
Masked Capsule Autoencoders

Miles Everett, Mingjun Zhong, and Georgios Leontidis

Department of Computing Science, University of Aberdeen, UK
{m.everett.20, mingjun.zhong, georgios.leontidis}@abdn.ac.uk

Abstract. We propose Masked Capsule Autoencoders (MCAE), the
first Capsule Network that utilises pretraining in a self-supervised man-
ner. Capsule Networks have emerged as a powerful alternative to Con-
volutional Neural Networks (CNNs), and have shown favourable prop-
erties when compared to Vision Transformers (ViT), but have struggled
to effectively learn when presented with more complex data, leading to
Capsule Network models that do not scale to modern tasks. Our pro-
posed MCAE model alleviates this issue by reformulating the Capsule
Network to use masked image modelling as a pretraining stage before
finetuning in a supervised manner. Across several experiments and abla-
tions studies we demonstrate that similarly to CNNs and ViTs, Capsule
Networks can also benefit from self-supervised pretraining, paving the
way for further advancements in this neural network domain. For in-
stance, pretraining on the Imagenette dataset, a dataset of 10 classes of
Imagenet-sized images, we achieve not only state-of-the-art results for
Capsule Networks but also a 9% improvement compared to purely su-
pervised training. Thus we propose that Capsule Networks benefit from
and should be trained within a masked image modelling framework, with
a novel capsule decoder, to improve a Capsule Network’s performance on
realistic-sized images.

Keywords: Capsule Networks · Self Supervised Learning · Masked Im-
age Modelling

1 Introduction

Capsule Networks are an evolution of Convolutional Neural Networks (CNNs)
which remove pooling operations and replace scalar neurons with a fixed number
of vector or matrix representations known as capsules at each location in the
feature map. At each location there will be multiple capsules, each theoretically
representing a different concept. Each of these capsules has a corresponding
activation value between 0 and 1 which represents how strongly the network
believes the concept which the capsule represents is present at the location in
the feature map. Capsule Networks have shown promising signs, such as being
naturally strong in invariant and equivariant tasks [2, 7, 10, 17–19] while having
low parameter counts, but have yet to scale to more complex datasets with
realistic resolutions that CNNs and Vision Transformers (ViTs) are typically
benchmarked on.

ar
X

iv
:2

40
3.

04
72

4v
1 

 [
cs

.C
V

] 
 7

 M
ar

 2
02

4



2 M. Everett et al.

C
onv

B
ackbone

Prim
ary C

apsules

Conv Caps
C

apsule
D

ecoder

Target

Prediction

Mask tokens
reinserted

Per Patch Capsule
Representations

Per Patch Convolutional
Feature Map

Random
Patch

Selection

Split Image to Patches

Input

Flatten Reshape

Fig. 1: Our Masked Capsule Autoencoder architecture. During pretraining we ran-
domly select a number of patches from the original image to be processed. The Capsule
Network will then create a representation for each patch. Masked patch capsule repre-
sentations are then re-added before the capsule decoder, where the unmasked capsules
can contribute to the masked positions, which are finally decoded by a single linear
layer to the original patch dimensions. The pretraining objective is the mean squared
error between the reconstructed patches and the target patches. The dog image used
is sourced from the Imagewoof validation set [12].

Masked Image Modelling (MIM) is a Self Supervised Learning (SSL) tech-
nique with roots in language modelling [4]. In language modelling, words are
removed from passages of text, the network is then trained to predict the cor-
rect words to fill in the gaps. This technique can be extended to image modelling
by splitting an image into equal regions called patches, randomly removing some
of these patches and then requiring the network to predict the pixel values of
the removed patches. This has been shown to require the network to have an
improved world model in both Vision Transformers (ViTs) [8] and CNNs [23],
which is strong enough to reconstruct occluded areas from the remaining visi-
ble areas. Combining this technique with supervised finetuning, accuracy can be
significantly improved compared to not using any pretraining [8, 23].

We propose that MIM pretraining should be added to the training paradigm
of Capsule Networks to mitigate the weaknesses, as it will force the Capsule
Network to learn better representations at each area of the image to allow for
accurate reconstruction. These better local representations can then be utilised
at the finetuning stage for better activation of the correct global class capsules
which are added after pretraining.

