right whales by
satellite

[78]
British Antarctic

Survey,
Cambridge, UK

To describe a
method of

identifying and
counting southern

right whales
breeding in part of
the Golfo Nuevo in

Argentina using
satellite imagery

Maximum likelihood
supervised classification

Methods can
potentially help

provide within and
between-season

population estimates
both for right whales
and other species of
whale that breed in
sheltered locations.

Comparison of
three techniques to
identify and count
individual animals
in aerial imagery

[79]
Utah State
University,

Logan, USA

To examine three
methods to

enumerate animals
in remotely sensed

aerial imagery

Manual processing,
unsupervised

classification: iterative
self-organising analysis
technique (ISODATA),

segmentation,
multi-image and
multistep (MIMS)

technique

If animals were
present in an image,

the ISODATA
technique correctly

identified most of the
animals but greatly

overestimated
numbers.

Visible and
thermal infrared

remote sensing for
the detection of

white-tailed deer
using an

unmanned aerial
system

[80]

Universite de
Sherbrooke,
Sherbrooke,

Canada

To evaluate the
performance of an

aircraft sensor
system developed
for detecting and

counting
white-tailed deer

in a controlled
environment

Supervised pixel-based
image classification,

unsupervised
pixel-based image
classification and

OBIA

The OBIA approach
has the potential to

reduce and
standardise visibility
bias using imaging

sensors and, contrary
to the pixel-based

approach, can indicate
the absence of deer.
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Figure 2. Schematic detailing supervised classification workflow.

Unsupervised classification builds upon supervised classification by using statistical
algorithms to group pixels based on spectral data and make predictions with minimal user
input (Figure 3) [72]. As a result, unsupervised classification is most utilised to identify
specific features on the landscape, and while this can have a higher probability of target
detection, there is an increased likelihood of the production of false positive results, with
external information and manual input needed to correct this [79]. This, in turn, creates an
increased requirement for manual interpretation to maintain higher levels of accuracy.
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3.4. Object-Based Image Analysis

While the above pixel-based methods can be accurate at high spatial resolutions, with
varying levels of automation applicable, all require some degree of manual input on an
image-by-image basis (Table 3) [68]. An alternative method called object-based image anal-
ysis (OBIA) can provide improvements upon pixel-based techniques by reducing spectral
overlap between objects of interest and increasing accuracy regarding target classifica-
tion [72]. This is achieved by incorporating geometric, textural and spatial information, in
combination with spectral data, of objects within the image to identify them based on pixel
groups with similarities (Figure 4) [80,81]. Within ecological research, OBIA approaches
have performed target detections that make the identification of individual animals and
species identification viable and, in doing so, can provide relevant context regarding spatial
and temporal relationships [82].
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Table 3. Literature examined in relation to relevant object-based image analysis techniques detailing
origin, purpose, image processing techniques and summary of work.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Computer-
automated bird
detection and

counts in
high-resolution
aerial images

[68] droneMetrics,
Ontario, Canada

To review the
literature on
automated

approaches for
counting birds in

aerial images

Thresholding,
spectral

thresholding and
object-based image

analysis (OBIA)

There have been major
advances over the past three
decades, from performing

rudimentary spectral
analysis of scanned film

photographs to developing
elaborate algorithms
capable of detecting
multiple species in

thousands of digital images
with complex backgrounds.

How do you find
the green sheep? A

critical review of
the use of remotely
sensed imagery to
detect and count

animals

[72]

University of
Melbourne,
Melbourne,
Australia

To examine
methods for

analysing remotely
sensed imagery to

estimate the
abundance of wild

and domestic
animals by directly

detecting,
identifying and

counting
individuals

Thresholding,
image

segmentation,
supervised

classification,
OBIA,

linear discriminant
analysis,

birth-and-death
algorithm,

morphological-
based detection,
artificial neural

network,
image differencing

using principal
components
analysis and
supervised

spectral
classification

The direct detection and
counting of individual
animals to establish an

accurate population
measure using automated

and semiautomated
techniques is still

problematic in most
situations, particularly in

nonhomogeneous
environments, and is

currently ineffective for
most large-scale

applications.

Object-based
image analysis for

remote sensing
[81]

University of
Salzberg,

Salzberg, Austria

To assess recent
developments in

object-based image
analysis

Object-based
image analysis

OBIA methods are making
considerable progress

towards a spatially explicit
information extraction
workflow, such as is
required for spatial

planning as well as for many
monitoring programmes.

