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Abstract
We introduce methods to apply stochastic frontier analysis (SFA) to financial assets as an
alternative to data envelopment analysis, because SFA allows us to fit a frontier with noisy
data. In contrast to conventional SFA, wewish to deal with estimation risk, heteroscedasticity
in noise and inefficiency terms. We investigate measurement error in the risk and return
measures using a simulation–extrapolation method and develop residual plots to test model
fit. We find that shrinkage estimators for estimation risk makes a striking difference to model
fit, dealing with measurement error only improves confidence in the model, and the residual
plots are vital for establishing model fit. The methods are important because they allow us
to fit a frontier under the assumption that the risks and returns are not known exactly.

Keywords Stochastic frontier analysis · Estimation risk · Shrinkage estimators · Residual
plot · Measurement error · Data envelopment analysis

1 Introduction

For more than 20 years data envelopment analysis (DEA) has been accepted as the method
to fit frontiers and estimate efficiencies of various financial assets (see, for example, Liu
et al. (2015)). We know of only two attempts to use stochastic frontier analysis (SFA), its
close relative, to fit frontier to a set of assets (Santos et al., 2005; Ferreira & Oliveira, 2016)
(though it is used more broadly in finance (Daraio et al., 2020)). This is surprising. DEA and
SFA (Bogetoft & Otto, 2011) are the two most important of a number of methods (Wu et al.,
2011) for frontier fitting and efficiency estimation. We should choose a method because it is
appropriate, not merely because it is convenient.
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DEA and SFA were not developed for financial assets but for production economics.
There the problem is to estimate how much of various outputs is possible with various
inputs. We apply them to financial assets using an analogy: return behaves like an output
and risk measures behave like inputs. The analogy is imperfect. Some assumptions from
production economics, such as free-disposability and convexity (Bogetoft & Otto, 2011),
remain reasonable. Others do not. Typically production inputs are measured in comparable
units and are not reduced by diversification, but this is not always true of risks (Lamb & Tee,
2012b). And there is invariably uncertainty in the estimates of risk and return measures (Xiao
et al., 2021; Lamb & Tee, 2012a).

There are three reasons to think SFA might be a better choice for financial assets than
DEA. First, DEA assumes inputs and outputs are fixed and known. But measures of financial
assets such as mean and standard deviation are never more than realisations of random vari-
ables (from sampling distributions). Thus, a stochastic (involving random variables) model
such as SFA is more appropriate than a deterministic model such as DEA. Second, while
financial-asset frontier models can have several inputs (risk measures), they nearly always
use exactly one output (mean return), the easiest case to fit with SFA. Third, the assumption
of nonincreasing returns to scale and a smooth frontier that passes through the origin (Lamb
& Tee, 2012a) is precisely what SFA fits.

The objective of this article, then, is to develop methods to allow us to apply SFA in
modelling investment fund performance and so help close the gap between the extensive
literature on DEA and the surprisingly limited literature on SFA for investment funds. The
relevance of SFA is that it is better suited than DEA to situations where there is uncertainty
in the input and output measures. So the motivation of this article is to answer the question,
given that it is better suited, how can we apply SFA to model investment funds?

In practice it is difficult to fit standard SFA models to financial asset data. When we
consider the nature of the data it becomes clear that there are several challenges to overcome
and we are unlikely to be able to use the multiplicative translog models (Bogetoft & Otto,
2011) most commonly used in production economics.

The first challenge is estimation risk (Jorion, 1986), which causes sample estimators to
overestimate the largest and underestimate the smallest observed statistics. As far as we know
it has not been considered before in any SFA, or even DEA, model. We will see that the effect
on the estimate of the frontier can be dramatic.

Randomness occurs not just in the position, relative to the efficient frontier, of individual
assets, but in the measurement of their inputs and outputs (Xiao et al., 2021). This second
challenge is called measurement error (Carroll et al., 1998) and can potentially affect the fit
of a model.

The final challenge is to find a suitable model and develop a method to fit it. Multiplica-
tive SFA models are common in production economics. But we cannot use multiplicative
assumptions about the distributions of noise and inefficiency terms when we use risk as an
input and return as an output. The assumptions of an additive model are more plausible. But
if we use an additive model we need to develop new models to deal with heteroscedasticity
in the regression residuals. We also develop methods to test the quality of fit.

