
Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974

A
0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Solving the discretised multiphase flow equations with interface
capturing on structured grids using machine learning libraries
Boyang Chen a, Claire E. Heaney a,b, Jefferson L.M.A. Gomes c,∗, Omar K. Matar b,d,
Christopher C. Pain a,b,e

a Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
b Centre for AI-Physics Modelling, Imperial-X, White City Campus, Imperial College London, London, W12 7SL, UK
c Fluid Mechanics Research Group, School of Engineering, University of Aberdeen, Aberdeen, AB24 3FX, UK
d Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
e Data Assimilation Laboratory, Data Science Institute, Imperial College London, London, SW7 2AZ, UK

A R T I C L E I N F O

Dataset link: https://github.com/bc1chen/AI4
PDE

Keywords:
Artificial Intelligence
Partial differential equations
Convolutional neural networks
U-Net
Graphics Processing Units
Finite Element Method

A B S T R A C T

This paper solves the discretised multiphase flow equations using tools and methods from
machine-learning libraries. The idea comes from the observation that convolutional layers can
be used to express a discretisation as a neural network whose weights are determined by the
numerical method, rather than by training, and hence, we refer to this approach as Neural
Networks for PDEs (NN4PDEs). To solve the discretised multiphase flow equations, a multigrid
solver is implemented through a convolutional neural network with a U-Net architecture.
Immiscible two-phase flow is modelled by the 3D incompressible Navier–Stokes equations with
surface tension and advection of a volume fraction field, which describes the interface between
the fluids. A new compressive algebraic volume-of-fluids method is introduced, based on a
residual formulation using Petrov–Galerkin for accuracy and designed with NN4PDEs in mind.
High-order finite-element based schemes are chosen to model a collapsing water column and a
rising bubble. Results compare well with experimental data and other numerical results from
the literature, demonstrating that, for the first time, finite element discretisations of multiphase
flows can be solved using an approach based on (untrained) convolutional neural networks.
A benefit of expressing numerical discretisations as neural networks is that the code can run,
without modification, on CPUs, GPUs or the latest accelerators designed especially to run AI
codes.

1. Introduction

1.1. Motivation

Detailed numerical flow simulations provide significant insight into a wide range of sectors, including the environment [1],
energy [2] and food [3] sectors. Over the past two decades, computational fluid dynamics (CFD) models, including multiphase
flow models, have become critical for predicting environmental [4] and industrial [5] flow behaviour; conducting safety [6] and
environmental [7] assessments; studying the effect of cloud formation on the climate [8]; analysing slugging in fluidised bed
reactors [9] and pipelines [10]; modelling food processing to reduce waste [11]; as well as being used to investigate fundamental

∗ Corresponding author.
E-mail address: jefferson.gomes@abdn.ac.uk (J.L.M.A. Gomes).
vailable online 17 April 2024
045-7825/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cma.2024.116974
Received 8 January 2024; Received in revised form 2 March 2024; Accepted 30 March 2024

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
https://github.com/bc1chen/AI4PDE
mailto:jefferson.gomes@abdn.ac.uk
https://doi.org/10.1016/j.cma.2024.116974
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.116974&domain=pdf
https://doi.org/10.1016/j.cma.2024.116974
http://creativecommons.org/licenses/by/4.0/

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

t
f
a
p
u
c
b
m
i
o
(
o
a
F
c
i
a
d
t
i

m
c
c
n
U
m
p
b

s
G
s
e
B
b
t
t

f
b
E
w

multiphase turbulence [12]. Our aim is to develop a method that can be used to simulate complex environmental and industrial
processes involving immiscible multiphase flows and that has the potential to run on the latest GPUs and AI processors. The finite
element discretisations and Petrov–Galerkin terms are all written as a neural network and solved with a neural network, giving the
same result as if these methods had been programmed in a traditional way. We benchmark the proposed method with a collapsing
water column problem and a rising bubble problem, running the code on a GPU.

1.2. Background

The so-called one-fluid approach has been widely used to simulate the flow of two or more immiscible fluids or phases [13]. In
his approach, a single model describes the flow throughout the domain and an interface marks the boundary between the different
luids or phases, across which, surface tension forces can be applied. Schemes for modelling the interface can be broadly classified
s interface tracking or interface capturing. Although interface tracking methods maintain a sharp interface and enable physical
rocesses to be incorporated at the interface, these methods suffer from mass conservation issues, and struggle to model break-
p and coalescence [14–17]. Combining these methods with level-set methods has resulted in an improvement in their ability to
onserve mass [18,19]. Interface-capturing methods treat interfaces as discontinuities in the material properties which are advected
y a volume fraction field. In sharp-interface approaches, such as Volume-of-Fluid (VoF) methods [20,21] or enriched element
ethods (including XFEM [22] and Cut-Cell methods [23,24]), values of density and viscosity exhibit a discontinuity or jump at the

nterface, whereas for diffuse–interface approaches, such as the phase field method [25], values of density and viscosity are functions
f the volume fraction field. VoF methods have good mass conservation properties, are able to maintain a sharp interface [14,26]
provided there is sufficient resolution), and can handle coalescence and break-up [27]. Phase-field methods diffuse the interface
ver a number of cells [28], which improves stability but loses the sharpness of the interface. Level set methods can be considered
s sharp [15] or diffuse [23], and, although the volume fraction field is smooth, conservation of mass can be problematic [14,16].
or more details on many of the available approaches to modelling interfaces, see [15,29,30], and for some recent work on the
ombination of interface tracking and interface-capturing methods, see [31]. In this paper, our goal is to model the break-up of
mmiscible two-phase flows, and we choose a VoF type approach for its ability in this regard. Following Pavlidis et al. [32,33]
nd Obeysekara et al. [34], additional diffusion terms are included to keep the interface between the two fluids sharp: positive
iffusion is added if oscillations are detected in the solution and negative diffusion is added if the solution is smooth. However, in
his paper, oscillations are detected in a different manner to the methods presented previously [32–34] and the amount of diffusion
s calculated more conservatively to increase accuracy.

The accuracy of CFD models strongly relies on the resolution of the mesh or grid, which becomes particularly challenging for
ultiphase flow problems due to the enormous range of length scales within the governing mechanisms [1,3,17]. As a consequence,

omputational costs are extremely high when simulating these processes. The use of high performance computing (HPC) resources
an be beneficial, although, to obtain good performance, an efficient implementation of models, methods and algorithms is
eeded [35]. Originally, HPC clusters consisted predominantly of central processing units (CPUs), however, Graphics Processing
nits (GPUs), containing hundreds to thousands of processing cores, are now also available in such clusters [36,37]. In order to
ake use of GPUs, however, existing CFD models either need to be re-implemented in terms of graphical primitives, using specialist
rogramming platforms such as CUDA, OpenCL and OpenACC [38,39], or require implementation of communication protocols
etween program units across computational architectures [40,41].

Appleyard and Drikakis [42] presented an early comparison between the performance of a single CPU and a single GPU when
olving the level set equations describing an interface, and reported a difference of two orders of magnitude in favour of the
PU implementation. Following this, a number of researchers developed hybrid CPU/GPU implementations of multiphase flow

olvers [14,43,44]. In all three cases, the computationally expensive pressure equation was solved on the GPUs and the other
quations were solved on CPUs. For a variety of problems with up to 27 million grid points, speed-ups of 50 to 100 were obtained.
ryngelson et al. [45] introduced the MFC code, a parallel multi-component, multiphase and multiscale flow solver that was extended
y Radhakrishnan et al. [46] to run on GPU systems. The solver uses high-order interface-capturing with diffuse–interface models
o describe the interface between fluids. They ran their code on up to 576 GPUs to solve shock-induced collapse of air bubbles in
he vicinity of a kidney stone with half a million grid points and on 960 GPUs to solve atomising droplets with 2 billion (109) grid

points. Crialesi-Esposito et al. [17] presented FluTAS, a solver for incompressible multiphase flows with heat transfer that can be
run on multi-CPU and multi-GPU architectures. A direct method based on the Fast Fourier Transform is used to solve the pressure
equation and the interface is represented by a volume-of-fluid method. Demonstrating their code on two-layer Rayleigh–Bénard
convection and emulsions in homogeneous isotropic turbulence using up to 1 billion (109) grid points with up to 128 GPUs, they
identify a communication burden which increased with the number of GPUs.

Not only is there significant work to be done in getting a code to run on a GPU system relating to re-implementing algorithms
with graphical primitives, in addition, many of the afore-mentioned papers fine-tune their codes to obtain good performance, by
assigning particular tasks to CPUs and others to GPUs. The level of computational expertise required can pose a barrier for many,
however, a recent AI-based approach offers a way of circumventing this issue. Instead of using AI technologies to approximate CFD
models, as is often done, this recent approach solves discretised fluid dynamics systems exactly (to within solver tolerances) using the
unctionality found within ML libraries [47–51]. This is because numerical discretisations can be expressed as discrete convolutions
etween a solution field and a stencil, the weights of which are determined explicitly by the numerical discretisation [52,53].
xactly the same operation is performed in the convolutional layer of a convolutional neural network (CNN) [54–56] by a filter
2

hen it is convolved with an image. The weights of the filters of CNNs are usually determined by training, however, in this case, no

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
training is needed as the weights are determined by the numerical discretisation. Hence, numerical discretisations can be expressed
as CNNs using functionality from machine learning libraries. To solve the resulting systems, Jacobi methods can be implemented
directly or multigrid methods can be implemented through a special neural network architecture known as a U-Net [57]. Previous
examples of solving discretised governing equations using machine learning techniques include Zhao et al. [47], who solved a
finite difference discretisation of the Navier–Stokes equations using a neural network with pre-defined weights adopting an explicit
solver for the pressure equation based on preconditioned conjugate gradients. The solutions of the neural network implementation
were in good agreement with CFD benchmarks. Wang et al. [48] developed a similar approach, and obtained linear weak scaling
and a superlinear strong scaling for 2048 cores on TPUs (Google’s accelerated tensor processing units) for CFD problems with up
to a billion (109) computational cells. Woo et al. [58] developed a particle-in-cell multiphase solver to model particles immersed
in a gas, porting parts of the MFiX code (Multiphase Flow with Interphase eXchanges) to TensorFlow. Some operations, such as
particle initialisation, were handled by CPUs through Fortran code, but the computationally demanding calculations were handled
by GPUs through python code and TensorFlow functions. Chen et al. [49] implemented both finite difference and finite element
discretisations through convolutional neural networks with a sawtooth multigrid method implemented within a U-Net architecture,
to solve benchmark single-phase CFD problems. This method was extended to solve the neutron diffusion equations [50] and
radiation transport problems [51]. In the latter, a new convolutional finite element method (ConvFEM) was proposed, which was
designed to simplify the discrete convolutions of higher-order Finite Element Methods (FEMs), so that they can be easily represented
by convolutional layers in neural networks. Although applied to structured grids in this paper, by using graph neural networks, the
NN4PDEs approach has been extended to unstructured meshes, where Li et al. [59] apply the method to a Discontinuous Galerkin
formulation for solving diffusion equations.

1.3. Contribution

In this paper, we start from the NN4PDEs approach proposed by Chen et al. [49], which includes a single-phase CFD solver written
as a neural network, and extend it to model immiscible two-phase flows. We solve the 3D incompressible Navier–Stokes equations
with surface tension on structured grids and develop a type of compressive algebraic VOF method to capture the interface. A
segregated pressure and velocity time-stepping method is used with explicit time-stepping schemes for volume fraction and velocity,
and an implicit pressure update is used to enforce the incompressibility constraint. The latter is solved using a multigrid method with
Jacobi smoothing through a U-Net architecture, as described in Phillips et al. [50]. Using convolutional neural networks, we solve
the discretised system of equations and obtain the same answer (to within solver tolerance) as if the numerical methods had been
coded in Fortran or C++. The first advantage of this AI-based framework is that the code can be run on CPU- or GPU-based systems
without having to make any changes or re-implement code using CUDA, OpenCL or OpenACC. The writers of ML libraries such as
TensorFlow [60], PyTorch [61] and JAX [62] have abstracted away platform-related code, meaning that it is very simple for the user
to run their code on CPUs or GPUs. Furthermore, as the code uses functionality found in machine learning libraries, it can also be
deployed on the latest energy-efficient AI accelerators such as those developed by GraphCore [63] and Cerebras [64], which have the
potential for even greater computational speeds than GPUs. The C++ library Kokkos [65] operates in a similar vein to ML libraries,
abstracting away code relating to the low-level memory access needs for different GPU architectures, enabling users to run their
C++ codes on CPUs and GPUs without writing in CUDA, OpenCL or OpenACC themselves. Kokkos has been used to simulate boiling
in two-phase flow [66] and two-phase-flow in a fluidised bed [67]. A second advantage of expressing the discretised governing
equations as neural networks is the potential for seamless integration with machine learning workflows such as surrogate models
or digital twins. For example, having a CFD-based solver written as a neural network will streamline physics-informed approaches,
which minimise the residual of the governing equations whilst training a neural network [68,69]. In addition, the backpropagation
functionality of machine learning libraries will allow the CFD model to be differentiated [70,71], facilitating data assimilation,
control and inversion. The NN4PDEs approach has already been successfully applied to discover subsurface geology by inverting
measurements of electrical resistivity [72].

The contribution of this paper is to extend, to multiphase flow problems, the NN4PDEs approach of solving discretised PDEs
by capitalising on the functionality found within machine-learning libraries. The numerical schemes used should all be suitable for
implementation in the AI-based framework proposed here, so a compressive algebraic VoF method is developed which maintains a
sharp interface between the two fluids. The remaining text is divided as follows: the methodology is described in Section 2; results
for a series of collapsing water column problems and rising bubble problems are presented in Section 3; and conclusions are drawn
in Section 4.

2. Methodology

In Section 2.1, we outline the governing equations: the advection equation for the interface between the fluids, and the equations
conserving mass and momentum. The idea underlying the NN4PDEs approach is introduced in Section 2.2 and demonstrated for
some simple cases. Here, we also explain the notation used to express discretisations through filters of convolutional layers which
is fundamental to the NN4PDEs approach. In Section 2.3, we describe the application of NN4PDEs to the equations governing
multiphase flow, and give an outline of the interface-capturing scheme that detects oscillatory behaviour and the non-linear
3

Petrov–Galerkin method that attempts to diffuse away oscillations. The final solution algorithm is presented in Section 2.4.

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

T
c

2.1. Governing equations

2.1.1. Advection equation for the volume fraction field
The advection equation that governs the scalar volume fraction field 𝐶 (or indicator field) is given by:

𝜕𝐶
𝜕𝑡

+ 𝒒 ⋅ ∇𝐶 = 0 , (1)

where 𝒒 = (𝑢, 𝑣,𝑤)𝑇 represents the advection velocity. Here, two-phase flow is modelled, where a value of 𝐶 = 1 indicates pure
liquid and a value of 𝐶 = 0 indicates a pure gas. The overall density, 𝜌, is:

𝜌 = 𝐶𝜌𝑙 + (1 − 𝐶)𝜌𝑔 , (2)

with densities of the liquid and gas denoted by 𝜌𝑙 and 𝜌𝑔 respectively.