Visible and
thermal infrared

remote sensing for
the detection of

white-tailed deer
using an

unmanned aerial
system

[80]

Universite de
Sherbrooke,
Sherbrooke,

Canada

To evaluate the
performance of an

aircraft sensor
system developed
for detecting and

counting
white-tailed deer

in a controlled
environment

Supervised
pixel-based image

classification,
unsupervised

pixel-based image
classification and

OBIA

The OBIA approach has the
potential to reduce and

standardise visibility bias
using imaging sensors and,
contrary to the pixel-based
approach, can indicate the

absence of deer.
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Table 3. Cont.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Using object-based
analysis of image

data to count birds:
mapping of lesser

flamingos at
Kamfers Dam,

Northern Cape,
South Africa

[83]
Aarhus

University,
Rønde, Denmark

To report the
application of

OBIA for a count
of lesser flamingos

(Phoeniconaias
minor) at the

Kamfers Dam
Lake, Kimberley,

South Africa

Object-based
image analysis

The work has demonstrated
the possibilities for using
automated object-based

image analysis methods for
counting and mapping bird
individuals and exploiting

image data patterns in ways
that would not be possible
with a per-pixel approach.
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However, it was demonstrated by Groom et al. [83] that while automation of OBIA
methods gave a high detection accuracy of >99% when estimating lesser flamingo (Phoeni-
conaias minor) abundance at Kamfers Dam in South Africa, there was a significant underesti-
mation of individuals when compared to visual counts [83]. This was believed to be due to
the method’s decreased success rate in distinguishing targets on the land, where there was a
lower contrast compared to when individuals were on or above the water surface [83]. The
presence of immature, less brightly coloured birds was believed to be a potentially limiting
factor. While this method outperforms previously described pixel-based supervised and
unsupervised classification approaches, both computationally and performance-wise, it
highlights the need for further development to detect animals that also consider biological
and environmental variables. Expensive software and high computational requirements,
demanding specific user knowledge to operate, are also significant limitations that may
impact decisions to utilise OBIA methods [72].

3.5. Machine Learning and Deep Learning

Machine learning techniques build on image feature-based algorithms, described
above, through the incorporation of artificial intelligence (Table 4). Machine learning
algorithms are suited to object detection tasks due to being able to tackle complex and
often hidden patterns within data [84]. Deep learning is the most developed form of
machine learning due to performing tasks without human interaction, and it has shown
great promise in the field of image processing (Figure 5) [85]. Deep learning architecture
is based on multiple neural networks, which are interconnected layers that process and
extract information from an input [86]. Convolutional neural networks (CNNs) are the
most common form of neural network used within deep learning models and allow for the
detection and classification of objects of interest within a dataset [87]. This ability to detect
and categorise objects is achieved through training CNNs on predefined labelled datasets
that are often specific to the use case. This training process allows a deep learning model
to autonomously adjust its behaviour to obtain the desired output, with this capability
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increasing as more data is fed into the learning phase. Iterative learning allows a deep
learning model to acquire new, and adjust existing, parameters as it goes along, which
traditional classification techniques are unable to do. In turn, this makes deep learning
models a powerful tool for object detection tasks, with current iterations able to run at near
real-time frame rates [88].

Table 4. Literature examined in relation to relevant machine and deep learning techniques detailing
origin, purpose, image processing techniques and summary of work.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Applications of
digital imaging
and analysis in

seabird monitoring
and research

[36]
University of

Gloucestershire,
Cheltenham, UK

To assess the
accuracy and cost of

manual,
semiautomated and

automated image
analysis methods, as

well as consider
future developments
needed in the field

Manual image
analysis,

semiautomated
classification and

convolutional
neural networks

Automated image
analysis can be

cost-effective once
machine learning

algorithms are up and
running. For small-scale

studies on a single
species, manual or

semiautomated analysis
may be more achievable.

How do you find
the green sheep? A

critical review of
the use of remotely
sensed imagery to
detect and count

animals

[72]

University of
Melbourne,
Melbourne,
Australia

To examine methods
for analysing

remotely sensed
imagery to estimate

the abundance of
wild and domestic
animals by directly

detecting,
identifying and

counting individuals

Thresholding,
image

segmentation,
supervised

classification,
OBIA,

linear discriminant
analysis,

birth-and-death
algorithm,

morphological-
based detection,
artificial neural

network,
image differencing

using principal
components
analysis and
supervised

spectral
classification

The direct detection and
counting of individual
animals to establish an

accurate population
measure using
automated and
semiautomated

techniques is still
problematic in most

situations, particularly
in nonhomogeneous
environments, and is

currently ineffective for
most large-scale

applications.