Our contribution is this.We overcome the three challenges that have limited the use of SFA
by developing several new SFA models for financial assets, show how to fit them and how to
deal with measurement error. To make it practical for others to fit these models we provide an
R (R Core, 2020) package, including a method, similar to residual plots in linear regression
analysis, to visualise the residuals of our SFAmodels and check the model assumptions. This
method should be useful for any SFA model, including those with multiple inputs. We test
our methods on real data taken from various asset returns.
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2 Background

SFA was developed by Meeusen & van den Broeck (1977) and by Aigner et al. (1977).
Bogetoft & Otto (2011) provide a good introduction. We fit a frontier

y = f (x;β) + v − u, (1)

where f is a production function, v is a noise and u > 0 an inefficiency term.
This is an additive SFAmodel. We choose it rather than the multiplicative model y =
f (x;β) exp(v) exp(−u) (Bogetoft & Otto, 2011) [Table 7], because it allows us to make
more plausible assumptions about the distributions of u and v and dealwith heteroscedasticity
separately.

SFA was developed for production economics, not financial assets; so we should explore
what risk and returnmeasures andwhat formof f make sense in the context of financial assets.
We first note that it is very rare to use a return other than the mean return. So, a single-output
model makes sense. It is also convenient, because SFA, like regression, is well-developed for
multiple inputs, but so far allows only one output. There are many possible risk measures and
it is tempting, for example, to use variance or excess kurtosis. When estimating efficiency
it is preferable (Lamb & Tee, 2012a) to use risk measures in the same units as the return
measure. This excludes excess kurtosis and variance, but not standard deviation. Coherent
measures of risk (Artzner & Delbaen, 1999) such as conditional value-at-risk have become
more and more common because they have properties that are desirable when comparing
risks of different assets. In particular coherent measures of risk, in common with standard
deviation, are convex functions: if the risk of an asset represented by random variable A is
given by x(A) then, for t ∈ [0, 1],

x(t A + (1 − t)B) ≤ t x(X) + (1 − t)x(B).

All the coherent measures of risk we know of are measured in the same units as mean return.
If we allow only mean return as the return measure and coherent measures of risk or

standard deviation as the riskmeasure, what does this tell us about the form of f ? First, we can
assume f (0) = 0, because we can always obtain zero mean return with zero risk. Plausibly
we may also obtain a positive return with zero risk. But we can handle this by subtracting a
risk-free rate of return. Second, we assume the efficient frontier is non-decreasing, ∇ f > 0
by assuming free disposability of risks: that is, if we can obtain a higher return with lower
risk, we assume that we can more efficiently obtain the same higher return by freely taking
on extra risk with no return through some financial investment. In practice, we do not know
of such an investment, though gambling allows a good approximation. Third, the choice of
return and risk measures satisfy

y(t A + (1 − t)B) = t y(A) + (1 − t)y(B) (2)

x(t A + (1 − t)B) ≤ tx(A) + (1 − t)x(B) (3)

for t ∈ [0, 1] and random variables A and B representing assets. From ∇ f > 0 and Eq. (3)
we have

f (tx(A) + (1 − t)x(B)) ≥ f (x(t A + (1 − t)B))

= t f (x) + (1 − t) f (x(B))

by Eq. (2). It follows that f is concave or, equivalently, ∇2 f is negative semidefinite.

123



894 Annals of Operations Research (2024) 332:891–907

The properties we have found for f , f (0) = 0, ∇ f > 0 and f concave, are satisfied by

f (x1, . . . , xp) = β0x
β1
1 · · · xβp

p

withβ0 > 0,β1, . . . , βp ∈ (0, 1) andβ1+· · ·+βp ≤ 1,which is aCobb–Douglas production
function.

Although the methods we develop can be applied with multiple risk measures, we focus
on mean–standard-deviation frontiers. That is, we consider the case where y is the mean
return and x is the standard deviation in the return because standard deviation is the only risk
measure for which we currently have methods to handle estimation risk (Sect. 3.2). In this
case the Cobb–Douglas production function is

f (x) = β0x
β1 (4)

with β0 > 0 and β1 ∈ (0, 1). The noise term v and smooth frontier also make SFAa natural
choice for fitting a frontier, because we expect substantial random variation and not just
inefficiency in the performance of an individual asset.

By contrast, DEA(Bogetoft & Otto, 2011) has been applied much more widely to fitting
frontiers and estimating inefficiency of assets or portfolios (see, for example, Gregoriou et al.
(2005)). DEA fits a piecewise continuous frontier rather than a smooth one. More plausible
frontiers, using diversification-consistent models with nonincreasing returns to scale (Lamb
& Tee, 2012a; Liu et al., 2015; Branda, 2015), have recently been developed. The form of
these is closer to that more naturally produced by SFA. And recently (see, for example, Lamb
& Tee (2012b)) there have been attempts to deal with the stochastic nature of the data.