2.1.2. Navier–Stokes equations
The incompressible Navier–Stokes equations can be written as

𝜌
(

𝜕𝒒
𝜕𝑡

+ 𝒒 ⋅ ∇𝒒
)

+ 𝜎𝒒 − ∇ ⋅ (𝜇∇𝒒) = −∇𝑝 + 𝒔𝑞 + 𝒔𝑡 , (3a)

∇ ⋅ 𝒒 = 0 , (3b)

in which 𝑝 denotes the pressure, 𝜎 is an absorption coefficient and 𝜇 is the dynamic viscosity. Buoyancy is represented by the term
𝒔𝑞 = −𝜌𝑔𝒆𝒛 where 𝑔 is the acceleration due to gravity and 𝒆𝒛 is a unit vector in the upwards vertical direction. The effects of surface
tension are represented through a source term, 𝒔𝑡, given by

𝒔𝑡 = 𝜎𝑡𝜅∇𝐶 , (4)

where 𝜎𝑡 is the surface tension coefficient and the curvature is represented by 𝜅. The curvature is a continuous volumetric field
which represents the effective normal to the liquid–gas interface and is defined as follows:

𝜅 = ∇ ⋅ 𝒏𝑡 where 𝒏𝑡 =
∇𝐶

||∇𝐶||2
. (5)

his formulation is sometimes referred to as continuous surface force [15]. A consequence of Eqs. (1), (2) and (3b), is that the mass
onservation equation holds:

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒒) = 0 . (6)

Dirichlet or Neumann boundary conditions are applied as needed, depending on the example being investigated.

2.2. Discretisation using convolutional layers

The NN4PDEs approach [49] is based on the idea that the matrix–vector multiplications associated with numerical discretisations
can be written as discrete convolutions. Such operations are commonly used in the convolutional layers of neural networks, thus
many numerical discretisations can be expressed using functions within machine learning libraries. See [54–56] for more details
about CNNs.

2.2.1. Equivalence between numerical discretisations and discrete convolutions
Although finite element discretisations are used in this paper, finite difference discretisation schemes have a simpler mathematical

form, so an example of writing finite difference discretisations as discrete convolutions is presented here. For the discretised isotropic
diffusion operator (∇2) in 3D, a second-order finite difference scheme has the following representation as a 3 × 3 × 3 convolutional
filter:

𝐰∇2 ⋅,⋅,−1 =

⎡

⎢

⎢

⎢

⎣

0 0 0

0 −1
(𝛥𝑧)2 0

0 0 0

⎤

⎥

⎥

⎥

⎦

, 𝐰∇2 ⋅,⋅,0 =

⎡

⎢

⎢

⎢

⎢

⎣

0 −1
(𝛥𝑦)2 0

−1
(𝛥𝑥)2

2
(𝛥𝑥)2 + 2

(𝛥𝑦)2 + 2
(𝛥𝑧)2

−1
(𝛥𝑥)2

0 −1
(𝛥𝑦)2 0

⎤

⎥

⎥

⎥

⎥

⎦

,𝐰∇2 ⋅,⋅,1 =

⎡

⎢

⎢

⎢

⎣

0 0 0

0 −1
(𝛥𝑧)2 0

0 0 0

⎤

⎥

⎥

⎥

⎦

, (7)

where 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 denote the grid spacing between the nodes in the 𝑥, 𝑦 and 𝑧 directions. The rank 3 tensor is shown here in
three ‘slices’, labelled as −1, 0 and 1. For more details on finite difference discretisations, the reader is referred to Fletcher [73]
and Linge and Langtangen [74]. Considering this diffusion operator in 2D for a uniform grid (𝛥𝑥 = 1 = 𝛥𝑦), Fig. 1 shows a stencil
representing the discretised operator acting on a part of the solution field which calculates the value for cell 𝑌33. This application
of the finite difference stencil is exactly equivalent to passing a filter, with weights as specified in Fig. 1, over an image, as done in
the convolutional layer of a convolutional neural network. In the left of this figure, a halo region can be seen, which is made up of
ghost cells that are represented by the white cells (cells 𝑖𝑗 where 𝑖 ∈ {0, 6}, 𝑗 ∈ {0, 1,… , 6} and 𝑖 ∈ {0, 1,… , 6} , 𝑗 ∈ {0, 6}), through
which boundary conditions can be applied. In machine learning terminology, this is known as padding, and is used to obtain a
feature map of the same dimension as that of the image to which the filter is applied. In this way, numerical discretisations can be
represented as convolutional layers of neural networks. Systems arising from this can be solved directly with a Jacobi method or
implicitly using a multigrid solver implemented through a U-Net architecture [49,50].
4

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

a
t
o
o
o

2

w
T
i
t
t
b
w

2

p

i
n
q
l

Fig. 1. On the left (in orange) is a 5 by 5 image with pixel values 𝐶𝑖𝑗 (𝑖, 𝑗 ∈ {1, 2, … , 5}). A filter (in blue) of a convolutional layer, with weights as shown, is
pplied to the 3 by 3 part of the image centred around pixel 𝐶33. The sum of the products of the weights and the pixel values determines the central value of
he resulting feature map 𝑌33 (in orange). Equivalently, on the left (in orange) is a 5 by 5 solution field 𝐶𝑖𝑗 (𝑖, 𝑗 ∈ {1, 2, … , 5}) to which is applied the stencil
f the diffusion operator discretised by finite differences (in blue). This results in the value 𝑌33 (in orange). (The finite difference nodes are located at the centre
f the cells.) Forming a halo around the inner domain are the white cells or ghost cells, through which boundary conditions can be applied. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

.2.2. Notation
The action of a discretisation stencil on a 3D tensor, 𝑪𝑛, can be written as follows:

𝒇 (𝑪𝑛;𝐰)|𝑖,𝑗,𝑘 =
𝓁
∑

𝑖𝑖=−𝓁

𝓁
∑

𝑗𝑗=−𝓁

𝓁
∑

𝑘𝑘=−𝓁
w𝑖𝑖,𝑗𝑗,𝑘𝑘 𝐶

𝑛
𝑖+𝑖𝑖,𝑗+𝑗𝑗,𝑘+𝑘𝑘 (8)

here 𝐰 is of dimension 2𝓁 + 1 by 2𝓁 + 1 by 2𝓁 + 1 and represents the coefficients associated with the numerical discretisation.
his expression is equivalent to convolving a filter of weights 𝐰 with an image, as is done in a convolutional layer, see page 128

n chapter 3 of [75] and also [53,76]. This notation is used throughout to represent the application of a filter with weights 𝐰 to a
ensor 𝑪𝑛 which holds the values of a solution field at the nodes or grid points. The discretised differential operator is expressed
hrough the weights and is applied to the discretised field. Generally, the tensor will have a padding of 𝓁 cells (through which
oundary conditions are applied) and be of dimension 𝑁𝑥 +2𝓁 by 𝑁𝑦 +2𝓁 by 𝑁𝑧 +2𝓁, but the output of the function can be written
ithout the padding (𝑁𝑥 by 𝑁𝑦 by 𝑁𝑧). The value of 𝓁 depends on the discretisation applied, see Section 2.3.3.

.2.3. Finite element discretisation of first-order derivatives
Filters can also be used to represent finite element discretisations. The weights of the filter are calculated from integrals of

roducts of basis functions
(

𝑁𝑎
)

and their derivatives in the usual manner, e.g.,

∫𝑉
𝑁𝑎

𝜕𝑁𝑏
𝜕𝑥

𝑑𝑉 , ∀ 𝑏, or ∫𝑉
𝑁𝑖,𝑗,𝑘

𝜕𝑁𝑖′ ,𝑗′ ,𝑘′

𝜕𝑥
𝑑𝑉 , ∀

(

𝑖′, 𝑗′, 𝑘′
)

. (9)

n which the finite element nodes 𝑎 and 𝑏 are replaced with the equivalent tensor indices (𝑖, 𝑗, 𝑘) and
(

𝑖′, 𝑗′, 𝑘′
)

respectively. For every
ode away from the boundary and, with every element being of quadrilateral shape and of the same size (i.e., regular structured
uadrilateral elements), these matrix entries are the same for each node and written as the weights of a filter of a convolutional
ayer:

wx 𝑖𝑖,𝑗𝑗,𝑘𝑘 = ∫𝑉
𝑁𝑖,𝑗,𝑘

𝜕𝑁𝑖′ ,𝑗′ ,𝑘′

𝜕𝑥
𝑑𝑉 with 𝑖𝑖 = 𝑖′ − 𝑖, 𝑗𝑗 = 𝑗′ − 𝑗, 𝑘𝑘 = 𝑘′ − 𝑘 . (10)

Due to the compact support of the FEM basis functions, these matrix entries are only non-zero for indices 𝑖𝑖 ∈ {−𝓁,… ,𝓁},
𝑗𝑗 ∈ {−𝓁,… ,𝓁}, 𝑘𝑘 ∈ {−𝓁,… ,𝓁} and they can be replaced by a 2𝓁 + 1 by 2𝓁 + 1 by 2𝓁 + 1 tensor 𝐰 or w . For linear
5

𝐱 x 𝑖𝑖,𝑗𝑗,𝑘𝑘

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

w
c
p
d
u
i

w
t
s

elements 𝓁 = 1, quadratic elements 𝓁 = 2 and cubic elements 𝓁 = 3. Thus, the weights of a linear FEM discretisation of the
derivative with respect to 𝑥, 𝐰𝐱, are defined as

𝐰𝐱⋅,⋅,−1 =
𝑚𝑙

72𝛥𝑥

⎡

⎢

⎢

⎣

−1 0 1
−4 0 4
−1 0 1

⎤

⎥

⎥

⎦

, 𝐰𝐱⋅,⋅,0 =
𝑚𝑙

72𝛥𝑥

⎡

⎢

⎢

⎣

−4 0 4
−16 0 16
−4 0 4

⎤

⎥

⎥

⎦

, 𝐰𝐱⋅,⋅,1 =
𝑚𝑙

72𝛥𝑥

⎡

⎢

⎢

⎣

−1 0 1
−4 0 4
−1 0 1

⎤

⎥

⎥

⎦

, (11)

where 𝑚𝑙 = 𝛥𝑥𝛥𝑦𝛥𝑧.
A challenge arising during the design of quadratic or higher order FE methods within the NN4PDEs approach, is that the

coefficients of the stencil are different at each node. For convolutional layers, the same filter is applied to each pixel in the image.
In order to address this, a new FEM has been devised known as the Convolutional Finite Element Method (ConvFEM), which has
the same coefficients at each node in the mesh or grid. This greatly simplifies the implementation of higher-order FE discretisations
using the filters of convolutional layers on structured grids. The basic idea in forming the ConvFEM filters is to sum coefficients
of the stencils and take the average (see Phillips et al. [51] for further details). A number of FE discretisations are applied in this
paper, thus filters are tensors of shape of either 3 × 3 × 3 for linear FE, 5 × 5 × 5 for quadratic ConvFEM elements, or 7 × 7 × 7
for cubic ConvFEM elements. These filters are listed in the GitHub repository by Phillips [77], along with the computer code that
automatically generates them.

2.2.4. Finite-element based discretisation of second-order derivatives
Second-order derivatives can be implemented in the same way as first-order derivatives, with the coefficients corresponding to

the numerical discretisation making up the weights of the filters, 𝐰𝐱𝐱, 𝐰𝐲𝐲 and 𝐰𝐳𝐳. In this work, any stabilising terms (such as
those derived from Petrov–Galerkin methods) also involve second-order spatial derivatives. Considering the second derivative in
the 𝑥 direction of field 𝐶𝑛 with diffusion coefficient 𝑘𝑛𝐶 , its typical form can be expanded as three terms, all involving the Laplacian
operator,

− 𝜕
𝜕𝑥

(

𝑘𝑛𝐶
𝜕𝐶𝑛

𝜕𝑥

)

= −1
2

(

𝜕2(𝑘𝑛𝐶𝐶
𝑛)

𝜕𝑥2
+ 𝑘𝑛𝐶

𝜕2𝐶𝑛

𝜕𝑥2
− 𝐶𝑛

𝜕2𝑘𝑛𝐶
𝜕𝑥2

)

(Continuum Form)

∼ 1
2
(

𝒇 (𝒌𝑛𝑪 ⊙ 𝑪𝑛;𝐰𝐱𝐱) + 𝒌𝑛𝑪 ⊙ 𝒇 (𝑪𝑛;𝐰𝐱𝐱) − 𝑪𝑛 ⊙ 𝒇 (𝒌𝑛𝑪 ;𝐰𝐱𝐱)
)

=∶ 𝒇∇2 (𝑪𝑛,𝒌𝑛𝑪 ;𝐰𝐱𝐱) , (Discretised Form)

(12)

here 𝐰𝐱𝐱 contains weights associated with a particular discretisation of the second derivative (as yet unspecified), 𝒌𝐶𝑛 is the tensor
ontaining the diffusion coefficients at each node of the grid at time level 𝑛, and ⊙ is the Hadamard product (also known as Schur
roduct) which represents entry-wise multiplication. Eq. (12) presents a very convenient way of writing terms involving second
erivatives of the form seen in the left-hand side of Eq. (12) for implementation using convolutional layers, as it only requires the
se of a discretised Laplacian (or associated filter) to form the diffusion operator in the case of varying diffusion coefficients. For
sotropic diffusion (in three directions) this equation becomes:

−∇ ⋅
(

𝑘𝑛𝐶∇𝐶
𝑛) = −1

2
(

∇2(𝑘𝑛𝐶𝐶
𝑛) + 𝑘𝑛𝐶∇

2𝐶𝑛 − 𝐶𝑛∇2𝑘𝑛𝐶
)

(Continuum Form)

∼ 1
2
(

𝒇 (𝒌𝑛𝑪 ⊙ 𝑪𝑛;𝐰∇2) + 𝒌𝑛𝑪 ⊙ 𝒇 (𝑪𝑛;𝐰∇2) − 𝑪𝑛 ⊙ 𝒇 (𝒌𝑛𝑪 ;𝐰∇2)
)

= 𝒇∇2 (𝑪𝑛,𝒌𝑛𝑪 ;𝐰∇2) , (Discretised Form)

(13)

in which the filter 𝐰∇2 contains weights associated with a particular discretisation of isotropic diffusion. These expressions will be
used, in the following sections, to represent viscous and stabilisation terms that are determined from a non-linear Petrov–Galerkin
discretisation.

2.3. Discretisation of the governing equations using convolutional layers

We now discretise multiphase flow equations in space and time with FEM, and express these discretisations as convolutions using
the notation introduced in Section 2.2.2.