The main contributions of this work can be summarised as follows:

1. We propose a novel adaption of Capsule Networks to accommodate masked
image modelling.



Masked Capsule Autoencoders 3

2. We have shown that classification accuracy with a Capsule Network can be
improved via self-supervised pretraining followed by supervised finetuning
compared to only supervised training.

3. We have improved the state-of-the-art on multiple benchmark datasets for
Capsule Networks, including realistically sized images where Capsule Net-
works typically perform very badly.

4. We implemented a fully capsule decoder layer, replacing the CNN decoders
which are typically used for reconstruction tasks in Capsule Networks to
ensure that our proposed MCAE model does not need a handcrafted decoder.

5. We provide the first investigation into the use of ViTs to replace the tradi-
tional convolutional stem.

The rest of this paper presents the necessary background on Capsule Net-
works, highlighting previous research that has inspired the work presented here.
We then formally define our new self-supervised capsule formulation called Masked
Capsule Autoencoders and present several experiments and ablation studies on
benchmark datasets. We conclude the paper by highlighting the main advan-
tages of our new methods, with some key takeaway messages and some future
directions that could further support the future developments of large-scale self-
supervised Capsule Network models.

2 Related Works

2.1 Capsule Networks

Capsule Networks are a variation of CNNs, which replace scalar neurons with
vector or matrix capsules and construct a parse tree, representing part-whole
relationships within the network. Each type of capsule in a layer of capsules can
be thought of as representing a specific concept at the current level of the parse
tree which is part of a bigger concept. Capsules in deeper layers are closer to the
final class label than capsules in shallower layers. The capsules in the lowest layer
can be thought of as the most basic parts which could be a part of any of the end
classes, thus are denoted as the primary capsules, signifying that they are the
base parts of the parse tree. Capsules in lower layers decide their contribution
to capsules in higher layers through a process called routing.

Capsule Routing, in brief, is a non-linear, cluster-like process that takes
place between adjacent capsule layers. This part of the network has been the
predominant research focus for state-of-the-art Capsule Networks, to find better
or more efficient methods of finding ways to decide the contribution of lower
capsules to higher capsules. In brief, the purpose of capsule routing is to assign
part capsules i = 1, . . . , N in layer ℓ to object capsules j = 1, . . . ,M in layer
ℓ+1, by adjusting coupling coefficients γ ∈ RN×M iteratively, where 0 ≤ γij ≤ 1.
These coupling coefficients have similarities to an attention matrix [22] which
modulates the outputs as a weighted average of the inputs. For more information
on the numerous routing algorithms proposed for Capsule Networks, please see
here [17].



4 M. Everett et al.

Dynamic Routing Capsule Networks are the original Capsule Network
architecture, as described in [19]. DR Caps employs a technique called dynamic
routing to iteratively refine the connections between capsules. This approach in-
troduces the concept of coupling coefficients which represent the strength of each
connection and updates them using a softmax function to ensure that each cap-
sule in a lower layer must split its contribution amongst capsules that it deems
relevant in the higher layer. The update process relies on agreement values calcu-
lated as the dot product between a lower-level capsule’s output and a predicted
output from a higher-level capsule. After a pre-determined number of iterations,
the activation of each higher-level capsule is calculated as the weighted sum
of the lower-level capsule activations, where the weights are the final coupling
coefficients.

Self-Routing Capsule Networks (SR-Caps) [7] address the heavy com-
putational burden of iterative routing algorithms in Capsule Networks by intro-
ducing a novel, independent routing mechanism. Each capsule in an SR-CapsNet
utilises a dedicated routing network to directly compute its coupling coefficients,
eliminating the need for iterative agreement-based approaches. This approach
draws inspiration from the concept of a mixture of experts network [16], where
each capsule acts as an expert specialising in a specific concept of the feature
space.

SR Caps achieve this by employing two trainable weight matrices, Wroute

and Wpose. These matrices represent fully connected layers for each capsule in
the subsequent layer. Within each routing network layer, capsule pose vectors
(ui) are multiplied by Wroute to directly generate coupling coefficients. These
coefficients are then normalised using softmax and multiplied by the capsule’s
activation scalar (ai) to generate weighted votes. Finally, the activation (aj) of
the capsule in the higher layer is calculated by summing these weighted votes
across spatial dimensions (H×W ) or across K×K dimensions for convolutions.