Machine learning:
new ideas and

tools in
environmental

science and
engineering

[84]
Case Western

Reserve University,
Cleveland, USA

To discuss the status,
essential knowledge,

shortcomings,
challenges and

future opportunities
of machine learning

(ML) in
environmental

science and
engineering (ESE) to

highlight the
potential of ML in

the ESE field

Supervised
machine learning

and
unsupervised

machine learning

ML shows great
potential for solving ESE

issues, with
wide-ranging

applicability, but
inexperience with ML

may lead to
unsatisfactory

performance or
inappropriate

applications of ML tools.
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Table 4. Cont.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Butterfly
recognition based
on faster R-CNN

[85]
Zhengzhou
University,

Zhengzhou, China

To use deep learning
technology to apply

faster R-CNN to
butterfly recognition

Deep learning:
faster R-CNN

Faster R-CNN can
achieve stable

classification and high
levels of recognition
accuracy. However,

adequate training data
sample sizes and

randomness of samples
when testing must be

maintained to
ensure this.

Computer vision
(CV), machine

learning, and the
promise of

phenomics in
ecology and
evolutionary

biology

[86] Lund University,
Lund, Sweden

To provide an entry
point for ecologists
and evolutionary
biologists to the
automatic and
semiautomatic
extraction of

phenotypic data
from digital images

Machine learning
and

deep learning

This review provided a
broad overview of

various computer vision
techniques and gave

some recent examples of
their application in

ecological and
evolutionary research.

Deep learning [87]

Massachusetts
Institute of
Technology,

Cambridge, USA

To describe machine
learning concepts,
established deep

learning algorithms
and future research

Machine learning
and

deep learning

Deep learning can be
used to solve

applications in computer
vision, speech

recognition, natural
language processing and

other areas of
commercial interest.

Faster R-CNN:
towards real-time
object detection

with region
proposal networks

[88]

University of
Science and

Technology of
China, Hefei,

China

To introduce a
region proposal

network (RPN) that
shares full-image

convolutional
features with a

detection network,
thus enabling nearly

cost-free region
proposals

Deep learning:
faster R-CNN

The method enables a
unified,

deep-learning-based
object detection system
to run at near real-time

frame rates. The learned
RPN also improves

region proposal quality
and, thus, overall object

detection accuracy.

Marine bird
detection based on

deep learning
using

high-resolution
aerial images

[89] IMT Atlantique,
Nantes, France

To consider recent
developments in

deep learning. More
specifically, the use

of convolutional
neural networks

(CNNs) for the task
of detection and

classification

Deep learning:
convolutional

neural networks

CNNs are a suitable tool
for detecting marine

birds in aerial images.
However, there is room

for performance
improvement regarding
classification accuracy
and processing time.
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Table 4. Cont.

Title Citation
Number Origin Purpose Image Processing

Technique Summary

Machine learning
and data analytics
for environmental
science: a review,

prospects and
challenges

[90]

Bannari Amman
Institute of
Technology,

Sathyamangalam,
India

To describe the basic
concepts of machine

learning, deep
learning and data
analytics and find

state-of-the-art
applications in
environmental

science

Machine learning
and

deep learning

Existing machine
learning and deep

learning algorithms
have been implemented

to overcome diverse
environmental issues,

but further discussion is
required to frame the

policies to address and
resolve environmental

challenges.
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From an ecological standpoint, deep learning models may be capable of handling im-
agery containing animal heterogeneity and external considerations, including motion blur,
background contrast and differences in illumination [89]. Boudaoud et al. [89] used a deep
learning object detection model on aerial images of seabirds, finding that the classification
rate was 98% when used on real images, seeing an increase of 3% from implementation on
training datasets. However, this approach was not without its limitations, as environmental
conditions, including wave crests and sun glare, were still found to lower classification
accuracy. This approach is heavily reliant on computational power and can be very time-
consuming when introducing real source data sets containing large proportions of images
with complex backgrounds [90].

While automated and semiautomated image processing approaches are becoming
increasingly prevalent in ecological studies, advancements require the ability for greater
distinction between animals and their background [72]. An overarching theme is the
need to better overcome biological factors and environmental conditions that may either
inhibit detection or create false positives. As advancements in digital camera technology,
image analysis software and computer processing capabilities continue, this is increasingly
becoming a reality [68]. Although CNNs appear the most capable of dealing with more rep-
resentative data examples, there is a significant effort required for their initial development,
and manual validation is still needed for accuracy purposes [36].