Although there are stochastic versions of DEA (Olesen & Petersen, 2016), SFA remains
the more natural choice when we posit both an inefficiency and a noise in fitting the frontier.
But to use it well, we need to consider three issues: the choice of v and u, estimation risk
and measurement error. In fact, all but the choice of u should ideally be considered for DEA
models too, though we restrict our discussion to SFA.

Typically, v is assumed normal withmean zero and variance σv and u half-normal. Normal
noise is plausible because it is the error arising from estimating y of Eq. (1) from a sample
mean. The half-normal distribution gives positive inefficiency. While its shape has been
questioned and others suggested (see Papadopoulos (2021)), the mean–standard-deviation
frontier presents a different issue: we expect σv to be proportional to x and σu to increase,
perhaps proportionally, with x or y.

We ought to consider estimation risk when fitting a mean–standard-deviation frontier.
When we have n assets or portfolios with similar means and large variances and estimate the
means with a multivariate sample mean, the smaller sample means will tend to underestimate
and the larger, overestimate the population mean so that we should expect to overestimate the
slope of the frontier. Formally, estimation risk is the expectation of a risk function (usually
mean-squared difference between population and sample), and is something we wish to
minimise (Jorion, 1986). It gets worse as n increases (Frost & Savarino, 1986) and affects
statistics other than the mean. There are methods to reduce, though not eliminate, estimation
risk for both the mean (Jorion, 1986) and covariance matrix (Ledoit & Wolf, 2004, 2017)
and these are commonly used in related research areas (Herold & Maurer, 2006; Michaud
& Michaud, 2007; Alexander et al., 2009; Antoine, 2012; Davarnia & Cornuéjols, 2017;
DeMiguel et al., 2013).

Usually we can assume x and y are measured without error in SFA. But when x and y
are the standard deviation and mean of assets, we observe

w = x + ψ and d = y + κ
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where ψ and κ are random variables with mean 0. These are called measurement errors
(Carroll et al., 1998; Buonaccorsi, 2010) and can influence the coefficients of a regression
model such as those we use to fit Eq. (4). As far as we know measurement error has not been
considered in any SFA model. One way to deal with it is simulation extrapolation (simex)
(Cook & Stefanski, 1994). We can assume that ψ and κ are uncorrelated, but not that they
are normal or have constant variance, as required for the original, parametric, simex. But we
can generate repeated measurements for w and y, and so adapt the empirical simex method
of Devanarayan & Stefanski (2002) to extrapolate model parameters without measurement
error.

3 Amethodology for mean–standard-deviation SFA

Wewish tofit anSFAfrontier of the formofEq. (1)where x is standard deviation and y ismean
and so estimate the efficiency of individual assets. To do this we must solve three problems.
First, we find a way to deal with heteroscedasticity in both u and v. Section 3.1 does this and
then develops a method to test the SFAfit. Second, Sect. 3.2 shows it is straightforward to
deal with estimation risk. Third, Sect. 3.3 deals with measurement error.

While estimation risk and measurement error are issues for assets or portfolios, note that
the methods of Sect. 3.1 can be applied to any SFA.

3.1 Fitting SFA with heteroscedasticity in u and v

The frontier we fit should pass through the origin and have nonincreasing returns to scale
(Lamb&Tee, 2012a), and while we do not here deal directly with diversification-consistency
(Lamb & Tee, 2012a; Liu et al., 2015; Branda, 2015), we expect the SFAfrontier shape to be
close to that of a diversification-consistent frontier where there are few data points near the
frontier.

We assume that f of Eq. (1) has the form of Eq. (4), v ∼ N
(
0, (rv(x))2

)
, u is half-normal

with density

hu|x (z) =
√

2

π

1

ru(x)
exp

(

−1

2

(
z

ru(x)

)2
)

(z ≥ 0)

for some functions rv and ru , and u and v are conditionally independent: that is,

fv,u|x (w, z | x) = fv|x (w | x)hu|x (z | x).

We consider three possibilities:

rt (x) = σt , rt (x) = xσt , rt (x) = β0x
β1σt , (t ∈ {u, v}). (5)

That is,we allow the error in v oru to be constant, proportional to x or (cf. Eq. (4)) proportional
to y. To fit an SFA frontier we choose rv and ru , estimate σv and σu , and check how well the
model fits the assumptions made by the choices of rv and ru .