While SR Caps achieve competitive performance on standard benchmarks,
their reliance on pre-learned routing network parameters limits the network’s
ability to dynamically adjust routing weights based on the specific input, a char-
acteristic advantage of agreement-based routing approaches.

2.2 Masked Autoencoders

Masked Autoencoders [8] are a specific variant of ViTs which are pretrained via
a patch-specific reconstruction loss, tasking the network to reconstruct masked
patches based upon the information which can be learnt from the visible patches,
this can be seen visually in figure 4. An image is first split into N ×N patches of
equal size and are flattened, allowing for the tokenisation of an image akin to text
in a standard transformer [22]. To mask patches of the image, tokens are chosen
randomly up to a specified percentage of the total tokens and removed from
the sequence, removing the information from the feature map. The remaining
visible patches are then processed via a ViT. Once the encoder has finished
processing the visible patches, masked tokens are reinserted where the selected
visible tokens were once removed in the masking process. The network now uses a



Masked Capsule Autoencoders 5

ViT decoder to make predictions for these masked tokens utilising the attention
mechanism and multi layer perceptrons within the standard ViT blocks. This
process requires the network to learn how local areas might correspond to their
neighbouring patches by predicting the removed patches.

3 Masked Capsule Autoencoders

To create the MCAE we must first define how Capsule Networks can have their
feature maps masked. In CNNs this is a difficult task that is usually achieved
by setting areas of the feature map to 0, but this does not mask in the same
way as the masked autoencoder [8] as 0 masking has been shown to change the
distribution of pixels in the image [1] and thus effecting results. As such, in the
following section, we will discuss the changes we have made to allow for correct
masking within our MCAE.

3.1 Flattened Feature Map

2d patch feature map

1d patch feature map

2d capsule feature map

1d capsule feature map

 length 

 length 

 width  width 

height height

Fig. 2: A visual representation of how a 2D patch feature map or capsule feature map
with height and width is flattened into a 1D feature map with a length instead. At each
location, there is the same amount of different capsule types, each corresponding to a
different part or concept in the part-whole parse tree. The dog image used is sourced
from the Imagewoof validation set [12].

Vision Transformers can easily perform masking on a feature map, as patches
of the image can be removed from computation by simply removing selected
patches from the flattened sequence of patches after the patch embedding layer.



6 M. Everett et al.

Patchify Remove Patches
(Mask) Flatten

Fig. 3: A visual representation of the masking process. An image is split into non-
overlapping patches of N × N pixels. Randomly, a percentage, in this case, 50% of
patches are removed in order to deprive the network of information available in these
patches. The patches are then flattened into a 1D sequence of the remaining patches,
ready to be processed by our encoder. The dog image used is sourced from the Image-
woof validation set [12].

Capsule Networks on the other hand have traditionally used a 2D feature map,
which comes with the drawback that masking can only be achieved either via
replacing masked regions with 0’s or utilising sparse operations [23], which come
with their own drawbacks [1, 20].

Thus we propose that by flattening the 2D feature map into a 1D feature
map, mimicking the design of a ViT feature map, masking can be achieved in
the same way as in the Masked Autoencoder [8]. We thus achieve masking by
simply removing all capsules at a specific location along the length dimension of
our feature map.

3.2 Building Upon Self Routing Capsule Networks

We use the SR Caps Network [7] as a starting point due to its simplicity and
speed. We adjust the routing procedure such that rather than merging local
capsules within a H × W sliding kernel, we simply use a 1 × 1 region and only
route to the capsules in the upper layer at the same location in the 1D feature
map, meaning our network is fully isotropic in the encoder. This allows for a per-
patch parse tree to be constructed which is used to provide a pose representation
for each capsule at each patch in the feature map. When pretraining, we do not
route to a class capsule, instead, we reinsert a masked capsule placeholder at the
locations in the feature map which were previously removed after the encoding
stage, ensuring the feature map is ready for decoding to the original shape.

This feature map which now contains both encoded capsule representations
and a random noise-masked capsule representation is now fed through a capsule
layer which considers all capsules at all locations in the lower layer when creating
the pose vector and activation values of all capsules at all locations in the higher



Masked Capsule Autoencoders 7

layer, meaning that the encoded capsules can predict the values of the masked
regions. We call this layer the fully capsule decoder. These reconstructed regions
are then fed through a single linear projection layer which projects the activation
scaled pose vectors at each location into the correctly sized pixel values of the
original images patch at this location.