2.3.1. Advection equation for the volume fraction field
The equation governing the volume fraction field, Eq. (1), is discretised in time using forward Euler time-stepping:

𝐶𝑛+1 − 𝐶𝑛

𝛥𝑡
+ 𝒒𝑛+1 ⋅ ∇𝐶𝑛 = 0 , (14)

here 𝐶𝑛 is the volume fraction field at time level 𝑛, 𝒒𝑛 is the velocity field at time level 𝑛 and 𝛥𝑡 is the time step. The forward Euler
ime-stepping method has been chosen because it has a negative diffusion coefficient in the truncation error which compresses the
olution slightly [32,33]. Using the filters derived in Section 2.2.4, Eq. (14) can be discretised in space as

𝒓
𝑛+ 1

2
𝑪 = 𝒇

(

𝑪𝑛+1 − 𝑪𝑛

𝛥𝑡
;𝐰𝐦𝐥

)

+ 𝒔̃
𝑛+ 1

2
𝐶 , (15)

̃
𝑛+ 1

2 = 𝒖𝑛+1 ⊙ 𝒇
(

𝑪𝑛;𝐰
)

+ 𝒗𝑛+1 ⊙ 𝒇
(

𝑪𝑛;𝐰
)

+𝒘𝑛+1 ⊙ 𝒇
(

𝑪𝑛;𝐰
)

6

with 𝒔𝐶 𝐱 𝐲 𝐳

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

T
a

i

+ 𝒇∇2 (𝑪𝑛;𝒌𝒙 𝑛
𝑪 ,𝐰𝐏𝐆

𝐱𝐱
)

+ 𝒇∇2
(

𝑪𝑛;𝒌𝒚 𝑛𝑪 ,𝐰𝐏𝐆
𝐲𝐲

)

+ 𝒇∇2 (𝑪𝑛;𝒌𝒛 𝑛𝑪 ,𝐰𝐏𝐆
𝐳𝐳

)

, (16)

where 𝒇 denotes the convolution of a filter with the first argument of the function; 𝐰𝐦𝐥 represents a lumped mass tensor whose only
non-zero entry corresponds to 𝑖 = 0, 𝑗 = 0, 𝑘 = 0 and has value 𝛥𝑥𝛥𝑦𝛥𝑧; 𝒖𝑛+1, 𝒗𝑛+1 and 𝒘𝑛+1 are tensors which represent the three
velocity components on the structured grid; the first-order discretised differential operators are represented by a convolutional layer
with weights 𝐰𝐱, 𝐰𝐲 and 𝐰𝐳. Finally, filters with weights from a linear 3 × 3 × 3 FEM discretisation for calculating the second-order
derivatives are represented by 𝐰𝐏𝐆

𝐱𝐱 , 𝐰𝐏𝐆
𝐲𝐲 , and 𝐰𝐏𝐆

𝐳𝐳 . These second derivative terms provide diffusion (based on the Petrov–Galerkin
method) and are included to reduce the oscillations that can occur when central-difference or FEM-based discretisations are applied
to an advection term (see Sections 2.3.4 and 2.3.5).

2.3.2. Navier–Stokes equations
The momentum equation, Eq. (3a), is discretised in time using a two-level central difference scheme similar to the Crank–Nicolson

time-stepping method, however 𝜎 and the pressure terms are discretised using backward Euler time-stepping, resulting in:

𝜌𝑛
(

𝒒̃𝑛+1 − 𝒒𝑛

𝛥𝑡
+ 𝑢𝑛+

1
2
𝜕𝒒𝑛+

1
2

𝜕𝑥
+ 𝑣𝑛+

1
2
𝜕𝒒𝑛+

1
2

𝜕𝑦
+𝑤𝑛+ 1

2
𝜕𝒒𝑛+

1
2

𝜕𝑧

)

+ 𝜎𝒒̃𝑛+1 − ∇ ⋅ (𝜇∇𝒒𝑛+
1
2)

= −∇𝑝𝑛+1ℎ𝑠 − ∇𝑝̃𝑛+1𝑛ℎ + 𝒔𝑛𝑞 + 𝒔𝑛𝑡 .

(17)

he buoyancy and surface tension forces are represented by 𝒔𝑛𝑞 and 𝒔𝑛𝑡 respectively, and the pressure has been split into two terms:
term which balances hydrostatic and surface tension forces

(

𝑝𝑛+1ℎ𝑠
)

, and a non-hydrostatic non-surface-tension force component
(

𝑝̃𝑛+1𝑛ℎ
)

. The tilde sign above a variable indicates that we will use the best approximation currently available for that variable. Eq. (17)
can then be discretised in space using a Petrov–Galerkin method [78], with mass lumping for the advection, time and absorption
terms. Using the filter notation of Section 2.2.2, this can be expressed as:

𝒓
𝑛+ 1

2
𝑢 = 𝒇

(

𝝆𝑛 ⊙
(

𝒖̃𝑛+1 − 𝒖𝑛
𝛥𝑡

)

+ 𝝈 ⊙ 𝒖̃𝑛+1;𝐰𝐦𝐥

)

+ 𝒔̃
𝑛+ 1

2
𝑢 with

𝒔̃
𝑛+ 1

2
𝑢 = 𝝆𝑛 ⊙

(

𝒖𝑛+
1
2 ⊙ 𝒇 (𝒖𝑛+

1
2 ;𝐰𝐱) + 𝒗𝑛+

1
2 ⊙ 𝒇 (𝒖𝑛+

1
2 ;𝐰𝐲) +𝒘𝑛+ 1

2 ⊙ 𝒇 (𝒖𝑛+
1
2 ;𝐰𝐳)

)

(18a)

+𝒇∇2 (𝒖𝑛+
1
2 ,𝒌

𝑛+ 1
2

𝑢 ;𝐰∇2) + 𝒇 (𝒑𝒉𝒔𝑛+1 + 𝒑̃𝑛+1𝒏𝒉 ;𝐰𝐱) − 𝒇 (𝒔𝑛𝑢 + 𝒔𝑛𝒕𝑢;𝐰𝐦),

𝒓
𝑛+ 1

2
𝑣 = 𝒇

(

𝝆𝑛 ⊙
(

𝒗𝑛+1 − 𝒗𝑛
𝛥𝑡

)

+ 𝝈 ⊙ 𝒗̃𝑛+1;𝐰𝐦𝐥

)

+ 𝒔̃
𝑛+ 1

2
𝑣 with

𝒔̃
𝑛+ 1

2
𝑣 = 𝝆𝑛 ⊙

(

𝒖𝑛+
1
2 ⊙ 𝒇 (𝒗𝑛+

1
2 ;𝐰𝐱) + 𝒗𝑛+

1
2 ⊙ 𝒇 (𝒗𝑛+

1
2 ;𝐰𝐲) +𝒘𝑛+ 1

2 ⊙ 𝒇 (𝒗𝑛+
1
2 ;𝐰𝐳)

)

(18b)

+𝒇∇2 (𝒗𝑛+
1
2 ,𝒌

𝑛+ 1
2

𝑣 ;𝐰∇2) + 𝒇 (𝒑𝒉𝒔𝑛+1 + 𝒑̃𝑛+1𝒏𝒉 ;𝐰𝐲) − 𝒇 (𝒔𝑛𝑣 + 𝒔𝑛𝒕𝑣;𝐰𝐦),

𝒓
𝑛+ 1

2
𝑤 = 𝒇

(

𝝆𝑛 ⊙
(

𝒘̃𝑛+1 −𝒘𝑛

𝛥𝑡

)

+ 𝝈 ⊙ 𝒘̃𝑛+1;𝐰𝐦𝐥

)

+ 𝒔̃
𝑛+ 1

2
𝑢 with

𝒔̃
𝑛+ 1

2
𝑤 = 𝝆𝑛 ⊙

(

𝒖𝑛+
1
2 ⊙ 𝒇 (𝒘𝑛+ 1

2 ;𝐰𝐱) + 𝒗𝑛+
1
2 ⊙ 𝒇 (𝒘𝑛+ 1

2 ;𝐰𝐲) +𝒘𝑛+ 1
2 ⊙ 𝒇 (𝒘𝑛+ 1

2 ;𝐰𝐳)
)

(18c)

+𝒇∇2 (𝒘𝑛+ 1
2 ,𝒌

𝑛+ 1
2

𝑤 ;𝐰∇2) + 𝒇 (𝒑𝒉𝒔𝑛+1 + 𝒑̃𝑛+1𝒏𝒉 ;𝐰𝐳) − 𝒇 (𝒔𝑛𝑤 + 𝒔𝑛𝒕𝑤;𝐰𝐦),

in which 𝐰𝐦 is the consistent mass filter. When solving the discretised Navier–Stokes equations the aim is to minimise the residual,

that is, to obtain: 𝒓
𝑛+ 1

2
𝑢 = 𝟎, 𝒓

𝑛+ 1
2

𝑣 = 𝟎, 𝒓
𝑛+ 1

2
𝑤 = 𝟎. These equations are solved using a two-step predictor–corrector time level approach,

n order to obtain better estimates of the velocity variables at time level 𝑛+ 1
2 . In Eqs. (18), the density at time level 𝑛 is given by:

𝝆𝑛 = 𝜌𝑙𝑪𝑛 + 𝜌𝑔(𝟏 − 𝑪𝑛) , (19)

where 𝟏 is a tensor in which each entry is unity
(

that is 𝟏 | 𝑖,𝑗,𝑘 = 1
)

and similarly, 𝟎 represents the zero tensor (every entry is 0).
There are three buoyancy tensors, one of which is non-zero, as determined by the direction of gravity

𝑛 𝑛 𝑛 𝑛
7

𝒔𝑢 = 𝟎, 𝒔𝑣 = 𝟎, 𝒔𝑤 = −𝑔 𝝆 . (20)

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

c
v
d
n
b
z
o

𝜳

a

On discretising the surface tension given in Eq. (4) we obtain:

𝒔𝑛𝒕𝑢 = 𝜎𝑡𝜿𝑛 ⊙ 𝑪𝑛
𝒙, 𝒔𝑛𝒕𝑣 = 𝜎𝑡𝜿𝑛 ⊙ 𝑪𝑛

𝒚 , 𝒔𝑛𝒕𝑤 = 𝜎𝑡𝜿𝑛 ⊙ 𝑪𝑛
𝒛 , (21)

where the curvature tensor is represented by 𝜿𝑛. In order to calculate the curvature, we take the gradient of the normal to the
interface using filters as follows

𝜿𝑛 = 𝒇
(

𝒇 (𝒏𝑛𝒕𝑢;𝐰𝐱) + 𝒇 (𝒏𝑛𝒕𝑣;𝐰𝐲) + 𝒇 (𝒏𝑛𝒕𝑤;𝐰𝐯);𝐰−𝟏
𝐦𝐥
)

, (22)

in which 𝐰−𝟏
𝐦𝐥 is the inverse of the lumped mass filter and where the tensors representing the normal are given by

𝒏𝑛𝒕𝑢 = 𝑪𝑛
𝒙 ⊘

(

𝜖𝑡𝟏 + 𝒍𝑛
)

,

𝒏𝑛𝒕𝑣 = 𝑪𝑛
𝒚 ⊘

(

𝜖𝑡𝟏 + 𝒍𝑛
)

,

𝒏𝑛𝒕𝑤 = 𝑪𝑛
𝒛 ⊘

(

𝜖𝑡𝟏 + 𝒍𝑛
)

,

with 𝑙𝑛𝑖,𝑗,𝑘 =
√

(𝐶𝑛
𝑥𝑖,𝑗,𝑘)

2 + (𝐶𝑛
𝑦𝑖,𝑗,𝑘)

2 + (𝐶𝑛
𝑧𝑖,𝑗,𝑘)

2 and 𝜖𝑡 =
10−7
ℎ

, (23)

where ℎ is the typical grid spacing and ⊘ is the Hadamard entry-wise division of equally sized tensors, i.e.,

𝒄̂ = 𝒂̂⊘ 𝒃̂ ⟺ 𝑐𝑖,𝑗,𝑘 =
𝑎̂𝑖,𝑗,𝑘
𝑏̂𝑖,𝑗,𝑘

.

Spurious currents can be generated when the capillary number is low [79], which is mitigated by introducing dissipation to the
volume fraction field, done here through a Petrov–Galerkin formulation (see Section 2.3.4).

2.3.3. Application of boundary conditions
The boundary conditions are applied through the halo nodes using padding (see Fig. 1). This means that the discretisation scheme

is the same wherever it is applied, whether this is next to the boundary or within the domain, thereby simplifying the implementation
of the method. These halos are one node thick for linear elements, two nodes thick for quadratic elements and three nodes thick for
cubic elements. Dirichlet boundary conditions are applied by setting the values of the halo nodes to equal the desired value. When
applying a specified normal derivative, the value at the halo nodes is calculated by extrapolating from the nearest node within
the domain using the specified gradient. Most commonly, a zero derivative is applied, in which case, this simplifies to copying
the nearest nodal value within the domain to the halo nodes at least for linear ConvFEM. See Fig. 2 for further details of how the
boundary conditions are applied.

Thus, for incoming flows one might specify the values of 𝐶𝑛
𝑖,𝑗,𝑘 at the halo nodes based on the desired Dirichlet boundary

onditions and for boundaries with outgoing flows one might apply a zero derivative boundary condition to 𝐶𝑛
𝑖,𝑗,𝑘. For incoming

elocities, the Dirichlet velocity components are specified at the halo nodes and for outgoing flows (outlet boundary), a zero normal-
erivative boundary condition is applied by copying the nodal values at the boundary to the halo nodes for the velocity component
ormal to the boundary. For non-hydrostatic non-surface-tension pressure, a zero derivative boundary condition is applied on all
oundaries other than the outlet boundary, at which a zero value is specified. For hydrostatic and surface-tension pressure, 𝑝ℎ𝑠, a
ero normal-derivative boundary condition is applied on the lateral (side) boundaries and a zero value is applied at the top boundary
f the domain. For the bottom boundary, the pressure gradient 𝜕𝑝ℎ𝑠

𝜕𝑧 = −𝜌𝑔 is enforced, in which the density 𝜌 from the nearest node
within the domain is used. For the hydrostatic and surface-tension pressure, and the non-hydrostatic non-surface-tension pressure
correction steps, the boundary conditions just described are applied at each of the levels within the multigrid method, see Phillips
et al. [51].