As is usual in SFA, we fit σv and σu using maximum likelihood estimation. Write σ 2 =
(rv(x))2 + (ru(x))2, λ = ru(x)/rv(x) and � for the standard normal distribution function.
Then we can write εx = v − u = y − β0x β1 , and substitute rv(x) and ru(x) for σv and σu
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in Eq. (7.10) of Bogetoft & Otto (2011) to get the density of εx :

φε(εx ) = 2�

(
−λεx

σ

)
1√
2πσ 2

exp

(
−1

2

(εx

σ

)2)
, (6)

which is a skew-normal distribution (Azzalini & Capitanio, 2013). Here we just modify the
usual definition of the density to allow for different forms of heteroscedasticity in v and
u. When we have observations (x1, y1), . . . , (xn, yn) we define εi = yi − β0x β1 , σ 2

i =
(rv(xi ))2 + (ru(xi ))2 and λi = ru(xi )/rv(xi ), and compute the log-likelihood function by
summing the logarithm of Eq. (6) over all n observations:

l(σv, σu, β0, β1) = −n

2
log

(π

2

)
+

n∑

i=1

(

− log σi + log�

(
−λi

σi
εi

)
− 1

2

(
εi

σi

)2
)

. (7)

We then obtain estimates of σv , σu , β0 and β1 by maximising the log-likelihood function.
Equation (5) allow us to fit up to nine different SFAmodels. So we want some way both to

compare models and to check that the residuals εi of an individual model fit the assumptions
we make. In a linear regression model we would plot the standardised regression residuals
against the regression predicted values to test these assumptions.We develop a similarmethod
that can be used for SFA.

If the model assumptions are correct then, see Eq. (6), the residual εi is a random variate
from a distribution with density

φε(xi ; λi , σi ) = g(xi/σi ; λi )/σi where g(x, λ) = 2�(−λx)φ(x).

Since g is a skew-normal distribution we can use efficient numerical methods (Azzalini
& Capitanio, 2013)[Section 2.1.5] to evaluate its distribution function G(x; λ) and thus the
distribution function for εi ,

�ε(xi ; λi , σi ) = G (xi/σi , λi ) /σi .

Then, if the model assumptions are correct,

zi = �−1(�ε(xi ; λi , σi )) ∼ N (0, 1). (8)

So we can check the model assumptions by plotting zi against β0x
β1
i (i = 1, . . . , n) as we

do, for example, in Fig. 2.
We use SFA to estimate the technical efficiency of individual asset k in an additive SFA

model,

ρk = 1 − E[uk | εk]/β0x
β1
k

(Bogetoft & Otto, 2011)[Eq. (7.1’)]. Since E[uk | εk] depends only on the distributions of u
and v at xk , we can adopt Eq. (7.17) of Bogetoft & Otto (2011) to estimate

E[uk | εk] = σk,∗
(

φ(εk,∗)
1 − �(εk,∗)

− εk,∗
)

where εk,∗ = εk
λk

σk
, σk,∗ = rv(xk)ru(xk)

σk
.

3.2 Estimation risk

For fitting an SFA model, we assume we have returns for n assets over T time peri-
ods, from which we can estimate sample mean and sample standard deviation vectors
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Fig. 1 SFA fit for FTSE 100 stocks

y = (y1, . . . , yn)	 and x = (x1, . . . , xn)	. Although these are unbiased, setting θ = E[y]
does not minimise the risk function

(θ − μ)	
−1(θ − μ) (9)

whereμ is the vector of true mean returns of the assets and
 is the covariance matrix (Stein,
1955). The lower means tend to be underestimated and the higher ones overestimated so that
a James–Stein estimator (James & Stein, 1961),

ŷ = (1 − α)y + αy1, (10)

where y is the mean of y1, . . . , yn and 1 is a vector of ones of length n, has lower risk for
some α ∈ [0, 1). We set, for some estimator S of the covariance matrix,

α = n + 2

n + 2 + T (y − y1)	S−1(y − y1)
(11)

(Jorion, 1986)[Eq. (17)]. This does not necessarily minimise risk function (9) but gives a
shrinkage estimator, which gives a better estimate than the sample mean for fitting SFA. We
use this shrinkage estimator because it is well-established in the finance literature and shrinks
towards the mean of all the estimates of means rather than the less plausible target of 0 of
many earlier shrinkage estimators.

We can also reduce estimation risk in the sample covariance matrix using recently-
developed shrinkage estimators (Ledoit &Wolf, 2004, 2017).We use the nonlinear shrinkage
estimator of Ledoit &Wolf (2017) to estimate both S in Eq. (11) and the standard deviations
of the asset returns. It has no explicit formula but is implemented in an R-package (Ram-
prasad, 2016). Like Eq. (9), there is good evidence that this shrinkage estimator works well
in practice.