When finetuning, we remove the capsule decoder and add an additional class
capsule layer on top of the encoder. This new layer averages the activations per
capsule type along the H × W feature map, allowing for class predictions to be
made for supervised finetuning while leveraging the improved representations
from the pretrained encoder.

3.3 Loss Function

Full TargetFull Prediction Masked TargetMasked Prediction

Extract Reconstructions
and Targets from

masked patches only

Reconstructed Masked Token

Reconstructed Unmasked Token

Fig. 4: A visual representation of how our pretrain loss function selects patches for the
loss function defined in equation 1. The dog image used is sourced from the Imagewoof
validation set [12].

A crucial aspect of the pretraining stage of the MCAE involves training
the network to accurately reconstruct the masked portions of the input image.
To achieve this, we use the Mean Squared Error (MSE) loss, which quantifies
the difference between the actual pixel values of the masked patches and the
predicted pixel values generated by the capsule decoder. MSE loss is defined as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

where N represents the total number of pixels across all masked patches in
the training batch, yi is the actual value of the ith pixel in the masked patch,
and ŷi denotes the predicted value from our capsule decoder for the same pixel.
A visual representation of patch selection from the target and prediction can be
seen in figure 4.

The MSE loss aligns with our objective to minimize the difference between
the reconstructed and original patches, ensuring precise prediction of masked



8 M. Everett et al.

patch pixel values by the capsule decoder. It accentuates larger discrepancies by
squaring errors, thereby pushing the model to improve on significant deviations
and enhance reconstruction on each masked patch.

When finetuning for classification, the MSE loss is replaced with the cross
entropy (CE) loss, defined by:

CE = −
N∑
i=1

C∑
c=1

yic log(ŷic) (2)

where N is the number of samples, C the number of classes, yic indicates if
class c is correct for sample i, and ŷic is the average activation for each class c of
sample i. This loss encourages the model to activate the correct class capsules
with high confidence.

3.4 Backbone Selection

To ensure that information is completely masked out, we replace a standard
ResNet [9] or ConvNet backbone with a ConvMixer [21]. This architecture’s first
layer uses a kernel size and stride of equal size, known as a patch embedding
layer, allowing for our feature map to contain no overlapping information. This
ensures that when regions of the image are masked, information cannot be leaked
via the overlapping sliding convolutional kernel.

We also provide a set of architectures with a ViT backbone. This is achieved
by setting the dimension of each token’s representation to Number of Primary
Capsules × Primary Capsule Embedding Dimension allowing for an easy reshape
into the primary capsules tensor dimensions. To create the activations for the
primary capsules, we use a simple linear layer with sigmoid activation to ensure
that the value of the activation remains between 0 and 1.

4 Experiments

To validate that our method is successful, we have run numerous experiments
with various ablations on multiple datasets. These experiments validate that
masking is indeed effective for pushing the boundaries of Capsule Networks.

4.1 Experimental Setup

All of our experiments follow the same experimental setup, which is to optionally
pretrain the network minus the class capsules for 50 epochs with 50% of patches
removed on either removed patch or whole image reconstruction as a target. We
then add the class capsules to our network and fully finetune the network for
350 epochs, following the supervised training settings of [6,7]. A visual depiction
of the elements of the components of pretraining and finetuning can be found in
figure 5. All models use the SGD optimizer with default settings and the cosine
annealing learning rate scheduler with a 0.1 initial learning rate.



Masked Capsule Autoencoders 9

Pretrained
Feature
Extractor

Feature
Extractor

Capsule
Encoder

Pretrained
Capsule
Encoder

Class
Capsules

Capsule
DecoderPretrain

Finetune

Fig. 5: A visual depiction of the pretrain and finetuning components. We show how the
feature extracting CNN and capsule encoder are kept from the pretrain to finetune step.
The capsule decoder is discarded after pretraining and replaced with a class capsules
layer which maps the capsule encoder network to a classification output.

When a validation dataset has not been predefined, we randomly split 10%
of the training dataset to act as our validation dataset. The best model is tested
once on the test set of our datasets, with the best model being chosen based on
the epoch with the lowest validation loss.