2.3.4. Isotropic non-linear Petrov–Galerkin method
We apply an isotropic non-linear Petrov–Galerkin method to both the velocity components and the volume fraction field in order

to reduce the oscillations that would otherwise occur, as a result of applying a high-order discretisation, see Godunov’s theorem [80].
Introducing non-linearity enables us to control the oscillations. Based on Donéa and Huerta [78, page 185], the approach outlined in
this section will calculate diffusion coefficients to be used for volume fraction and velocities that are calculated in Eqs. (15), (18a),
(18b) and (18c). Using three methods, we calculate three diffusion coefficients, and select the one with the lowest value at each
grid point. Suppose that 𝜳 𝑛 is either the volume fraction field 𝑪𝑛 or a velocity component (either 𝒖𝑛, 𝒗𝑛 or 𝒘𝑛). Then, according
to Codina [81], if the discretised derivatives of 𝜳 𝑛 with respect to 𝑥, 𝑦 and 𝑧 are written as 𝜳 𝑛

𝒙 = 𝒇 (𝜳 𝑛;𝐰𝐱), 𝜳 𝑛
𝒚 = 𝒇 (𝜳 𝑛;𝐰𝐲) and

𝑛
𝒛 = 𝒇 (𝜳 𝑛;𝐰𝐳), the first residual-based diffusion coefficient is given by:

𝒌𝑛𝒂𝒃𝒔 = 𝛼𝑘𝑎𝑏𝑠|𝒂𝑛𝜳 |⊙ 𝒉𝑛𝜳 ⊘ (𝜖𝑘𝟏 +
1
3
(|𝜳 𝑛

𝒙| + |𝜳 𝑛
𝒚 | + |𝜳 𝑛

𝒛|)) , (24)

where 𝜖𝑘 is a small positive number added to the term in the divisor, so that the diffusion coefficients do not become too large (in
this paper, 10−7 is used); and 𝒂𝑛𝜳 represents the residual of the advection part of the governing equation. For the general case where
the grid spacing is different in different directions, the lengthscale associated with the diffusion is given by

𝒉𝑛𝜳 =
(

𝛥𝑥|𝜳 𝑛
𝒙| + 𝛥𝑦|𝜳 𝑛

𝒚 | + 𝛥𝑧|𝜳 𝑛
𝒛|
)

⊘
(

𝜖𝑘𝟏 + |𝜳 𝑛
𝒙| + |𝜳 𝑛

𝒚 | + |𝜳 𝑛
𝒛|
)

, (25)

nd the expression for the first diffusion coefficient becomes

𝒌𝑛 = 𝛼 |𝒂𝑛 |⊙ (𝛥𝑥|𝜳 𝑛
| + 𝛥𝑦|𝜳 𝑛

| + 𝛥𝑧|𝜳 𝑛
|)⊘ (𝜖 𝟏 + 1 (|𝜳 𝑛

| + |𝜳 𝑛
| + |𝜳 𝑛

|)2) . (26)
8

𝒂𝒃𝒔 𝑘𝑎𝑏𝑠 𝜳 𝒙 𝒚 𝒛 𝑘 3 𝒙 𝒚 𝒛

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 2. Diagrams showing how boundary conditions are applied through halo values when using the quadratic ConvFEM. Linear ConvFEM can be realised simply
by ignoring the second layer of halo values. The indices 1, 2, 3 and 4 indicate the cell or node number within the solution domain. These same indices are used
in the halo nodes to indicate where the information for forming the halo values is obtained. The basic idea behind the boundary conditions is to specify the
value of the halo values such that when one interpolates these with the values inside the domain then one obtains the desired boundary conditions along the
boundaries (indicated here by thick blue lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

For the case when the grid spacing is the same in all three directions, Eq. (25) simplifies to 𝒉𝑛𝜳 = 𝛥𝑥𝟏 resulting in

𝒌𝑛𝒂𝒃𝒔 = 𝛼𝑘𝑎𝑏𝑠𝛥𝑥|𝒂𝑛𝜳 |⊘ (𝜖𝑘𝟏 +
1
3
(|𝜳 𝑛

𝒙| + |𝜳 𝑛
𝒚 | + |𝜳 𝑛

𝒛|)) . (27)

Taking the expression from Hansbo and Johnson [82], the second residual-based diffusion coefficient is given by:

𝒌𝑛𝒔𝒒𝒖𝒂𝒓𝒆 = 𝛼𝑘𝑠𝑞𝑢𝑎𝑟𝑒 (𝒂𝑛𝜳)
2 ⊙ 𝒉𝑛𝜳

⊘
(

𝜖𝑘𝟏 +
1
3
(|𝒖𝑛 ⊙ 𝜳 𝑛

𝒙| + |𝒗𝑛 ⊙ 𝜳 𝑛
𝒚 | + |𝒘𝑛 ⊙ 𝜳 𝑛

𝒛|)((𝜳𝒙
𝑛)2 + (𝜳 𝒚

𝑛)2 + (𝜳 𝒛
𝑛)2)

)

, (28)

where (𝒂𝑛𝜳)
2 = 𝒂𝑛𝜳 ⊙ 𝒂𝑛𝜳 and |𝜳 𝑛

𝒙| is a tensor in which the absolute value of each entry of 𝜳 𝑛
𝒙 is taken. The coefficients 𝛼𝑘𝑎𝑏𝑠, 𝛼𝑘𝑠𝑞𝑢𝑎𝑟𝑒

have been determined by trial and error, and are defined as:

𝛼𝑘𝑎𝑏𝑠 =
1

8 × 2p
and 𝛼𝑘𝑠𝑞𝑢𝑎𝑟𝑒 =

8
2p

,

where p is the polynomial order of the finite element expansion, i.e., p = 1 for linear 3 × 3 × 3 filters, p = 2 for quadratic 5 × 5 × 5
filters and p = 3 for cubic filters.

To calculate the advection residual, 𝒂𝑛𝜳 , which appears in Eqs. (24) and (28), a simple mixed mass approach is used

𝒂𝑛𝜳 = 𝛼𝑎𝒇
(

𝒖𝑛 ⊙ 𝒇 (𝜳 𝑛;𝐰𝐱) + 𝒗𝑛 ⊙ 𝒇 (𝜳 𝑛;𝐰𝐲) +𝒘𝑛 ⊙ 𝒇 (𝜳 𝑛;𝐰𝐳);
1
𝑚𝑙

𝐰𝐦 − 𝐄
)

, (29)

where 𝑚𝑙 = 𝛥𝑥𝛥𝑦𝛥𝑧 is the lumped mass term, 𝐰𝐦 filter representing the consistent mass matrix and 𝐄 is the ‘‘identity filter’’ (on
convolving this with a tensor produces the same tensor). A scalar coefficient, 𝛼𝑎, is introduced, for which a value of 𝛼𝑎 = 2 has been
found effective. The underlying assumption, in using Eq. (29) for calculating the residual tensor, is that most of the errors in the
discretisation are within the spatial gradients associated with the transport terms, which, given the dominance of these terms in the
applications presented here, is a reasonable assumption.

Finally, the rate of diffusion should not exceed the rate of advection, so we introduce a maximum diffusion coefficient calculated
as follows:

𝒌𝑛𝒎𝒂𝒙 = 𝛥𝑥|𝒖𝑛| + 𝛥𝑦|𝒗𝑛| + 𝛥𝑧|𝒘𝑛
| . (30)

Assuming that all the diffusion coefficients given by Eqs. (24), (28), (30) are conservatively large, one can determine the diffusion
coefficient using:

𝒌𝑛𝜳 = 𝝆𝑛
𝜳 ⊙min{𝒌𝑛𝒎𝒂𝒙, 𝒌

𝑛
𝒂𝒃𝒔, 𝒌

𝑛
𝒔𝒒𝒖𝒂𝒓𝒆} + 𝜇𝟏, (31)

or 𝑘𝛹
𝑛
𝑖,𝑗,𝑘 = 𝜌𝛹

𝑛
𝑖,𝑗,𝑘 min{𝑘𝑛𝑚𝑎𝑥 𝑖,𝑗,𝑘, 𝑘

𝑛
𝑎𝑏𝑠 𝑖,𝑗,𝑘, 𝑘

𝑛
𝑠𝑞𝑢𝑎𝑟𝑒 𝑖,𝑗,𝑘} + 𝜇 . (32)

At each grid point (i.e., for each 𝑖, 𝑗, 𝑘) the minimum of the three diffusion coefficients is taken. When solving for the velocity
components 𝝆𝑛

𝜳 = 𝝆𝑛 and when solving for the volume fraction field, 𝝆𝑛
𝜳 = 𝟏. Also, if 𝜳 𝑛 is a velocity component, 𝜇 is the dynamic

viscosity and if 𝜳 𝑛 is the volume fraction field, 𝜇 = 0 is the diffusivity. By taking the minimum value of these diffusion coefficients
(Eq. (31)), it is hoped that the scheme will minimally intervene in the discretisation.
9

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

t
p
n

T
i
a
t

o
a
m
T
f

T
a

T

2.3.5. Compressive advection for interface-capturing with Petrov–Galerkin and extrema detecting for the volume fraction field
The positive Petrov–Galerkin diffusion can result in a smeared interface, so to counteract this, we introduce negative diffusion

hrough another Petrov–Galerkin-based formulation. We use the approach outlined in Pavlidis et al. [33] (Equation (33) in that
aper) to sharpen up interfaces by adding negative diffusion to the advection equation for the volume fraction when this field has
o extrema in a particular direction, which is determined by an oscillatory detecting variable.

We now outline the new approach used to detect oscillations. Variables detecting oscillations in each direction with increasing 𝑥,
𝑦 and 𝑧, are calculated for linear 3 × 3 × 3 filters 𝑆𝑥 𝑛

𝑖,𝑗,𝑘, 𝑆𝑦 𝑛
𝑖,𝑗,𝑘, 𝑆𝑧 𝑛

𝑖,𝑗,𝑘 as follows:

𝑆𝑥 𝑛
𝑖,𝑗,𝑘 = (𝐶𝑛

𝑖,𝑗,𝑘 − 𝐶𝑛
𝑖−1,𝑗,𝑘)(𝐶

𝑛
𝑖+1,𝑗,𝑘 − 𝐶𝑛

𝑖,𝑗,𝑘), (33a)

𝑆𝑦 𝑛
𝑖,𝑗,𝑘 = (𝐶𝑛

𝑖,𝑗,𝑘 − 𝐶𝑛
𝑖,𝑗−1,𝑘)(𝐶

𝑛
𝑖,𝑗+1,𝑘 − 𝐶𝑛

𝑖,𝑗,𝑘) , (33b)

𝑆𝑧 𝑛
𝑖,𝑗,𝑘 = (𝐶𝑛

𝑖,𝑗,𝑘 − 𝐶𝑛
𝑖,𝑗,𝑘−1)(𝐶

𝑛
𝑖,𝑗,𝑘+1 − 𝐶𝑛

𝑖,𝑗,𝑘) . (33c)

When quadratic and higher-order filters are used, the following oscillatory-detecting variables are calculated:

𝑆𝑥 𝑛
𝑖,𝑗,𝑘 = min{ (𝐶𝑛

𝑖−1,𝑗,𝑘 − 𝐶𝑛
𝑖−2,𝑗,𝑘)(𝐶

𝑛
𝑖,𝑗,𝑘 − 𝐶𝑛

𝑖−1,𝑗,𝑘),

(𝐶𝑛
𝑖,𝑗,𝑘 − 𝐶𝑛

𝑖−1,𝑗,𝑘)(𝐶
𝑛
𝑖+1,𝑗,𝑘 − 𝐶𝑛

𝑖,𝑗,𝑘), (34a)
(𝐶𝑛

𝑖+1,𝑗,𝑘 − 𝐶𝑛
𝑖,𝑗,𝑘)(𝐶

𝑛
𝑖+2,𝑗,𝑘 − 𝐶𝑛

𝑖+1,𝑗,𝑘) },

𝑆𝑦 𝑛
𝑖,𝑗,𝑘 = min{ (𝐶𝑛

𝑖,𝑗−1,𝑘 − 𝐶𝑛
𝑖,𝑗−2,𝑘)(𝐶

𝑛
𝑖,𝑗,𝑘 − 𝐶𝑛

𝑖,𝑗−1,𝑘),

(𝐶𝑛
𝑖,𝑗,𝑘 − 𝐶𝑛

𝑖,𝑗−1,𝑘)(𝐶
𝑛
𝑖,𝑗+1,𝑘 − 𝐶𝑛

𝑖,𝑗,𝑘), (34b)
(𝐶𝑛

𝑖,𝑗+1,𝑘 − 𝐶𝑛
𝑖,𝑗,𝑘)(𝐶

𝑛
𝑖,𝑗+2,𝑘 − 𝐶𝑛

𝑖,𝑗+1,𝑘) },

𝑆𝑧 𝑛
𝑖,𝑗,𝑘 = min{ (𝐶𝑛

𝑖,𝑗,𝑘−1 − 𝐶𝑛
𝑖,𝑗,𝑘−2)(𝐶

𝑛
𝑖,𝑗,𝑘 − 𝐶𝑛

𝑖,𝑗,𝑘−1),

(𝐶𝑛
𝑖,𝑗,𝑘 − 𝐶𝑛

𝑖,𝑗,𝑘−1)(𝐶
𝑛
𝑖,𝑗,𝑘+1 − 𝐶𝑛

𝑖,𝑗,𝑘), (34c)
(𝐶𝑛

𝑖,𝑗,𝑘+1 − 𝐶𝑛
𝑖,𝑗,𝑘)(𝐶

𝑛
𝑖,𝑗,𝑘+2 − 𝐶𝑛

𝑖,𝑗,𝑘+1) } .

he condition 𝑆𝑥 𝑛
𝑖,𝑗,𝑘 ⩾ 0 indicates that there is no change of sign in gradient and thus no oscillation; 𝑆𝑥 𝑛

𝑖,𝑗,𝑘 < 0 indicates that there
s an oscillation. Similar statements can be made for 𝑆𝑦 𝑛

𝑖,𝑗,𝑘 and 𝑆𝑧 𝑛
𝑖,𝑗,𝑘. Eqs. (34a), (34b) and (34c) provide a much more rigorous

pproach to detecting an oscillation, locally, in a particular direction than the approach used in Eqs. (33a), (33b) and (33c). In fact,
he use of the latter can lead to significant oscillations when diffusion is introduced. In addition to using 𝑆𝑥 𝑛

𝑖,𝑗,𝑘 < 0 for detecting an

scillation (with similar terms for 𝑦 and 𝑧), if 𝐶𝑛
𝑖,𝑗,𝑘 > 0.95 or 𝐶𝑛

𝑖,𝑗,𝑘 < 0.05, then an oscillation is also deemed to have been detected
nd thus the algorithm will apply positive Petrov–Galerkin diffusion and does this by setting 𝑆𝑥 𝑛

𝑖,𝑗,𝑘 = −1 𝑆𝑦 𝑛
𝑖,𝑗,𝑘 = −1 , 𝑆𝑧 𝑛

𝑖,𝑗,𝑘 = −1. These
odifications to 𝑆𝑥 𝑛

𝑖,𝑗,𝑘 𝑆𝑦 𝑛
𝑖,𝑗,𝑘 , 𝑆𝑧 𝑛

𝑖,𝑗,𝑘 reduce the likelihood of the volume fraction field becoming greater than one or less than zero.
he weights that determine how much positive (e.g., 𝑤𝑥 𝑛+