Consideration should be given to the appropriateness of any image processing tech-
nique on an individual case basis due to specific methods having a high knowledge
threshold and extensive time costs for setup. While UAVs offer an advantageous tool
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for use within tidal stream environments, complementary postprocessing methods must
be used in a balanced manner that will enhance the tool as opposed to creating further
setbacks for use. However, they can be used to reduce manual effort by guiding a search
area for user validation. To keep a balance between efficiency and accuracy, it is crucial to
consider the facets of image processing that are best suited for automation while keeping
manual control over parts requiring increased precision.

4. Current Examples and Future Recommendations of Multirotor UAV Usage within
Tidal Stream Environments

With the relevant UAV advantages, limitations and complementary image processing
techniques described, it is also important to detail the current examples of usage within tidal
stream environments (Table S2). UAV usage within tidal stream environments at present is
limited and covers three primary areas: measurements of current flow, characterisation of
surface turbulence habitat features and the exploration of fine-scale (metres and seconds)
animal habitat use (Figure 6).
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Figure 6. A visualisation of UAV advantages (blue text) and limitations (red text) within a tidal stream
environment that highlights capability of simultaneously capturing hydrodynamic (represented by
the blue lines and black arrows) and ecological (represented by the seabirds and fish) video or imagery
data in relation to anthropogenic developments (represented by grey tidal turbine). Blue triangle
indicates field of view and area coverage from UAV camera.

4.1. Current Examples

UAVs can provide measurements of flow conditions that are a valuable addition to
tidal stream characterisation and allow MRE developers to carry out initial site selection,
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device micrositing and flow structure analysis [91]. This was achieved using image pro-
cessing methods, incorporating particle tracking (dense optical flow and particle image
velocimetry (PIV), e.g., PIVlab version 2.63.0.0: a software with an inbuilt graphical user
interface for PIV data extraction [92]), and has been evaluated at multiple tidal stream
sites while providing complementary coverage, resolution and accuracy compared with
acoustic Doppler current profiler (ADCP) techniques [91,93]. Short stationary hover flights
(at 120 m altitudes) were undertaken, with UAVs orientated to allow for video recordings
in parallel to the prevailing current flow direction. Image preprocessing, greyscale con-
version and contrast limited adaptive histogram equalisation (CLAHE) were then applied
to image stills extracted from the video recordings to improve PIVlab’s measurement
capabilities. Although flow measurement inaccuracies were detected due to an inability
to incorporate turbulent features, UAVs demonstrated a low-cost, low-risk technique to
collect measurements of surface currents within tidal stream sites [93].

UAV imagery has also allowed for the characterisation of individual turbulent flow
structures. Empirical measurements of turbulent features, such as kolk-boils, are important
for informing turbine power output, design and micrositing while also providing key
metrics to help assess animal distribution and habitat usage patterns. It was demonstrated,
within the Pentland Firth (UK), that UAV imagery could capture and map kolk-boils at
the surface throughout a tidal stream environment [94]. This was achieved through UAV
surveys conducted against the prevailing current flow at 70 m altitude, collecting imagery
data of the sea’s surface. Images were then manually processed within a user interface that
allowed for specific measurements (distribution, size and classification) of kolk-boils to be
taken. The study also highlighted environmental drivers, such as tidal phase and current
velocity, of kolk-boil presence and distribution, allowing for increased predictability of
what has often been described as an “ephemeral” occurrence [94].

Turbulent features are hypothesised to create fine spatiotemporal foraging hotspots
through the overturning or displacement of prey (fish) species [19]. UAVs provide a tool that
can take direct measurements of these associations, which are often unobtainable through
traditional methods. These studies have focussed on seabird species and highlighted
that foraging strategy dictates the nature of this relationship. UAV stationary hover and
transiting surveys (at >70 m altitudes) incorporating both manual and machine learning
image processing techniques allowed for the specific tracking and measurements of seabirds
on a frame-by-frame basis in relation to humanmade and naturally occurring turbulent
features [23,95]. This ability to track fine-scale seabird behaviour highlighted that surface
foraging species displayed an attraction towards features due to prey being moved towards
the surface and being easier to hunt [23]. Conversely, diving seabirds were found to be
attracted to general areas of turbulence but avoided individual features potentially due to
the accompanying energy expenditure of swimming through them [95]. Novel findings of
biophysical interactions within tidal stream environments at a species level of identification
would not have been possible without the use of standardised UAV imagery and video
footage to capture it.