We show the sample and shrinkage estimators for the mean and standard deviation as
hollow and filled circles for each of a set of stocks, together with grey lines joining each
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Fig. 2 Standard normalised residuals for four SFA models for FTSE 100 stocks

pair of circles in Figs. 1, 4, 5 and 6. We write xi and yi for both the sample and shrinkage
estimators of asset i , because the context will indicate which is meant.

3.3 Measurement error

The estimators of the coefficients σv , σu , β0 and β1 of the model of Sect. 3.1 are called naive
estimators because the model does not account for the measurement errors in the estimates
of x and y that arise from sample data. We do not observe xi and yi (i = 1, . . . , n) but rather

wi = xi + ψi and di = yi + κi ,

where ψi and κi are measurement errors satisfying E[ψi ] = E[κi ] = 0, var(ψ) = τ 2ψ,i

and var(κi ) = τ 2κ,i . We can reasonably assume ψi and κi are independent. Here xi and yi
are the mean and standard deviation of a distribution. If we assume that the distribution
is approximately normal and the samples are independent, then wi and di are observations
from the sampling distributions of the sample mean and sample standard deviation, which are
independent. Hence ψi and κi are independent. In practice, we can assume the distribution
is approximately normal and the sample values obtained as if from independent samples so
that the assumption of independence is reasonable.

We wish to take account of these measurement errors because they may lead us to misesti-
mate the coefficients of the SFAmodel. One way to do this is to use simulation extrapolation
(simex) (Cook & Stefanski, 1994) , which give consistent and unbiased estimators Suppose
we wish to estimate a coefficient β. Define β(λ) to be the expected value of the SFAnaive
estimator of β if var(ψi ) = (1 + λ)τψ,i and var(κi ) = (1 + λ)τκ,i . Then we can always
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Fig. 3 Simex extrapolation plots for FTSE 100 stocks

Fig. 4 SFA fit and standard normalised residuals for Standard and Poor stocks

estimate β(0). And if we can simulate data to estimate β(λ) for several values of λ > 0 we
can extrapolate a value for β(−1), the coefficient without measurement error.

We estimate standard deviation and mean from T time periods, which means that we can
use bootstrap replications of the data to estimate the distributions of ψi and κi . This means
we can adapt the empirical simex method of Devanarayan & Stefanski (2002). If the asset
returns are rti (t = 1, . . . , T , i = 1, . . . , n) then we generate M bootstrap replications by
choosing u(m, t) uniformly with replacement from 1, . . . , T and setting

rmti = ru(m,t),i (m = 1, . . . , M).
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Fig. 5 SFA fit and standard normalised residuals for Nikkei stocks

(In practice we choose M = 2000, which is typical for the bootstrap.) Write di andwi for the
mean and standard deviation of r1i , . . . , rT i , and dmi and wmi for those of rm1i , . . . , rmT i .
Then dmi andwmi are resampled estimates for di andwi . But, we wish to resample shrinkage
estimators. If d∗

i and w∗
i are the shrinkage estimators for the means and standard deviations

of the asset returns then it is straightforward to check that

d∗
mi = (dmi − di )

w∗
i

wi
+ d∗

i and w∗
mi = wmi

w∗
i

wi

are resampled estimates for the shrinkage estimators.
We can use these estimates in empirical simex. We give the details of the calculations,

because we modify the method of Devanarayan & Stefanski (2002) to include an error in y
and not just x . First, we choose B (in practice we use B = 2000) and let

zb,i,m (i = 1, . . . , n, m = 1, . . . , M, b = 1, . . . , B)

be standard normal variates. Then we calculate

zb,i = 1

M

M∑

m=1

zb,i,m and cb,i,m = zb,i,m − zb,i√∑M
m=1

(
zb,i,m − zb,i

)2
.

Then we define

w∗
i = 1

M

M∑

m=1

w∗
i,m, d

∗
i = 1

M

M∑

m=1

d∗
i,m (i = 1, . . . , n).

using the resampled estimates for the shrinkage estimators.
For each value of λ for whichwewish to estimate β(λ) for some coefficient β we compute,

for b = 1, . . . , B,

w∗
b,i,λ = w∗

i +
√

λ

M

M∑

m=1

cb,i,mw∗
i,m and d∗

b,i,λ = d
∗
i +

√
λ

M

M∑

m=1

cb,i,md
∗
i,m

and estimate the coefficients of

d∗
b,i,λ = β0;b,λw

∗ β1;b,λ
b,i,λ + v∗

i;b,λ − u∗
i;b,λ

by the maximum likelihood method of Sect. 3.1. We then estimate β0;λ, β1;λ and (usually)
σv;λ and σu;λ as the averages of the B estimates of these coefficients. And we estimate β0, β1,
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Fig. 6 SFA fits for DAX stocks and hedge funds

σv and σu using one of the standard extrapolation methods (Cook & Stefanski, 1994; Carroll
et al., 1998). These first fit the estimates β(λ) to a model β(λ) = g(λ), then extrapolate to
get β(−1) as an estimate of β. There is no one right function g. Typically either the rational
or quadratic extrapolant,

g(λ) = c1 + c2
c3 + λ

or g(λ) = c1 + c2λ + c3λ
2, (12)

are used. The first has better theoretical justification. The second is more stable. Typically we
test both, together with a linear extrapolant, and plot the best fits (see Fig. 3) before choosing
a value for β.