𝑖,𝑗,𝑘) and how much negative (e.g., 𝑤𝑥 𝑛−
𝑖,𝑗,𝑘) diffusion is applied, are calculated

rom:

𝑤𝑥 𝑛+
𝑖,𝑗,𝑘 = −max{−1,min{0,+𝑆𝑥 𝑛

𝑖,𝑗,𝑘}}, 𝑤𝑥 𝑛−
𝑖,𝑗,𝑘 = min{1,max{0,−𝑆𝑥 𝑛

𝑖,𝑗,𝑘}}, (35a)

𝑤𝑦 𝑛+
𝑖,𝑗,𝑘 = −max{−1,min{0,+𝑆𝑦 𝑛

𝑖,𝑗,𝑘}}, 𝑤𝑦 𝑛−
𝑖,𝑗,𝑘 = min{1,max{0,−𝑆𝑦 𝑛

𝑖,𝑗,𝑘}}, (35b)

𝑤𝑧 𝑛+
𝑖,𝑗,𝑘 = −max{−1,min{0,+𝑆𝑧 𝑛

𝑖,𝑗,𝑘}}, 𝑤𝑧 𝑛−
𝑖,𝑗,𝑘 = min{1,max{0,−𝑆𝑧 𝑛

𝑖,𝑗,𝑘}} . (35c)

he values of + = 300 and − = 300 are used here which tend to mean that these weightings produce their extreme values of 0
nd 1 most of the time. The negative diffusion coefficient used to maintain a sharp interface [32,33] is:

𝑘𝑛−𝑖,𝑗,𝑘 = −𝛽
𝑢2𝑖,𝑗,𝑘 + 𝑣2𝑖,𝑗,𝑘 +𝑤2

𝑖,𝑗,𝑘

𝜖𝑥 + ((𝐶𝑛
𝑥 𝑖,𝑗,𝑘)

2 + (𝐶𝑛
𝑦 𝑖,𝑗,𝑘)

2 + (𝐶𝑛
𝑧 𝑖,𝑗,𝑘)

2)(|𝑢𝑛∗𝑖,𝑗,𝑘| + |𝑣𝑛∗𝑖,𝑗,𝑘| + |𝑤𝑛∗
𝑖,𝑗,𝑘|)∕3

, (36)

where 𝛽 = 0.1; 𝜖𝑥 = 10−4; 𝐶𝑛
𝑥 𝑖,𝑗,𝑘, 𝐶𝑛

𝑦 𝑖,𝑗,𝑘 and 𝐶𝑛
𝑧 𝑖,𝑗,𝑘 represent the gradient of volume fraction field in each direction at time level 𝑛

(e.g., 𝐶𝑛
𝑥𝑖,𝑗,𝑘 = 𝑪𝑛

𝒙|𝑖,𝑗,𝑘); and the ∗ superscript denotes the normalisation operator for each velocity component which is defined by

(𝑢𝑛∗𝑖,𝑗,𝑘, 𝑣
𝑛∗
𝑖,𝑗,𝑘,𝑗,𝑘, 𝑤

𝑛∗
𝑖,𝑗,𝑘) = (𝐶𝑛

𝑥𝑖,𝑗,𝑘, 𝐶
𝑛
𝑦𝑖,𝑗,𝑘, 𝐶

𝑛
𝑧𝑖,𝑗,𝑘)

(

𝑢𝑛𝑖,𝑗,𝑘𝐶
𝑛
𝑥𝑖,𝑗,𝑘 + 𝑣𝑛𝑖,𝑗,𝑘𝐶

𝑛
𝑦𝑖,𝑗,𝑘 +𝑤𝑛

𝑖,𝑗,𝑘𝐶
𝑛
𝑧𝑖,𝑗,𝑘

𝜖𝑥 + (𝐶𝑛
𝑥𝑖,𝑗,𝑘)

2 + (𝐶𝑛
𝑦𝑖,𝑗,𝑘)

2 + (𝐶𝑛
𝑧𝑖,𝑗,𝑘)

2

)

. (37)

his negative diffusion coefficient is used to generate negative diffusion coefficients in 𝑥, 𝑦 and 𝑧 as follows:

𝑘𝑥 𝑛−𝑖,𝑗,𝑘 =
𝑘𝑛−𝑖,𝑗,𝑘
𝛥𝑥

, 𝑘𝑦 𝑛−𝑖,𝑗,𝑘 =
𝑘𝑛−𝑖,𝑗,𝑘
𝛥𝑦

, 𝑘𝑧 𝑛−𝑖,𝑗,𝑘 =
𝑘𝑛−𝑖,𝑗,𝑘
𝛥𝑧

. (38)

An isotropic positive diffusion coefficient is also applied to reduce oscillations. To do this, Eq. (26) is used to obtain 𝑘𝑛𝑎𝑏𝑠𝑖,𝑗,𝑘 which
is multiplied by  to form:

𝑥 𝑛+ 𝑦 𝑛+ = 𝑘𝑧 𝑛+ =  𝑘𝑛 , (39)
10

𝑘𝑖,𝑗,𝑘 = 𝑘𝑖,𝑗,𝑘 𝑖,𝑗,𝑘 𝑎𝑏𝑠𝑖,𝑗,𝑘

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 3. Schematic of the multiphase flow solver as a neural network containing the four stages of the overall solution method. See Fig. 4 for a schematic of
the velocity and the non-hydrostatic pressure correction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

in which  = 3 (determined by trial and error) artificially elevates the Petrov–Galerkin diffusivity in order to control oscillations in
the volume fraction field generated by negative diffusion, Eq. (36). The diffusion coefficient for interface-capturing becomes:

𝑘𝑥 𝑛𝑖,𝑗,𝑘 = 𝑤𝑥 𝑛+
𝑖,𝑗,𝑘𝑘

𝑥 𝑛+
𝑖,𝑗,𝑘 +𝑤𝑥 𝑛−

𝑖,𝑗,𝑘𝑘
𝑥 𝑛−
𝑖,𝑗,𝑘 , (40)

and similarly for 𝑘𝑦 𝑛𝑖,𝑗,𝑘, 𝑘𝑧 𝑛𝑖,𝑗,𝑘. After stabilising the overall diffusion coefficient, the final anisotropic diffusion coefficients become:

𝑘𝑥 𝑛𝑖,𝑗,𝑘 ← max{−𝑘𝑚𝑖𝑛,min{𝑘𝑚𝑎𝑥, 𝑘𝑥 𝑛𝑖,𝑗,𝑘}}, (41)

where 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are determined based on the stability condition of explicit time-stepping schemes:

𝑘𝑚𝑖𝑛 =
𝛼𝑚𝑖𝑛
𝛥𝑡

max{𝛥𝑥, 𝛥𝑦, 𝛥𝑧}2 , 𝑘𝑚𝑎𝑥 =
𝛼𝑚𝑎𝑥
𝛥𝑡

min{𝛥𝑥, 𝛥𝑦, 𝛥𝑧}2 , (42)

in which 𝛼𝑚𝑖𝑛 = 0.0001, 𝛼𝑚𝑎𝑥 = 0.05 has been determined by trial and error. If there are issues with dissipation of the interface (not
the case within this paper), we have seen that reducing 𝛼𝑚𝑎𝑥 to 0.005 will improve the results. Expressions similar to Eq. (42) are
developed for 𝑘𝑦 𝑛𝑖,𝑗,𝑘 and 𝑘𝑧 𝑛𝑖,𝑗,𝑘.

2.4. Solution method for the multiphase flow equations

This section describes the overall solution method for solving the Navier–Stokes and volume fraction field equations. Although
these equations are highly coupled, a segregated solution method is applied in four stages. First, the hydrostatic and surface-tension
pressure is found; second, a velocity solution is calculated; third, non-hydrostatic and non-surface-tension pressure is calculated and
the velocity solution is corrected; and finally, an advection equation is solved for the volume fraction. Fig. 3 shows a diagrammatic
representation of the multiphase solution method implemented as a neural network, where the four stages in the solution process
are identified as detailed below.

Stage 1: Hydrostatic and Surface-Tension Pressure Solution. By taking the divergence of the terms on the right-hand side
of Eq. (17) (excluding the term involving 𝑝𝑛ℎ) and setting this to zero, we obtain an equation for the hydrostatic and surface-tension
pressure as follows:

− ∇ ⋅ ∇𝑝𝑛+1ℎ𝑠 + ∇ ⋅ (𝒔𝑛𝑞 + 𝒔𝑛𝑡) = 0 , (43)

where the buoyancy term is given in Eq. (20) and the surface tension term is given by Eq. (21). After discretising Eq. (43) in space,
we obtain an expression for the residual of the pressure

𝒓
𝑛+ 1

2 = −𝒇 (𝒑 𝑛+1;𝐰) + 𝒇 (𝒔𝑛 ;𝐰) + 𝒇 (𝒔𝑛 ;𝐰) + 𝒇 (𝒔𝑛 + 𝑔𝝆𝑛;𝐰) , (44)
11

𝒉𝒔 𝒉𝒔 ∇2 𝒕𝑢 𝐱 𝒕𝑣 𝐲 𝒕𝑤 𝐳

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 4. Schematic of the velocity and the non-hydrostatic pressure correction necessary to satisfy the continuity equation. Details of a single iteration of the
pressure and velocity correction are shown in top left and top right, respectively. Three of these iterations are combined to form an overall pressure and velocity
correction to satisfy the continuity equation, the schematic of which is shown bottom right. (See Fig. 3 for a key of the colours).

Fig. 5. Saw-tooth multigrid method, based on a U-Net architecture, used to solve for the hydrostatic and surface-tension pressure and the non-hydrostatic
non-surface-tension pressure correction.

which is forced to zero using the U-Net multigrid solver in order to calculate the hydrostatic pressure tensor 𝒑𝒉𝒔𝑛+1. Fig. 5 shows
a schematic diagram that describes how this and the (non-hydrostatic non-surface-tension) pressure correction equation are solved
using a saw tooth multigrid method using the U-Net architecture, see [51]. A fixed number of 20 multigrid cycles for each pressure
equation solution is used in this paper, except where otherwise stated.

Stage 2: Velocity Solution. With a surface tension coefficient for water of 𝜎𝑡 = 7.28 × 10−2 Nm−1, the tensors representing surface
tension, see Eq. (21), are substituted in the right-hand side of the discrete residuals of the velocities (see Eqs. (18a), (18b) and (18c)),
together with the pressure gradients and buoyancy source. The solution for the velocities requires a two-step approach using the
discrete sources 𝒔̃

𝑛+ 1
2

𝒖 , 𝒔̃
𝑛+ 1

2
𝒗 , 𝒔̃

𝑛+ 1
2

𝒘 (see Eqs. (18)) and starting with the best approximation to 𝒖𝑛+
1
2 , 𝒗𝑛+

1
2 , 𝒘𝑛+ 1

2 , that is 𝒖𝑛+
1
2 = 𝒖𝑛,

𝒗𝑛+
1
2 = 𝒗𝑛, 𝒘𝑛+ 1

2 = 𝒘𝑛. By setting the residual to zero, applying the inverse identity filter and applying Hadamard entry-wise
division, the approximate velocities at 𝑛 + 1 are given by:

𝒖̃𝑛+1 =
(

−𝒇 (𝒔̃
𝑛+ 1

2
𝒖 ;𝐰−𝟏) + 1 𝝆𝑛 ⊙ 𝒖𝑛

)

⊘
(1 𝝆𝑛 + 𝝈

)

,

12

𝐦𝐥 𝛥𝑡 𝛥𝑡

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

w

S
e
c

A

𝒗̃𝑛+1 =
(

−𝒇 (𝒔̃
𝑛+ 1

2
𝒗 ;𝐰−𝟏

𝐦𝐥) +
1
𝛥𝑡

𝝆𝑛 ⊙ 𝒗𝑛
)

⊘
(1
𝛥𝑡

𝝆𝑛 + 𝝈
)

,

𝒘̃𝑛+1 =
(

−𝒇 (𝒔̃
𝑛+ 1

2
𝒘 ;𝐰−𝟏

𝐦𝐥) +
1
𝛥𝑡

𝝆𝑛 ⊙𝒘𝑛
)

⊘
(1
𝛥𝑡

𝝆𝑛 + 𝝈
)

. (45)

The velocities at time level 𝑛 + 1
2 are updated:

𝒖𝑛+
1
2 = 1

2
(𝒖𝑛 + 𝒖̃𝑛+1), 𝒗𝑛+

1
2 = 1

2
(𝒗𝑛 + 𝒗̃𝑛+1), 𝒘𝑛+ 1

2 = 1
2
(𝒘𝑛 + 𝒘̃𝑛+1) . (46)

A second iteration can be performed by recalculating the sources 𝒔̃
𝑛+ 1

2
𝒖 , 𝒔̃

𝑛+ 1
2

𝒗 , 𝒔̃
𝑛+ 1

2
𝒘 (Eq. (18)) with the latest solutions at time

levels 𝑛 + 1 and 𝑛 + 1
2 and using Eq. (45) again to calculate an improved estimate of the solutions at time level 𝑛 + 1. In this work

e use two iterations, although more could be done if desired.

tage 3: Non-Hydrostatic Pressure and Velocity Correction. In the following, the non-hydrostatic pressure and velocity correction
quations are formed, see Fig. 4. To do this, Eq. (17) is modified by replacing 𝒒̃𝑛+1 and 𝑝̃𝑛𝑛ℎ with the variables that satisfy mass
onservation at time level 𝑛 + 1 (𝒒𝑛+1 and 𝑝𝑛+1𝑛ℎ) resulting in:

𝜌𝑛
(

𝒒𝑛+1 − 𝒒𝑛

𝛥𝑡
+ 𝑢𝑛+

1
2
𝜕𝒒𝑛+

1
2

𝜕𝑥
+ 𝑣𝑛+

1
2
𝜕𝒒𝑛+

1
2

𝜕𝑦
+𝑤𝑛+ 1

2
𝜕𝒒𝑛+

1
2

𝜕𝑧

)

+ 𝜎𝒒̃𝑛+1 − ∇ ⋅ (𝜇∇𝒒𝑛+
1
2)

= −∇𝑝𝑛+1ℎ𝑠 − ∇𝑝𝑛+1𝑛ℎ + 𝒔𝑛𝑞 + 𝒔𝑛𝑡 .