4.2. Future Recommendations

For continued usage within tidal stream environments, UAV standardisation should
retain some flexibility, especially when considering potential ecological disturbance. This
is highlighted by Rush et al. [31], who concluded that while UAVs offered great potential
for the accurate surveying of colony-nesting lesser black-backed gulls (Larus fuscus), with
minimal disturbance noted, future surveys on different bird species would require appro-
priate levels of behavioural assessment on a species-by-species basis. This would ideally
reflect all relevant ethical considerations, adhere to civil aviation laws, accurately detail
methodologies used and design surveys with appropriate precautions as would befit other
guidelines detailing good research practice [51]. Increased collection of species-specific
data to quantify potential disturbance comparative to traditional techniques is a definitive
requirement as the use of multirotor UAVs increases within ecological surveys [36]. Ideally,
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this should be performed in tandem with applications of the technology and not as a
retrospective measure to validate findings.

UAVs provide high-definition image and video quality that can allow for the suc-
cessful quantification of fine-scale biophysical interactions occurring within a tidal stream
environment [57]. However, UAV-derived data are limited to what is visible at the surface,
with survey duration heavily determined by the flight time capacity of the device [96]. This
means that UAV usage is unable to provide a complete picture of biophysical interactions,
as many faunal species (marine mammals, sharks and pelagic or benthic foraging seabirds)
interact with the habitat both at and below the water’s surface. The importance of under-
standing the impact of anthropogenic devices, such as tidal turbines, is thus underpinned
by the requirement of prey, predator and hydrodynamic information that is collected
throughout the entirety of the water column [24]. Active and passive acoustic monitoring
devices offer the ability to quantify fine-scale subsurface hydrodynamic and faunal interac-
tions within tidal stream environments [24,97,98]. While UAVs can be used as a singular
ecological survey tool to provide unique and novel datasets, it is recommended that they be
used as part of a wider array. A multifaceted approach utilising UAV- and acoustic-derived
data would allow for assessments to span multiple trophic levels throughout the entirety
of the water column and more accurately inform on the potential environmental impacts of
anthropogenic developments within tidal stream environments.

It is also important to focus on UAV and image processing development in order
for it to continue to be a viable environmental survey tool. Regarding the technology
itself, while battery limitations have not hampered data collection efforts in tidal stream
environments (described in Section 4.1), advancements in battery technology will only
help to increase flight time durations, which, in turn, will improve survey efficiency
and effort [61]. Advancements in image processing techniques will also help to mitigate
potentially data-degrading environmental factors within tidal stream environments, such
as sun glare and waves. In particular, the focus should be on the incorporation of machine
learning techniques, such as deep learning, which have been found to be the most suited to
dealing with complex problems and busy environments [99]. This can be through image
preprocessing to allow objects of interest to be observed more clearly or to increase the
automation of data processing that would allow for quicker turnaround times for results.
However, as with the incorporation of any multifaceted methodology, the addition of
specific image processing techniques that can be computationally taxing should be done on
a case-by-case basis that considers the trade-offs between surveying efficiency, accuracy
and methodological complexity.

5. Conclusions

This article showcases the use of multirotor UAVs as a scientific survey tool for fine-
scale data collection, discusses relevant image processing techniques and highlights current
examples of UAV usage within tidal stream environments.

Multirotor UAVs can collect positionally accurate digital imagery that provides fine-
scale spatiotemporal data in environments that are often considered challenging to survey
within. While limitations exist in the form of battery life as well as bottlenecks in manual
postprocessing of imagery, the adaptability of UAVs allows challenges to be managed and
for standardised usage to be appropriate within tidal stream environments. Concurrent
image processing techniques provide a method in which to optimise manual postprocess-
ing bottlenecks, with many variations in processes available for use depending on user
requirements. For example, deep learning, a form of machine learning, offers the greatest
potential for UAV-based object detection tasks within tidal stream environments.

UAVs have already been used in a range of different applications within tidal stream
sites. Survey work includes the mapping of surface currents, the characterisation of surface
turbulent features and the quantification of fine-scale animal habitat usage. These tasks
are achieved due to UAVs being low cost and low risk within what is often described as a
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“challenging survey environment” and due to capturing data at appropriate spatiotemporal
scales to highlight these biophysical interactions.

It is clear from this paper that UAVs and relevant image processing techniques offer
an advantageous tool for use within tidal stream environments. This can provide comple-
mentary and novel insights to go alongside outputs from conventional survey methods.
However, the appropriateness of the tool itself and relevant postprocessing methods must
be evaluated on a case-by-case basis. Within tidal stream environments, this must specifi-
cally consider potential environmental disturbance, the technological limitations of devices
themselves and the trade-off between image processing complexity and survey efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse11122298/s1, Table S1: literature examined in relation to
multirotor UAV advantages and limitations of use detailing origin, purpose and summary of work,
Table S2: literature examined in relation to UAV usage within tidal stream environments detailing
origin, purpose, UAV specifications and methodology, image processing techniques and summary
of work.
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