4.2 Datasets

We validate our results on multiple datasets. For all of our benchmark datasets,
we use the augmentation strategy proposed in [6], which aligns with the aug-
mentations used in other capsule papers, as we are the first to provide results
on Imagenette, we define the augmentations to be exactly the same as the aug-
mentations for Imagewoof.

Initially, we provide a sanity check on the MNIST dataset [14], to provide
quick experimentation to ensure that our methods work at all. Next, we use both
the FashionMNIST and CIFAR-10 datasets [13,24], two datasets which are well
within the abilities of a standard Capsule Network and allow us to ensure that
we are not limited to the simplest of experiments. The SmallNORB dataset [15]
allows us to ensure that we are maintaining the equivariant properties and gener-
alisation abilities of Capsule Networks as the test set is specifically chosen to vary
substantially from the train set while remaining within a similar distribution. In
addition to standard classification accuracy on the SmallNORB dataset, we also
follow [7, 10, 18] and test our model on the novel azimuth and elevation tasks
to verify generalisation capabilities. Finally, we use the Imagenette and Image-
woof datasets [11,12] to test our networks performance on larger, more realistic



10 M. Everett et al.

Table 1: The results for a number of foundational Capsule Network models compared
to both the MCAE with masked pretraining and without. Showing the effectiveness of
masked pretraining when applied to Capsule Networks. We show results on the four
datasets that Capsule Networks are traditionally benchmarked on, as well as providing
results for the Imagenette and Imagewoof datasets which are subsets of the Imagenet
dataset. Unfortunately, it is computationally infeasible to train DR, EM or VB Caps
on these larger datasets due to their heavy VRAM requirements.

MNIST FashionMNIST CIFAR-10 SmallNORB Imagenette Imagewoof
DR Caps [19] 99.5 82.5 91.4 97.3 - -
EM Caps [10] 99.4 - 87.5 - - -
VB Caps [18] 99.7 94.8 88.9 98.5 - -
SR Caps [7] 99.6 91.5 92.2 92 45.2 32.5
ProtoCaps [6] 99.5 92.5 87.1 94.4 74.4 59.0
MCAE no PT 99.6 92.1 91.9 93.1 73.1 55.9
MCAE 99.6 95.0 92.8 95.0 82.1 61.8

datasets. Imagenette and Imagewoof take 10 different classes from the Imagenet
dataset [3]. Imagenette is designed to be easily differentiable and simply tests
our network’s ability to process larger, more complex images. While Imagewoof
is ten classes of dogs and is designed to be more difficult to differentiate between
classes due to the highly overlapping shared features between classes.

4.3 Results

Results on Image Classification: Table 1 presents the classification results
of key state-of-the-art Capsule Networks compared to our approach with no
pretraining and with pretraining on the datasets proposed in our experimental
design. MCAE with no pretraining is architectually similar to SR Caps Networks,
but with the 1D modification to the feature map and 1 × 1 kernels, along with
the other required changes to the computation to allow for this. This method
yields improved results over SR-Caps, but does not achieve state-of-the-art in any
dataset. However, when we apply the masked pretraining paradigm, our results
improve on all datasets except MNIST, pushing the MCAE with pretraining
to be state-of-the-art for Capsule Networks in all datasets except SmallNORB,
which is still dominated by iterative routing methods.

Backbone Choice: Leveraging a ConvMixer backbone [21] aligns with our
models’ requirement of a patch embedding layer to provide non-overlapping
patches of the image. ConvMixer’s feature maps are by default patchified, while
ViTs [5] utilise a patch embedding layer. Prompted by this similarity, we ex-
plored this as an ablation study. Our observation reveals that ViT-based models
underperform compared to those employing a convolutional backbone. Although
ViT models yielded better performance than vanilla ViTs on smaller datasets,
such as CIFAR-10 or SmallNORB, the overall results suggest that ConvMixers
offer a more suitable architecture for the MCAE.