(47)

On subtracting Eq. (17) from Eq. (47), the following velocity correction equation is formed:
𝜌𝑛

𝛥𝑡
𝛥𝒒 = −∇𝛥𝑝𝑛ℎ, (48)

in which 𝛥𝒒 = 𝒒𝑛+1 − 𝒒̃𝑛+1 and 𝛥𝑝𝑛ℎ = 𝑝𝑛+1𝑛ℎ − 𝑝̃𝑛+1𝑛ℎ . By combining the equation for the volume fraction discretised in time (Eq. (14))
with the expression for density (Eq. (2)), we obtain an equation for conservation of mass:

𝜌𝑛+1 − 𝜌𝑛

𝛥𝑡
+ ∇ ⋅

(

𝒒𝑛+1𝜌𝑛
)

=
𝜌𝑛+1 − 𝜌𝑛

𝛥𝑡
+ 𝒒𝑛+1 ⋅ ∇𝜌𝑛 = 0 . (49)

Taking the divergence of Eq. (48) and substituting in Eq. (49) enables us to form the correction for non-hydrostatic non-surface-
tension pressure (see Pavlidis et al. [32,33]):

−∇ ⋅ ∇𝛥𝑝𝑛ℎ = 1
𝛥𝑡

∇ ⋅ (𝜌𝑛𝒒𝑛+1 − 𝜌𝑛𝒒̃𝑛+1) = − 1
𝛥𝑡

(

𝜌𝑛+1 − 𝜌𝑛

𝛥𝑡
+ ∇ ⋅ (𝜌𝑛𝒒̃𝑛+1)

)

. (50)

pproximating the mass conservation equation by using the best estimate of velocity (𝒒̃𝑛+1),

𝜌𝑛+1 − 𝜌𝑛

𝛥𝑡
= −𝒒̃𝑛+1 ⋅ ∇𝜌𝑛 , (51)

means that we can replace the unknown density 𝜌𝑛+1 in Eq. (50), resulting in the non-hydrostatic non-surface-tension pressure
correction of

−∇ ⋅
(

∇𝛥𝑝𝑛ℎ
)

= − 1
𝛥𝑡

(

∇ ⋅ (𝜌𝑛𝒒̃𝑛+1) − 𝒒̃𝑛+1 ⋅ ∇𝜌𝑛
)

. (52)

The fully discretised form of Eq. (52) is:

𝒓
𝑛+ 1

2
𝒏𝒉 = −𝒇 (𝜟𝒑𝒏𝒉;𝐰∇2)

− 1
𝛥𝑡

(

𝒇 (𝝆𝑛 ⊙ 𝒖̃𝑛+1;𝐰𝐱) + 𝒇 (𝝆𝑛 ⊙ 𝒗̃𝑛+1;𝐰𝐲) + 𝒇 (𝝆𝑛 ⊙ 𝒘̃𝑛+1;𝐰𝐳)
)

+ 1
𝛥𝑡

(

𝒖̃𝑛+1 ⊙ 𝒇 (𝝆𝑛;𝐰𝐱) + 𝒗̃𝑛+1 ⊙ 𝒇 (𝝆𝑛;𝐰𝐲) + 𝒘̃𝑛+1 ⊙ 𝒇 (𝝆𝑛;𝐰𝐳)
)

, (53)

in which 𝒖̃𝑛+1, 𝒗̃𝑛+1, 𝒘̃𝑛+1 are the estimates for 𝒖𝑛+1, 𝒗𝑛+1, 𝒘𝑛+1 obtained at the end of Stage 2. The residual in Eq. (53) is forced
to zero using the U-Net multigrid solver to calculate the non-hydrostatic pressure correction tensor 𝜟𝒑𝒏𝒉. Although the right-hand
sides of Eqs. (50) and (52) are identical in the continuum, at the discrete level, they are very different. For instance, the sign of the
implied diffusion (realised through the Petrov–Galerkin diffusion introduced into the equations for 𝑪𝑛+1) is reversed.

Eq. (48) is then discretised in space to form an equation for the velocity corrections:

𝜟𝒖 = −𝛥𝑡
(

𝒇
(

𝒇 (𝜟𝒑𝒏𝒉;𝐰𝐱);𝐰−𝟏
𝐦𝐥
)

⊘ 𝝆𝑛) ,

𝜟𝒗 = −𝛥𝑡
(

𝒇
(

𝒇 (𝜟𝒑𝒏𝒉;𝐰𝐲);𝐰−𝟏
𝐦𝐥
)

⊘ 𝝆𝑛) , (54)
𝜟𝒘 = −𝛥𝑡

(

𝒇
(

𝒇 (𝜟𝒑𝒏𝒉;𝐰𝐳);𝐰−𝟏
𝐦𝐥
)

⊘ 𝝆𝑛) .

Finally, the non-hydrostatic non-surface-tension pressure and velocities are updated:

𝒑𝑛+1𝒏𝒉 = 𝒑𝑛𝒏𝒉 + 𝜟𝒑𝒏𝒉 and
𝒖𝑛+1 ← 𝒖𝑛+1 + 𝜟𝒖 ,
𝒗𝑛+1 ← 𝒗𝑛+1 + 𝜟𝒗 ,

𝑛+1 𝑛+1
13

𝒘 ← 𝒘 + 𝜟𝒘 .

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

t
s

2

f

i
p
t
o
w
𝑀

Table 1
Comparison of the computational speed of numerical models found in the literature with the estimated computational speed of NN4PDEs. One single CPU is
used in [83–85]; 8 A100 GPUs and 512 Intel Xeon Gold 6130 CPUs are tested in [17]; 100 AMD Opteron CPUs are used in [45]; and 8 V100 GPUs are used in
[46]. The wall time for each reference refers to the overall timing for complete architectures (e.g., the simulation on 8 GPUs takes 0.191 s, and the equivalent
ime that this is estimated to take on a single GPU is 8 × 0.191 s = 1.528 s). The wall time for NN4PDEs to solve the same problem (with one time step) on a
ingle GPU is estimated using Eq. (56).
Computer architectures Number of Wall time per time step Estimated wall time per

nodes/cells As quoted Estimate for single CPU/GPU time step for NN4PDEs

1 × CPU [83] 16 384 10.50 s 10.50 s 0.609ms
1 × CPU [84] 108 960 11.12 s 11.12 s 4.02ms
1 × CPU [85] 180 000 14.19 s 14.19 s 6.71ms
8 × GPU [17] 5123 0.191 s 1.528 s 1.625 s
512 × CPU [17] 5123 1.075 s 550.4 s 1.625 s
100 × CPU [45] 5003 220 s 22 000 s 1.514 s
8 × GPU [46] 64 000 000 0.273 s 2.184 s 0.775 s

To obtain improved mass conservation, one can repeat this process of solving Eqs. (53) and (54), and updating the non-hydrostatic
non-surface-tension pressure and velocities at time level 𝑛 + 1. Here this process is carried out just twice, see Fig. 18.

Stage 4: Volume Fraction Solution. Solve for volume fraction field based on interface tracking with compressive advection. Setting
the residual in Eq. (15) to zero and rearranging, gives

𝑪𝑛+1 = −𝛥𝑡𝒇 (𝒔̃
𝑛+ 1

2
𝑪 ;𝐰−𝟏

𝐦𝐥) + 𝑪𝑛 , (55)

in which 𝐰𝐦𝐥 = 𝑚𝑙𝐄 and 𝐰−𝟏
𝐦𝐥 = 𝑚𝑙

−1𝐄, where 𝐄 has values E𝑖,𝑗,𝑘 = 1 when 𝑖 = 𝑗 = 𝑘 = 0, zero otherwise.

.5. Computational speed of the approach

The following equation for the time it takes to run the multiphase code for a given simulation seems to hold (to within 10%)
or the simulations performed here:

Wall clock time of simulation in seconds = p 
[

𝑀𝑠 + (𝑁ℎ +𝑁𝐼𝑁𝑛ℎ)𝐻𝑠
]

, (56)

n which  = 𝑁𝑥×𝑁𝑦×𝑁𝑧 is the number of nodes or grid points,  is the number of time-steps in the simulation, p is the ConvFEM
olynomial order, 𝑁ℎ is the number of multigrid iterations for the hydrostatic pressure, 𝑁𝑛ℎ is the number of multigrid iterations for
he non-hydrostatic pressure, and 𝑁𝐼 is the number of pressure–velocity correction iterations. The coefficients 𝑀𝑠 and 𝐻𝑠 depend
n the computer being used: 𝑀𝑠 is associated with the cost of solving for momentum and volume fraction, and 𝐻𝑠 is associated
ith the cost of a multigrid solve. For the NVIDIA A10 Tensor Core GPU and NVIDIA RTX A5000, the value of these coefficients are
𝑠 = 1.2 × 10−8 s and 𝐻𝑠 = 1.1 × 10−10 s, and 𝑀𝑠 = 1.37 × 10−8 s and 𝐻𝑠 = 1.3 × 10−10 s, respectively. Also when the surface tension

calculation is used, 𝑀𝑠 decreases by 1.12% and 𝐻𝑠 increases by 14%. For example, model 5 from Table 2 uses quadratic elements
(p = 2),  = 67 × 106 nodes,  = 4 × 104 time-steps, 𝑁ℎ = 𝑁𝑛ℎ = 20 multigrid iterations, 𝑁𝐼 = 2 correction iterations and, thus,
according to Eq. (56), will take 24.42 h on the NVIDIA A10 Tensor Core GPU, which compares well with the actual run time for this
simulation of 23.04 h.

Table 1 reports computational speeds (wall time per time step) of multiphase flow codes quoted in the literature for a range
of computer systems and compares this with estimated timings of NN4PDEs when running on one NVIDIA A10 Tensor Core GPU.
The reference and computer architecture that was used is given in the first column (where 8 × 𝐺𝑃𝑈 indicates that 8 GPUs were
used). The second column gives the number of nodes in the simulations carried out in each reference. The wall time obtained from
each reference is shown in the third column. In the fourth column we adjust the wall times to take account of when the references
used more than one CPU or GPU. We assume perfect scaling and multiply the quoted time by 512 in the case where 512 CPUs
were used, for example. In order to compare the speed of our code with these references without setting up each of their cases and
methods, we use Eq. (56) to adjust our computational speed to the size of problem (number of nodes) given in each reference. In
this calculation, we assume linear elements (p = 1) and 𝑁ℎ = 𝑁𝑛ℎ = 20 multigrid iterations. Hence, we have a way of estimating
how long our code would take to run the problems in the cited references. In comparison to the reference studies [83–85] (running
on one CPU) and [45] (running on 100 CPUs), our code demonstrates a significant speed-up when executed on one GPU, running
at least 2000 times faster than the other codes. Moreover, we notice that NN4PDEs has a comparable performance (1.625 s) to the
reference work [17] (1.528 s), despite using a less powerful GPU (the A10) than their GPU (the A100). It has been reported that the
A100 is at least twice as capable as the A10 for inference tasks [86].

3. Results

In this section, the proposed multiphase flow solver is validated against a number of classic CFD problems: collapsing water
columns (in 2D and 3D), and a rising water bubble. All the models, presented here, were run on two types of single GPU: NVIDIA
A10 Tensor Core GPU and NVIDIA RTX A5000.
14

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.

d

3

d

Table 2
Details of eight different collapsing water column models simulated by the proposed NN4PDEs approach. The numbers of
grid nodes listed do not include the halo nodes through which the boundary conditions were applied. Table 3 explains the
mixed formulations (e.g., linear/quadratic, linear/cubic etc.) that are listed here in the ‘‘ConvFEM discretisation’’ column. The
computational domain can be calculated by multiplying the number of nodes in each direction by the grid size, or looking at
Table 4 and Fig. 7.

Model Number of grid points Grid size Time step Obstacle Discretisation Figure

𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 Nodes (mm) (ms)

1 512 × 512 262,144 1.0 0.5 No Linear Fig. 6
2 1024× 64 ×1024 67,108,864 0.5 0.025 No Linear Figs. 8(a), 9(a)
3 1024× 64 ×1024 67,108,864 0.5 0.025 Yes Linear Fig. 11
4 1024× 64 ×1024 67,108,864 0.5 0.025 No Quadratic Figs. 8(b), 9(b)
5 1024× 64 ×1024 67,108,864 0.5 0.025 No Linear∕quadratic Fig. 8(c), 9(c)
6 1024× 64 ×1024 67,108,864 0.5 0.025 No Linear∕cubic Figs. 8(d), 8(d)
7 1024×256×1024 268,435,456 0.5 0.025 No Linear∕quadratic Fig. 10
8 512 ×512× 512 134,217,728 1.0 0.1 No Linear∕quadratic Figs. 12, 13

Table 3
Discretisations used in the various models given in Table 2.
Description Volume fraction (diffusion term) All other terms

Linear Linear Linear
Quadratic Quadratic Quadratic
Linear/quadratic Linear Quadratic
Linear/cubic Linear Cubic

3.1. Collapsing water column

A column of water is subjected to gravity (𝑔 = 9.81m∕s2), leading to the collapse of the column towards a flat floor. Two fluids
(water and air) are considered with different densities, 𝜌water = 1000 kg∕m3 and 𝜌air = 1 kg∕m3. The problem is initialised by setting
the volume fraction of the fluid to be zero for water and one for air. Free-slip boundary conditions are imposed on the sides and
bottom of the computational domain. A zero pressure boundary condition is applied to the hydrostatic and non-hydrostatic pressure
at the top of the domain. Neumann boundary conditions (i.e., zero derivative) are applied for both volume fraction and density
fields on all surfaces of the domain.

Eight different numerical model with various grid sizes and discretisation orders were applied to this problem in both 2D (Model
1) and 3D (Models 2–8), as summarised in Table 2. For all models, a uniform grid spacing is used to generate structured grids, see
grid size in Table 2. Various orders of discretisation are used here (linear, quadratic and cubic ConvFEM) as shown in Table 3.
Model 7 is similar to Models 2, 4, 5 and 6 as regards grid size (width and height) and time step, but has a depth of the domain that
is 4 times larger, in order to investigate 3D behaviour of the collapsing column. To ensure that the Courant number is below 0.1,
a fixed time step is applied of 0.5ms (Model 1), 0.025ms (Models 2–7) and 0.1ms (Model 8).

3.1.1. 2D collapsing water column
In order to validate the accuracy of our simulator when predicting the evolution of an initial column of water in 2D, Model 1

is adopted (see Table 2). The results are compared with the experimental measurements by Yeoh and Barber [87], see also Martin
et al. [88]. The dimensions of the 2D domain are 0.512m × 0.512m in the 𝑥 and 𝑦 directions, respectively. A column of water is
initialised with width of 𝑤0 = 0.064m (𝑥 direction) and height of ℎ0 = 0.128m (𝑦 direction). As the water column collapses due to
gravity (imposed in the negative 𝑦-direction), the water front advances over the flat floor and the height of the column decreases
in time. The initial column width (𝑤0) and height (ℎ0) are applied to normalise distances in the 𝑥 and 𝑦 directions (𝑥∗ = 𝑤∕𝑤0 and
𝑦∗ = ℎ∕ℎ0). The evolution of the initial stages of the water column collapse is shown by plotting the progress of the normalised
front (𝑥∗) and height (𝑦∗) of the column through time (𝑡∗) in Fig. 6, demonstrating excellent agreement with experimental data
(taken from Figure 7 within Yeoh and Barber [87]). In Fig. 6 we also plot numerical results from a Discontinuous Galerkin (DG)
formulation [33] solved on a 2D structured mesh. The normalised distance 𝑥∗ predicted by NN4PDEs is closer to the experimental
data than the DG model. The predicted normalised height of the water column, 𝑦∗, is similar for both numerical models. For the
column front (Fig. 6(a)), time is normalised by

√

2𝑔∕𝑤0 and for the column height (Fig. 6(b)), time is normalised by
√

2𝑔∕ℎ0, as
one by Yeoh and Barber [87].