3.4 Implementation

We implement our methods in an R (R Core, 2020) package, using C++ (Eddelbuetel, 2013)
when R code would be too slow.

We use the nlshrink R-package (Ramprasad, 2016) for covariance and compute mean
shrinkage using Eqs. (10)–(11) with the shrinkage covariance estimate. We implement
SFAfitting as described in Sect. 3.1, using the C++ with the GNU scientific library (Galassi
et al., 2009) to compute the log-likelihood function (7) and also to maximise it (we use the
Nelder–Mead simplex method because it is convenient and easy to implement). We also use
the GNU scientific library to compute G(x; λ) numerically and so compute zi in Eq. (8) to
produce residual plots to test model fit. We implement simex in R as described in Sect. 3.3.

4 Fitting SFA to historic asset returns

We now test the methods of Sect. 3 on some real data. The data we use are stocks in each
of the FTSE 100 (61 stocks), Standard and Poor (S&P, 326 stocks) and Nikkei (183 stocks)
indices together with DAX and hedge-fund data described below. For each of these stocks
we obtain 300 consecutive monthly returns to the beginning of June 2019 from Datastream
(2019). As usual in efficiency modelling for asset returns, we ignore time-series effects when
estimating mean and standard deviation, though our methods could be adapted to consider
them. Since we fit historic asset returns rather than prices, we expect the data to exhibit
stationarity. Nonetheless, we use augmented Dickey-Fuller (ADF) tests to test for unit roots.
The p-values were negligible except for two hedge funds with p-values of (0.0591) and
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Table 1 Summary statistics for data

Quantile
Statistic Stocks 0 0.25 0.5 0.75 1

Mean FTSE 0.068 0.583 0.873 1.04 2.527

S&P 0.301 0.863 1.115 1.482 3.387

Nikkei − 0.288 0.36 0.58 0.798 1.657

Standard deviation FTSE 4.984 6.616 7.707 9.047 16.111

S&P 4.674 7.192 8.6 10.637 24.937

Nikkei 5.005 8.343 9.755 11.16 18.157

Skewness FTSE − 0.69 − 0.055 0.028 0.23 2.003

S&P − 1.709 − 0.132 0.108 0.431 5.318

Nikkei − 0.289 0.01 0.245 0.516 7.143

Kurtosis FTSE − 0.127 1.082 1.946 3.573 23.518

S&P − 0.225 1.252 2.078 3.796 56.28

Nikkei − 0.147 0.568 1.28 2.459 89.716

(0.57). For purpose of verification, we re-test for unit roots using the Philips–Perron (PP)
method, 1

Table 1 shows summary statistics for the monthly percentage stock returns. The values of
skewness and kurtosis immediately suggest many of the returns are not plausibly normally or
lognormally distributed. However, we are not fitting the returns, but rather estimates of their
means and standard deviations, which, by the central limit theorem, are much more likely
to be approximately normally distributed. So a translog function and multiplicative model,
which would assume lognormally distributed mean returns, are not appropriate, even if we
could find a way to deal with the negative mean returns in the Nikkei data. On the other hand,
an additive model assumes approximately normal mean returns, which are plausible here.

Figure 1 shows the means and standard deviations of the ftse stocks. For each stock, we
show the sample mean and standard deviation by an unfilled circle and the shrinkage mean
and standard deviation by a filled one. We join the circles by a grey line to show the effect of
using shrinkage estimators. We fit an SFA model

y = β0x
β1 + v − u

using the shrinkage estimators and rv(x) = xσv and ru(x) = σu ; see Eq. (5). That is, we
assume the standard deviation in the noise is proportional to x while that of the inefficiency
is constant and find estimates of the coefficients

β0 = 0.387, β1 = 0.366, σv = 0.018 and σu = 0.003. (13)

The solid black line shows the SFA efficient frontier. The dotted line shows the SFA frontier
for the sample means and standard deviations with the same model assumptions. It also
shows that how much estimation risk can distort our estimate of the frontier. The technical

1 We conducted all unit root tests using EViews with its standard set up. Both the ADF and the PP test for
unit root are on level and include trend and intercept in the test equation. The set up includes a maximum
of 11 lags for the ADF test based on the Schwarz information criterion. For PP we use the Newey–West test
bandwidth. Since there are 950 tests, we do not report the details further and infer that the data are plausibly
stationary with any evidence of unit roots plausibly attributable to chance which suggest stationarity for all
our data.