Masked Capsule Autoencoders 11

Ful
l Im

ag
e R

eco
nst

ruc
tio

n
No P

T

ViT
 Back

bo
ne

MCAE

95

96

97

98

99

100

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

MNIST

Ful
l Im

ag
e R

eco
nst

ruc
tio

n
No P

T

ViT
 Back

bo
ne

MCAE

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

FashionMNIST

Ful
l Im

ag
e R

eco
nst

ruc
tio

n
No P

T

ViT
 Back

bo
ne

MCAE

80

85

90

95

100

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

SmallNORB

Ful
l Im

ag
e R

eco
nst

ruc
tio

n
No P

T

ViT
 Back

bo
ne

MCAE
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

Cifar10

Ful
l Im

ag
e R

eco
nst

ruc
tio

n
No P

T

ViT
 Back

bo
ne

MCAE

50

60

70

80

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

Imagenette

Ful
l Im

ag
e R

eco
nst

ruc
tio

n
No P

T

ViT
 Back

bo
ne

MCAE
30

35

40

45

50

55

60

65

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

Imagewoof

Fig. 6: Graphs depicting how the top 1 accuracy changes based on different ablations
of the MCAE per dataset. Full Image Reconstruction refers to a ConvMixer backbone
MCAE pretrained for 50 epochs on full image reconstruction. No PT refers to a Con-
vMixer backbone MCAE with no pretraining epochs. ViT Backbone refers to a ViT
backbone MCAE pretrained for 50 epochs on masked patch reconstruction. MCAE
refers to our best-performing model which utilises a ConvMixer backbone and masked
patch reconstruction. All models use the same linear SR Caps model which contains 3
layers, with 16 Capsules per layer and are finetuned for 350 epochs.



12 M. Everett et al.

Table 2: Results of experimentation with a ViT [5] with depth 4 backbone compared
to Capsule Networks with standard CNN backbone. The specific CNN which we use is
a ConvMixer [21] of depth 4 due to its easily scalable esoteric design being based on
the presumption that the image has been patchified, ensuring no information leakage
of masked regions due to a sliding window of overlapping convolutional kernels.

Vision
Transformer

Conv
Mixer

MNIST 99.6 99.6
FashionMNIST 91.1 95.0
SmallNORB 91.4 95.0
CIFAR-10 90.3 92.8
Imagenette 68.4 82.1
Imagewoof 55.4 61.8

Table 3: This table compares performance across our target datasets for MCAE pre-
training based upon reconstructing both visible and masked patches versus those fo-
cusing on masked patches only. Results show equal or superior performance for models
reconstructing masked patches only, across all datasets.

Visible and
Masked Patches

Masked
Patches Only

MNIST 99.6 99.6
FashionMNIST 88.4 95.0
SmallNORB 82.0 95.0
CIFAR-10 84.8 92.8
Imagenette 45.1 82.1
Imagewoof 32.5 61.8

Reconstruction Target: While the masked autoencoder [8] framework that
we build upon only reconstructs masked patches, we also provide results where
the reconstruction objective includes visible patches. Reconstructing based upon
the whole image is inspired by DR Caps [19] using a full image reconstruction ob-
jective along with the classification objective in order to regularise the network.
The results are shown in table 3 and show that reconstructing masked patches
is the best method, with reconstructing all patches providing significantly worse
results.

SmallNORB Novel Viewpoint: In order to verify that we retain the novel
viewpoint generalisation capabilities of Capsule Networks, we use the novel az-
imuth and elevation tasks of the SmallNORB dataset. We replicate the exper-
imental design of [7, 10] and conduct two experiments. 1) Training only on az-
imuths in (300, 320, 340, 0, 20, 40) and test on azimuths in the range of 60 to
280. 2) Training on the elevations in (30, 35, 40) degrees from horizontal and
then testing on elevations in the range of 45 to 70 degrees. In table 4 we com-
pare our accuracy on the test set on both the seen and unseen viewpoints. We



Masked Capsule Autoencoders 13

Table 4: Comparing novel viewpoint generalisation on the SmallNORB novel azimuth
and elevation tasks [15]. Results for DR, EM and SR Caps are from [7] and results for
VB Caps are taken from [18].

Azimuth Elevation

Familiar Novel Familiar Novel

DR Caps 93.1 79.7 94.2 83.6
EM Caps 92.6 79.8 94.0 82.5
VB Caps 96.3 88.7 95.7 88.4
SR Caps 92.4 80.1 94.0 84.1

MCAE 93.2 85.6 95.3 86.1

pretrain for 50 epochs and finetune for 350 epochs, the same as our best model
for SmallNORB in table 1.

We do not achieve state-of-the-art results on this task, but do outperform
all Capsule Networks except for VB Caps [18], showing that masked pretraining
does not remove the generalisation capabilities of our network.