.1.2. 3D collapsing water column
In this section, three collapsing water column scenarios are investigated, for which the dimensions of both the computational

omain and the water column vary (see Table 4 and Fig. 7). The force due to gravity is imposed in the negative 𝑧 direction (vertical),
the 𝑥 direction is horizontal and the 𝑦 direction is into the page.

Figs. 8 and 9 show transient results in the range 0 s ⩽ 𝑡 ⩽1 s for a grid of 67 million ConvFEM nodes from Models 2, 4, 5 and 6,
which have the same domain and grid size, but different orders and combinations of FE discretisations (see Table 2 for details).
Fig. 8 shows the water-air interface, chosen here to be where the volume fraction field has a value of 0.5, and Fig. 9 shows the
15

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 6. Results for the collapsing water column from NN4PDEs predicted using Model 1 (see Table 2). For comparison, experimental data [87] and numerical
results [33] for a 2D version of this test case are also shown.

Table 4
Collapsing water column: size of computational domains and water columns used in three scenarios of the 3D collapsing water
columns. See Fig. 7.
Test case Fig. 7(a) Fig. 7(b) Fig. 7(c)

Domain 0.512m × 0.032m × 0.512m 0.512m × 0.032m × 0.512m 0.512m × 0.512m × 0.512m
Water 0.128m × 0.032m × 0.256m 0.128m × 0.032m × 0.256m 0.128m × 0.128m × 0.384m
Obstacle – 0.024m × 0.032m × 0.048m –

Fig. 7. Schematic diagrams of three different scenarios used in the collapsing water column tests. The values of a, b and d are 0.128m, 0.024m and 0.032m,
respectively. For all models, the height of the domains is 4a. For Model 7, not shown here, the length of the edges in 𝑥 and 𝑦 are 4a and 4d. See also Table 4.

volume fraction field, which ranges from 0 to 1. Overall, numerical results indicate similar time-dependent spatial distributions of
the water volume fraction field to the numerical and experimental investigations of Yeoh and Barber [87]. The evolution of the
water columns is shown through the volume fraction field in Figs. 8 and 9, and the results display good qualitative agreement with
those shown experimentally and computationally by Yeoh and Barber [87] (see their Figs. 2, and 4 and 5 respectively).

Comparing the approaches implemented in these four models, a better performance in terms of interface sharpness between
phases was obtained from Models 5 and 6 (as demonstrated in Figs. 9(c) and 9(d)) due to the compressive-advection interface-
capturing formulation (see Section 2.3.5). The reason is that higher-order (quadratic and cubic FE) diffusion schemes introduce
more oscillations than lower-order (linear FE) schemes, which leads to a more diffusive volume fraction field as shown in Fig. 9(b).
In order to mitigate the additional diffusion of the volume fraction field caused by higher-order discretisations, Models 5 and 6
combine advantages of lower- and higher-order FE discretisations: a lower-order FE discretisation (linear ConvFEM) is used to
discretise the diffusion of the volume fraction field and all other terms are discretised using higher-order FE schemes (quadratic or
cubic ConvFEM).
16

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 8. Snapshots of water-air interface for the 3D collapsing water column without an obstacle from 𝑡 = 0 s to 𝑡 = 1.0 s with 0.2 s intervals and solved on a
grid of 1024 × 64 × 1024 nodes. Volume fraction values greater than 0.5 are shown in black and where less than 0.5 is coloured grey. The resulting fields are
shown on an 𝑥𝑧 plane at the midpoint of the extent of the domain in the 𝑦 direction. See Table 2 for details.

Fig. 10 shows results for the water-air interface and volume fraction field for Model 7, which has the same time step and uses
the same filters (linear filters for the diffusion term of the volume fraction and quadratic filters for all other terms) as the results
shown in Figs. 8(c) and 9(c) for Model 5. The computational domain used to generate the results shown in Fig. 10 has a depth that
is 4 times larger than that of Model 5, using a total of 256 million nodes (the largest number of nodes used here). The motivation
for running this simulation is to excite fully three-dimensional behaviour (due to the extended domain in the 𝑦 direction) and also
explore the limit of the size of the problem that can be simulated on our single GPU. Comparing Figs. 8(c) and 9(c) with Figs. 10(a)
and 10(b), a similar dispersion and advection of the collapsing water column can be seen in both cases. Figs. 10(c)–10(f) show the
water-air interface (an isosurface at a value of volume fraction of 0.5) at four time levels from 0.4 s to 1 s. They show the initial
water column descending due to gravity, and forming waves on the interface between the falling water and the surrounding air in
the early stages (Fig. 10(c)). As waves propagate throughout the domain, they breakup upon impact with the boundary, as shown
in Figs. 10(e) and 10(f) and become highly three dimensional, aligning with the results shown in Figure 3 of Yeoh and Barber [87].

Fig. 11 shows the interaction between the collapsing water and an obstacle (see Table 4 for location of the obstacle). Figs. 11(a)
and 11(b) show the water-air interface and volume fraction, respectively. The results indicate that the solution obtained from the
NN4PDEs approach captures instabilities induced by the obstacle, including the generation of waves and ripples due to the sudden
change in the momentum of the water. Qualitative comparisons can be made between the evolution of the volume fraction field
shown here, in Fig. 11(b), with the results shown in Yeoh and Barber [87], experimentally in their Fig. 3 and computationally in
17

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 9. Snapshots of volume fraction field for the 3D collapsing water column without an obstacle from 𝑡 = 0 s to 𝑡 = 1.0 s at intervals of 0.2 s, solved on a grid
of 1024 × 64 × 1024 nodes. The volume fraction is shown on an 𝑥𝑧 plane at the midpoint of the extent of the domain in the 𝑦 direction.

their Figs. 8 and 9. A close match in terms of wave propagation and interaction between collapsing water and obstacle is seen, with
our results and those of Yeoh and Barber [87] producing similar spatial variation of the water field at each time level.

The collapsing water column in a cube-shaped computational domain is shown in Fig. 12. The cube-shaped domain is used here,
as it results in highly 3D behaviour (at both large and smaller scales) unlike the previous collapsing water column problems that
are solved within a highly anisotropic domain, constrained to have 2D large scale behaviour in which the water column fills the
extent of the domain in the 𝑦 direction (see Models 2–6, and Figs. 7(a) and 7(b)). The simulation was conducted with Model 8
and the results plotted at eight time levels from 0.15 s to 1.2 s with an interval of 0.15 s. This figure shows the isosurfaces of the
volume fraction field, taken at a value of 0.5 to enable visualisation of the interface between the descending water and surrounding
air. At 𝑡 = 0.15 s, 0.30 s and 0.45 s, the interface shows that the waves are symmetric diagonally across the cube-shaped domain.
Following the initial impact with the opposing wall, the water field undergoes a transformation into an asymmetrical shape, leading
to intensified splashing and spraying, that is particularly noticeable at 𝑡 = 0.60 s, 0.75 s and 0.90 s. Gravity causes the water column
to drop and spread across the flat floor. This behaviour is most pronounced around 𝑡 = 1.20 s, showcasing the ongoing dynamic
evolution of the water field. Fig. 13 shows results of volume fraction for Model 8 on a grid of size 512 × 512 × 512, plotted on a
diagonal plane at eight times from 0.1 s to 0.8 s at intervals of 0.1 s.
18

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 10. Snapshots of three-dimensional numerical predictions of collapsing water column without an obstacle from 𝑡 = 0 s to 𝑡 = 1.0 s solved on a grid of
1024 × 256 × 1024 nodes. The results are obtained by Model 7 using linear filters for the volume fraction diffusion and quadratic convolutional filters for
all other terms. Plots (a) and (b) are shown on an 𝑥𝑧 plane located at the midpoint of the domain on the 𝑦-axis. Plots (c) to (f) are isosurfaces showing the
water-air interface.

3.2. Rising bubble in water

The NN4PDEs approach is used to simulate a single, rising 3D air bubble in water. The computational domain (Fig. 14(a)) has a
cuboidal shape with dimensions of 3𝐻 ×3𝐻 ×6𝐻 (length in 𝑥 direction, width in 𝑦 direction and height in 𝑧 direction), where 𝐻 is
set to 2mm. An air bubble is centred at (1.5𝐻, 1.5𝐻, 𝐻). The boundary conditions used in the simulations within this section are the
same as those described for the collapsing water column test-cases (Section 3.1.2). One of the best performing discretisations from
the previous experiments is used here, namely, linear filters (i.e., filters that represent a linear FEM discretisation) for the diffusion
term of the volume fraction and quadratic filters (i.e., filters that represent a quadratic ConvFEM discretisation) for all other terms.
The surface tension model described in Eqs. (21) and (22) is incorporated for this test case in order to model the rising bubble.

To investigate the ability of the proposed NN4PDEs approach to forecast the dynamics of a rising bubble, a uniform grid is
used with 67 million (256 × 256 × 512) structured nodes and fixed time step (𝛥𝑡 = 0.1 μs). A single, initially spherical, bubble
19

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 11. Snapshots of three-dimensional numerical predictions of the collapsing water column with an obstacle from 𝑡 = 0.1 s to 𝑡 = 0.6 s at an interval of 0.1 s.
The fields are shown on an 𝑥𝑧 plane located at the midpoint of the domain on the 𝑦-axis. The results are obtained using Model 3 (Table 2) solved on a grid of
1024 × 64 × 1024 nodes using linear convolutional filters.

with equivalent diameter of 𝐷𝑏 = 𝐻 = 2mm is modelled in this problem. To obtain the results shown, two iterative corrections to
velocity and non-hydrostatic pressure were made, and 20 multigrid iterations were used to solve the pressure equations. Fig. 14(b)
shows the evolution of the rising bubble through an isosurface, which represents the interface between the bubble and water. The
interface is taken to be a volume fraction value of 0.5. The isosurface is plotted on the central plane, and the red circle represents
the initial location and shape of the air bubble. Fig. 15 shows a 3D visualisation of the shape of the bubble using an isosurface at
four different time levels. The shape of the rising bubble simulated with NN4PDEs matches that reported by Crialesi-Esposito et al.
[17] for a density ratio (𝜆𝜌 = 𝜌𝑙∕𝜌𝑔) of 10. Fig. 16 illustrates the transient volume fraction field (0 s ⩽ 𝑡 ⩽0.044 s) of the bubble on
the central (diagonal) plane. This plot displays the shape of the bubble more precisely than Fig. 15, revealing that the lower part
of the interface of the bubble is more diffuse than the upper part.

Fig. 17 helps validate the proposed solver by comparing the values relating to bubble shape and terminal velocity from the
NN4PDEs approach with experimental measurements and other numerical results. Fig. 17(a) compares the shape of a single rising
bubble with an initial diameter of 𝐷𝑏 = 1.92mm, where the red line represents the numerical results and the black line denotes the
experimental data of Duineveld [89]. The results indicate that both the bubble shape and aspect ratio (𝜒) predicted by NN4PDEs
match, closely, the experimental data. The terminal velocities of different bubble sizes are also compared with experimental results
from Clift et al. [90] in Fig. 17(b). Seven distinct bubble sizes are modelled with initial diameters ranging from 0.4mm to 1.0mm.
The comparison shows that the velocities of the bubble computed by NN4PDEs always fall within the range of accuracy of the
experimental results and are consistently good across the range of diameter sizes. Fig. 17(c) compares the time evolution of bubble
rising velocity with numerical results from Crialesi-Esposito et al. [17]. The velocity and time axes are non-dimensionalised using
the reference velocity 𝑢𝑟 =

√

𝑔𝑑0 and reference time 𝑡𝑟 =
√

𝑑0∕𝑔 (𝑑0 refers to the diameter of bubble). The results demonstrate the
capability of the solver within the NN4PDEs approach to forecast accurately the water-air interface.

Fig. 18 examines the impact of the iterative approaches used for velocity and non-hydrostatic pressure correction (see Fig. 4)
on the prediction of a rising bubble, by examining how well mass is conserved. The results are collected over 1000 time-steps and
investigate the temporal evolution of normalised volume fraction from the initial time step by five iterative strategies, which vary
the number of corrections to velocity and non-hydrostatic pressure, and the number of multigrid iterations used for solving the
non-hydrostatic pressure correction equation. The iterative strategies are labelled 𝑖-𝑗, where 𝑖 represents the number of pressure–
velocity corrections/iterations and 𝑗 represents the number of multigrid iterations for pressure correction. The results suggest that
employing more iterations to solve the pressure and velocity corrections (see Fig. 4 for a schematic of three iterations) yields a
significant improvement in performance as regards mass conservation, as evidenced by a comparison of by cases 1–10 and 2–10 as
well as 1–20 and 2–20. However, increasing the number of multigrid iterations leads to a smaller enhancement in performance in
terms of conserving mass, as evidenced by a comparison of cases 1–10 and 1–20, with 2–10 and 2–20. Thus, we adopted 2–20 as
default iterative approach to obtain the results in Section 3.2. It should also be pointed out that further increasing the number of
pressure and velocity correction iterations beyond two significantly reduces the stability of the method and is thus not done here.
This seems to be because, in this case, one also needs to iterate over the momentum equations, otherwise the approach tends to
‘forget’ about the momentum equations in favour of forcing down the residual of the continuity equation.

We remark that the only reason why mass is not exactly conserved is that the volume fraction field is solved in non-conservative
form (Eq. (14)). Simply switching to a conservative method — by taking the discretised divergence of the convolution of velocity
and volume fraction field — would always conserve mass, but results in small sources and sinks of mass across the domain. Thus,
20

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 12. Snapshots of the volume fraction isosurface drawn at a value of 0.5 from 𝑡 = 0.15 s to 𝑡 = 1.2 s at an interval of 0.15 s. The results are obtained using
Model 8 shown in Table 2 and solved on a grid of 512 × 512 × 512 nodes and using linear filters for the volume fraction diffusion and quadratic convolutional
filters for all other terms.

the pressure/velocity correction step is used to enforce mass conservation and force the right-hand side (the discretised divergence
of velocity) of the pressure correction step (Eq. (53)) to zero.
21

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 13. Snapshots of volume fraction field on a diagonal plane 𝑥 = 𝑦 (top left) from 𝑡 = 0.1 s to 𝑡 = 0.8 s with an interval of 0.1 s between the snapshots. The
results are obtained from Model 8 (for details see Table 2) and solved on a grid of 512 × 512 × 512 nodes using linear convolutional filters for volume fraction
diffusion and quadratic convolutional filters for all other terms.