123



Annals of Operations Research (2024) 332:891–907 903

efficiencies of the stocks range from 0.9969 to 0.9979, reflecting the small σu . The model
assigns nearly all the variation in stock performance (relative to the frontier) to noise.

The dashed grey line in Fig. 1 shows, for comparison, an estimated diversification-
consistent DEA frontier (Lamb & Tee, 2012a; Liu et al., 2015). Like the SFA frontiers it
passes through the origin, has nonegative gradient and is concave. However, since we do not
know of a way to estimate a DEA frontier that takes account of uncertainty in risk and return
measures, no point can be above the DEA frontier.

It is interesting to note the much more plausible frontier shape close to the origin, where
we expect nonnegligible return for negligible risk, because there is typically a risk-free rate
of return (DeMiguel et al., 2009). We have also fitted SFA models with a risk-free rate of
return, which we get by subtracting US treasury bill returns from each period. The results are
negligibly different. For example, for the FTSE stocks we get β0 = 0.394 and β1 = 0.361.
So we do not report these results further.

Wewish to checkboth the quality offit of theSFAmodel andwhether different assumptions
of the form of rv and rv work better. We do both by plotting charts of the standard normalised
model residuals calculated using Eq. (8) against the predicted frontier values calculated using
Eq. (4). Panel A of Fig. 2 shows the residual plot for the model of Fig. 1: the fit is good and
the model plausible.

The most plausible alternative model uses rv = β0x β1σv instead of rv = σv and Fig. 2,
Panel B shows its residual plot. The fit is good and the model coefficients hardly different,
which are less surprising because the frontier is close to constant for standard deviations
in the range we observe. Panel C shows SFAwith rv = β0x β1σv and ru = σu , and panel
D shows the standard SFAmodel, with rv = σv and ru = σu . These fit less well and the
standard SFAmodel has the least good fit.

We consider also measurement error as described in Sect. 3.3, because it can improve
model coefficients. Figure 3 shows plots of the model coefficients with various levels λ of
noise added. The coefficients of Eq. (13) are approximately the simex ones at λ = 0, and we
extrapolate values without measurement error at λ = −1.We use three standard extrapolants:
the rational linear (when available, dotted lines) and quadratic (dot-dash lines) extrapolants
of Eq. (12), and a linear (dashed lines) extrapolant. The changes in β0, β1 and σv are too
small to noticeably affect model fit. The quadratic extrapolant, which we would choose for
σu , gives greater relative change but not enough to reduce the efficiencies noticeably. While
it is important to check the effects of measurement error, they are not guaranteed to impact
the model coefficients substantially (van Smeden et al., 2020).

Figure 4 shows the SFA frontiers for the s&p stocks in the same format as Fig. 1 with
rv(x) = xσv and ru(x) = σu as before, together with a standard normalised residual plot for
the shrinkage frontier. The coefficients of the SFAfit with shrinkage estimators,

β0 = 0.395, β1 = 0.503, σv = 0.017 and σu = 0.002

are similar to those of the ftse stocks in Eq. (13). The residual plot suggests very goodmodel
fit. Efficiencies are, again, all close to 1. And simex shows even more negligible effects from
measurement errors.

Figure 5shows the SFA frontiers for theNikkei stocks, togetherwith a standard normalised
residual plot for the SFAfrontier using shrinkage estimators. This time the best fit comes
from the standard (rv(x) = σv , ru(x) = σu) SFAmodel: the residual plot suggests mild
heteroscedasticity, but changing the rv and ru always produces a much worse residual plot
even when the SFAfrontier appears reasonable. The shrinkage SFA coefficients are

β0 = 0.270, β1 = 0.325, σv = 0.1 and σu = 0.012.
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And the efficiencies in the range 0.980–0.987, slightly lower than those of the ftse and s&p
stocks, as we expect with a larger value of σv . As before, simex hardly changes the coefficient
estimates.