5 Conclusion

We have proposed the Masked Capsule Autoencoder model, the first capsule
architecture trained in a self-supervised manner, which can be a step change
in the development of scalable Capsule Network models. Extensive experiments
demonstrate that MCAE outperforms other Capsule Network architectures on
almost all datasets, with particularly favourable results on higher-resolution
images. Considering the unique and well-established advantages that Capsule
Networks have around capturing viewpoint equivariance and viewpoint invari-
ance [17] compared with Transformers and CNNs, our model is a step towards
developing large and scalable Capsule Network models. These models can com-
pete on equal terms with the likes of Transformers and CNNs.

We would consider the drawbacks of our method to be in the fully capsule
decoder. In the Masked Autoencoder paper [8] they state that the pretraining
loss was continuing to decrease at the point at which they stopped pretraining at
1600 epochs. While our reconstruction loss plateaus much quicker, to the point
where it does not decrease any further after the 50 epochs which we pretrain
for, indicating that there is a point at which our model has reached the best
reconstructions that it can achieve. While we have shown that the pretrain-
ing stage improves the maximum classification accuracy for all datasets except
MNIST (due to very fine margins for quantifiable improvement), if an improved
decoding mechanism can be found to benefit from additional masked pretraining,
the peak classification accuracy could likely be higher. In addition, the decoder
is computationally heavy due to the need to consider the entire feature map,
thus increasing training time and VRAM requirements significantly compared
to when no finetuning is used.



14 M. Everett et al.

References

1. Balasubramanian, S., Feizi, S.: Towards improved input masking for convolutional
neural networks (2023)

2. De Sousa Ribeiro, F., Leontidis, G., Kollias, S.: Introducing routing uncertainty in
capsule networks. Advances in Neural Information Processing Systems 33, 6490–
6502 (2020)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR abs/1810.04805 (2018),
http://arxiv.org/abs/1810.04805

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

6. Everett, M.A., Zhong, M., Leontidis, G.: Protocaps: A fast and non-iterative cap-
sule network routing method. Transactions on Machine Learning Research (2023)

7. Hahn, T., Pyeon, M., Kim, G.: Self-routing capsule networks. Advances in neural
information processing systems 32 (2019)

8. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners (2021)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

10. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with em routing. In: Inter-
national conference on learning representations (2018)

11. Howard, J.: Imagenette: A smaller subset of 10 easily classified classes from ima-
genet (March 2019), https://github.com/fastai/imagenette

12. Howard, J.: Imagewoof: a subset of 10 classes from imagenet that aren’t so easy to
classify (March 2019), https://github.com/fastai/imagenette#imagewoof

13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

14. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)

15. LeCun, Y., Huang, F.J., Bottou, L., et al.: Learning methods for generic object
recognition with invariance to pose and lighting. In: CVPR (2). pp. 97–104. Citeseer
(2004)

16. Masoudnia, S., Ebrahimpour, R.: Mixture of experts: a literature survey. The Ar-
tificial Intelligence Review 42(2), 275 (2014)

17. Ribeiro, F.D.S., Duarte, K., Everett, M., Leontidis, G., Shah, M.: Learning with
capsules: A survey. arXiv preprint arXiv:2206.02664 (2022)

18. Ribeiro, F.D.S., Leontidis, G., Kollias, S.: Capsule routing via variational bayes.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp.
3749–3756 (2020)

19. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. Advances
in neural information processing systems 30 (2017)

20. Tian, K., Jiang, Y., Diao, Q., Lin, C., Wang, L., Yuan, Z.: Designing bert for
convolutional networks: Sparse and hierarchical masked modeling (2023)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette#imagewoof
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/2206.02664


Masked Capsule Autoencoders 15

21. Trockman, A., Kolter, J.Z.: Patches are all you need? (2022), https://
openreview.net/forum?id=TVHS5Y4dNvM

22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. CoRR abs/1706.03762 (2017), http:
//arxiv.org/abs/1706.03762

23. Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I.S., Xie, S.: Convnext
v2: Co-designing and scaling convnets with masked autoencoders (2023)

24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

https://openreview.net/forum?id=TVHS5Y4dNvM
https://openreview.net/forum?id=TVHS5Y4dNvM
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1708.07747

	Masked Capsule Autoencoders