We conclude with two cases where our methodology works less well. Figure 6 left shows
SFA fits for 280 monthly percentage returns for 20 DAX stocks to end of May 2019 (Datas-
tream, 2019). And Fig. 6 right shows fits for 168 monthly percentage returns for hedge funds
to the end of December 2019 (Refinitiv, 2019). The DAX fit and residual plot are good but
the sample size limits our confidence in the model. By contrast the large sample of hedge
funds do not fit any variant of our model assumptions well. It may be that the mix of hedge
fund strategies makes a single fit less sensible. Or it may be that we really need a different
form for f (x;β) in Eq. (1). In any case, even if is not clear from Figure 6 right, the residual
plots show none of our models are plausible in these two cases.

5 Conclusions

SFA can be seen as an alternative to DEA for fitting frontiers and finding efficiencies for
asset returns. However, asset return and risk measures do not behave entirely like the inputs
and outputs of production economics for which SFA was developed. So we have had to
develop new theory and methods. Specifically, we show why a Cobb–Douglas frontier is
plausible and how to deal with estimation risk. Then we note that, probably in contrast to
production economics, we may expect heteroscedasticy in the SFAregression residuals and
measurement error in the risk measures. So we have developed methods to handle these and
to test for model fit. In doing so we have had to resolve several issues and have some findings
that may be surprising.

One intriguing empirical finding is that there was very little evidence of technical ineffi-
ciency in our SFA models. This finding is similar to that of Ferreira & Oliveira (2016) and
may be an indication that, for our data, the market is good at estimating both the mean return
and the volatility of assets. It may also be a limitation of modelling with one input or a feature
of stocks drawn from market indices.

The first issue we resolve is the choice of SFAmodel. We consider several that allow
heteroscedasticity in the noise v or inefficiency u and develop log-likelihood functions to fit
them. We find errors of the form xσv for v and σu for u fit best, though the form β0x β1σu
also fits reasonably for u. This leads us to the second issue: how to test model fit.

We resolve this issue by developing a new method for creating residual plots, like those
used in linear regression modelling. These are much better for checking model assumptions
and model fit than plotting the data and frontier, and we recommend using them for any SFA
model. We anticipate that they will be especially useful in models with more than one input
variable.

A third issue we had to investigate was the effect of measurement error, which arises
because of uncertainty in the measured values of mean and variance. We resolved this by
adapting an empirical simex method to work with SFA. The surprising finding was that the
measurement errors had very little influence on the model parameters. This, however, is not a
general result andwe recommend using simex to check any SFAmodel thatmay be influenced
by measurement error in the same way as one would routinely check for heteroscedasticity
or non-normality. Such checks show the accuracy of the findings even if they hardly improve
them.
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Finally, we address the issue of estimation risk. Estimation risk is the tendency of statistics
like the sample mean and standard deviation to underestimate small values and overestimate
large oneswhenwehave several values.As far asweknow, no previous frontier-fittingmethod
has dealt with estimation risk, and SFA studies for assets (Santos et al., 2005; Ferreira &
Oliveira, 2016) do not show the frontier to let us check plausibility of fit. We resolve the
issue by introducing shrinkage estimators instead of the sample ones. The impact is too
striking to be ignored. Without shrinkage estimators, our results suggest a frontier whose
curvature substantially underestimates that of the true one. With shrinkage estimators, the
frontier becomes plausible.

5.1 Limitations and future recommendations

The methods of this article currently have several limitations. They do not work well when
there are few assets, as we saw for the DAX stocks. This may be a difficult issue to overcome
without adding more assets, because asset returns typically have high volatility relative to
return.

The methods can also fail for some assets such as the hedge funds. We can think of three
plausible explanations that might be addressed in future studies. First, the hedge funds vary in
their choice of investment strategy. So it may be possible to fit separate strategies separately.
Second, not all smooth, nondecreasing, concave functions that pass through the origin are
well represented by a Cobb–Douglas frontier. So it may be helpful to test other frontier
forms both for assets and in production economics. Third, and perhaps most challenging, the
assumptions about the distribution of errors and, (since the error in a mean is more plausibly
normal) especially, the inefficiencies may be inappropriate in the hedge fund case.

The most obvious limitation is that we only consider one input and one output. The one-
output limitation is a well-known issue in SFA. It is less important in fitting assets, where
mean return is nearly always the only output wanted. But, future studies could address the
issue of multiple inputs. In fact, the theory we have developed can readily be used in the
multiple-input case with suitable risk measures. Such, coherent (Artzner & Delbaen, 1999),
risk measures are already widely used. The real limitation is that we do not yet have methods
to reduce estimation risk for them. So, besides investigating the shape and distribution of
inefficiencies, a major challenge for future research is finding estimators of coherent risk
measures that substantially reduce estimation risk. This challenge is important both for SFA
and DEA, where, to the best of our knowledge, estimation risk has not been considered at
all.
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