4. Discussion and conclusions

This paper further extends a new approach that was initially developed for single-phase fluids. By using tools within Artificial
Intelligence (AI) software libraries, the process of solving partial differential equations (PDEs) that have been discretised through
standard or other numerical methods can be replicated. Written as a convolutional neural network, this solver (referred to as
NN4PDEs) gives the same results as if the numerical methods had been implemented in Fortran or C++ (to within solver tolerances).
Whilst applicable to PDEs in general, this article has focused, for the first time, on applying NN4PDEs to multiphase flows with
interface capturing. Furthermore, whilst the underlying discretisation methods can be arbitrary, our demonstration focuses on the use
of linear, quadratic and cubic convolutional finite elements (ConvFEM), implemented exactly through convolutional neural networks
on structured grids. A segregated velocity-pressure solution method is used here to enforce the incompressibility constraint. To solve
the resulting matrix equation for pressure, a sawtooth multigrid method was used and implemented using a type of convolutional
neural network known as a U-Net. This solution method proved to be highly efficient needing only a few iterations, with the use
of standard neural network architectures such as the U-Net greatly speeding up the model development. For the important task of
modelling the interface, a new compressive advection scheme was proposed. Designed to fit within the neural network framework, it
22

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 14. Numerical prediction of a single air bubble rising in water with equivalent diameter 𝐷𝑏 = 2mm using NN4PDEs. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Numerical prediction of a single air bubble rising in water with 𝐷𝑏 = 2mm using NN4PDEs. Temporal evolution of bubble visualised using an isosurface
for a value of 0.5 of the volume fraction field at four dimensionless time levels, from 0 to 3 with an interval of 1. (a), 0, (b), 1, (c), 2, (d), 3.

Fig. 16. Snapshots of the volume fraction field for a single rising bubble in water, plotted along the central plane in middle of the domain with equivalent
diameter 𝐷𝑏 = 2mm and at times from 𝑡 = 0 s to 𝑡 = 0.044 s.

was derived using a Petrov–Galerkin approach for robustness and is able to introduce diffusion smoothly in response to the variation
23

of the solution variables.

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
Fig. 17. Comparison of experimental data from Duineveld [89] and numerical data from Crialesi-Esposito et al. [17] with three-dimensional numerical results
from NN4PDEs for a single bubble rising in water. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 18. Mass conservation analysis over 1000 time-steps for rising bubble case comparing different iterative approaches for solving non-hydrostatic pressure
and velocity corrections. 𝐶(𝑡)∕𝐶0 represents normalised volume fraction integrated over the domain, relative to the initial value 𝐶0 = 𝐶(𝑡 = 0), where
𝐶(𝑡 = 𝑛𝛥𝑡) = ∫𝑉 𝐶𝑛𝑑𝑉 . In the legend 𝑖-𝑗 is shown, in which 𝑖 represents the number of iterations for the pressure and velocity correction within a time
step and 𝑗 represents the number of multigrid iterations used to solve for the non-hydrostatic pressure correction.

Two classes of test cases are used to demonstrate this approach, collapsing water columns and rising bubble problems. For
the collapsing water column problems, excellent agreement is seen between the solutions from the proposed solver and both
experimental data and other numerical solutions from the literature. These test cases are also used to demonstrate how linear,
quadratic or cubic finite element discretisations may be used in convolutional layers to form multiphase discretisation and solution
methods. It is suggested that the quadratic or cubic ConvFEM discretisations provide a good compromise between computational
speed and accuracy. It is also suggested that the use of linear ConvFEM filters for the diffusion term of the volume fraction field is
important, in order to reduce the tendency to produce oscillations seen when using high-order (ConvFEM) discretisations.

While it is difficult to make a rigorous comparison between the computational speed of NN4PDEs and other codes reported
in the literature, we have been able to estimate how NN4PDEs compares with selected codes. What we have found is that the
speed of the fastest GPU-based codes are comparable to our implementation of NN4PDEs. This seems to suggest that the current
NN4PDEs implementation is reasonably well optimised even though the approach has not taken considerable time to develop. This
does highlight the advantages of using neural networks to help quickly develop rapid running models. NN4PDEs (running on a
single GPU) is at least 2000 faster than codes that run on CPUs, broadly in line with the expectation that code can run faster on
GPUs than CPUs.

Expressing PDE solvers as neural networks marks a significant step in forming a bridge between physics-based modelling and
AI, bringing to standard numerical methods and models some of the developments made in AI. One benefit of using the NN4PDEs
approach is that it enables the power of AI libraries and their built-in technologies to be exploited. For example, the codes described
here are deployed on an NVIDIA GPU but could have been run, with no modification, on CPUs, TPUs (tensor processing units) or
the latest energy-efficient AI accelerators thanks to the writers of the machine learning libraries. Another benefit of the NN4PDEs
approach is that the flow solver can be fully integrated into machine learning workflows such as AI-based surrogate models or
digital twins. For example, the automatic differentiation procedures found within machine learning libraries can be applied to
physics models enabling easier implementation of optimisation processes such as data assimilation, control and inversion.
24

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
CRediT authorship contribution statement

Boyang Chen: Writing – review & editing, Writing – original draft, Software, Methodology. Claire E. Heaney: Writing – review
& editing, Writing – original draft, Supervision, Methodology. Jefferson L.M.A. Gomes: Writing – review & editing, Writing –
original draft, Methodology. Omar K. Matar: Writing – review & editing, Funding acquisition. Christopher C. Pain: Writing –
original draft, Supervision, Software, Methodology, Funding acquisition, Conceptualization, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Omar K Matar and Christopher C Pain report financial support was provided by Engineering and Physical Sciences Research
Council. If there are other authors, they declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Data availability

The code used to generate these results can be found at the following github repository: https://github.com/bc1chen/AI4PDE.

Acknowledgements

The authors would like to acknowledge the following EPSRC grants: the PREMIERE programme grant, ‘‘AI to enhance
manufacturing, energy, and healthcare’’ (EP/T000414/1); ECO-AI, ‘‘Enabling CO2 capture and storage using AI’’ (EP/Y005732/1);
MUFFINS, ‘‘MUltiphase Flow-induced Fluid-flexible structure InteractioN in Subsea’’ (EP/P033180/1); WavE-Suite, ‘‘New Generation
Modelling Suite for the Survivability of Wave Energy Convertors in Marine Environments’’ (EP/V040235/1); INHALE, ‘‘Health
assessment across biological length scales’’ (EP/T003189/1); AI-Respire, ‘‘AI for personalised respiratory health and pollution’’
(EP/Y018680/1); RELIANT, ‘‘Risk EvaLuatIon fAst iNtelligent Tool for COVID19’’ (EP/V036777/1); and CO-TRACE, ‘‘COvid-19
Transmission Risk Assessment Case Studies — education Establishments’’ (EP/W001411/1). Also, the authors acknowledge the
Innovate UK grant D-XPERT, ‘‘AI-Powered Total Building Management System‘‘ (TS/Y020324/1). Support from Imperial-X’s Eric
and Wendy Schmidt Centre for AI in Science (a Schmidt Futures program) is gratefully acknowledged. The authors state that, for
the purpose of open access, a Creative Commons Attribution (CC BY) license will be applied to any Author Accepted Manuscript
version relating to this article.

References

[1] T. Dauxois, T. Peacock, P. Bauer, C.P. Caulfield, C. Cenedese, C. Gorlé, G. Haller, G.N. Ivey, P.F. Linden, E. Meiburg, N. Pinardi, N.M. Vriend, A.W. Woods,
Confronting grand challenges in environmental fluid mechanics, Phys. Rev. Fluids 6 (2021) 020501, http://dx.doi.org/10.1103/PhysRevFluids.6.020501.

[2] G.F. Hewitt, Multiphase flow in the energy industries, J. Eng. Thermophys. 17 (1) (2008) 12–23, http://dx.doi.org/10.1007/s11823-008-1002-4, URL:
https://link.springer.com/article/10.1007/s11823-008-1002-4.

[3] I.D. Wilson, Y.M.J. Chew, Fluid mechanics in food engineering, Curr. Opin. Food Sci. 51 (2023) 101038, http://dx.doi.org/10.1016/j.cofs.2023.101038.
[4] H. Woodward, A.K. Schroeder, C.M.A. Le Cornec, M.E.J. Stettler, H. ApSimon, A. Robins, C. Pain, P.F. Linden, High resolution modelling of traffic emissions

using the large eddy simulation code fluidity, Atmosphere 13 (8) (2022) http://dx.doi.org/10.3390/atmos13081203.
[5] J. Xiang, B. Chen, J.-P. Latham, C.C. Pain, Numerical simulation of rock erosion performance of a high-speed water jet using an immersed-body method,

Int. J. Rock Mech. Min. Sci. 158 (2022) 105179, http://dx.doi.org/10.1016/j.ijrmms.2022.105179.
[6] A. Venkateshwaran, M. Kumar, M.B.S. Kumar, J.D.D. Jebaseelan, S. Ramasami, A. Joshi, C.C. Pain, Numerical study of the effect of geometry on the

behaviour of internally heated melt pools for in-vessel melt retention, Prog. Nucl. Energy 156 (2023) 104555, http://dx.doi.org/10.1016/j.pnucene.2022.
104555.

[7] H. Woodward, A. Schroeder, A. de Nazelle, C.C. Pain, M.E.J. Stettler, H. ApSimon, A. Robins, P.F. Linden, Do we need high temporal resolution modelling
of exposure in urban areas? A test case, Sci. Total Environ. 885 (2023) 163711, http://dx.doi.org/10.1016/j.scitotenv.2023.163711.

[8] W.W. Grabowski, L.-P. Wang, Growth of cloud droplets in a turbulent environment, Annu. Rev. Fluid Mech. 45 (1) (2013) 293–324, http://dx.doi.org/
10.1146/annurev-fluid-011212-140750.

[9] E. Ramirez, C.E.A. Finney, S. Pannala, C.S. Daw, J. Halow, Q. Xiong, Computational study of the bubbling-to-slugging transition in a laboratory-scale
fluidized bed, Chem. Eng. J. 308 (2017) 544–556, http://dx.doi.org/10.1016/j.cej.2016.08.113.

[10] O.S. Osundare, A. Elliott, G. Falcone, L. Lao, Gas-liquid flow regime maps for horizontal pipelines: Predicting flow regimes using dimensionless parameter
groups, Multiph. Sci. Technol. 34 (4) (2022) 75–99, http://dx.doi.org/10.1615/MultScienTechn.2022043690.

[11] M.I.H. Khan, M.U.H. Joardder, C. Kumar, M.A. Karim, Multiphase porous media modelling: A novel approach to predicting food processing performance,
Crit. Rev. Food Sci. Nutr. 58 (4) (2018) 528–546, http://dx.doi.org/10.1080/10408398.2016.1197881.

[12] Y. Ling, D. Fuster, G. Tryggvason, S. Zaleski, A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and
influence of interfacial instability, J. Fluid Mech. 859 (2018) 268–307, http://dx.doi.org/10.1017/jfm.2018.825.

[13] G. Tryggvason, M. Sussman, M.Y. Hussaini, Immersed boundary methods for fluid interfaces, in: A. Prosperetti, G. Tryggvason (Eds.), Computational
Methods for Multiphase Flow, Cambridge University Press, 2007, pp. 37–77, http://dx.doi.org/10.1017/CBO9780511607486.004.

[14] R. Reddy, R. Banerjee, GPU accelerated VOF based multiphase flow solver and its application to sprays, Comput. & Fluids 117 (2015) 287–303,
http://dx.doi.org/10.1016/j.compfluid.2015.05.013.

[15] S. Mirjalili, S.S. Jain, M.S. Dodd, Interface-capturing methods for two-phase flows: an overview and recent developments, in: Insights into Imaging Center
for Turbulence Research: Annual Research Briefs, 2017, pp. 117–135, URL: https://ctr.stanford.edu/publications/annual-research-briefs/annual-research-
briefs-2017.

[16] M.F.P. ten Eikelder, I. Akkerman, A novel diffuse-interface model and a fully-discrete maximum-principle-preserving energy-stable method for two-phase
flow with surface tension and non-matching densities, Comput. Methods Appl. Mech. Engrg. 379 (2021) 113751, http://dx.doi.org/10.1016/j.cma.2021.
25

113751.

https://github.com/bc1chen/AI4PDE
http://dx.doi.org/10.1103/PhysRevFluids.6.020501
http://dx.doi.org/10.1007/s11823-008-1002-4
https://link.springer.com/article/10.1007/s11823-008-1002-4
http://dx.doi.org/10.1016/j.cofs.2023.101038
http://dx.doi.org/10.3390/atmos13081203
http://dx.doi.org/10.1016/j.ijrmms.2022.105179
http://dx.doi.org/10.1016/j.pnucene.2022.104555
http://dx.doi.org/10.1016/j.pnucene.2022.104555
http://dx.doi.org/10.1016/j.pnucene.2022.104555
http://dx.doi.org/10.1016/j.scitotenv.2023.163711
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
http://dx.doi.org/10.1016/j.cej.2016.08.113
http://dx.doi.org/10.1615/MultScienTechn.2022043690
http://dx.doi.org/10.1080/10408398.2016.1197881
http://dx.doi.org/10.1017/jfm.2018.825
http://dx.doi.org/10.1017/CBO9780511607486.004
http://dx.doi.org/10.1016/j.compfluid.2015.05.013
https://ctr.stanford.edu/publications/annual-research-briefs/annual-research-briefs-2017
https://ctr.stanford.edu/publications/annual-research-briefs/annual-research-briefs-2017
https://ctr.stanford.edu/publications/annual-research-briefs/annual-research-briefs-2017
http://dx.doi.org/10.1016/j.cma.2021.113751
http://dx.doi.org/10.1016/j.cma.2021.113751
http://dx.doi.org/10.1016/j.cma.2021.113751

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
[17] M. Crialesi-Esposito, N. Scapin, A.D. Demou, M.E. Rosti, P. Costa, F. Spiga, L. Brandt, FluTAS: A GPU-accelerated finite difference code for multiphase
flows, Comput. Phys. Comm. 284 (2023) 108602, http://dx.doi.org/10.1016/j.cpc.2022.108602.

[18] S. Shin, J. Chergui, D. Juric, A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows, J. Mech. Sci. Technol. 31
(2017) 1739–1751, http://dx.doi.org/10.1007/s12206-017-0322-y.

[19] S. Shin, J. Chergui, D. Juric, L. Kahouadji, O.K. Matar, R.V. Craster, A hybrid interface tracking — level set technique for multiphase flow with soluble
surfactant, J. Comput. Phys. 359 (2018) 409–435, http://dx.doi.org/10.1016/j.jcp.2018.01.010.

[20] W.J. Rider, D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (2) (1998) 112–152, http://dx.doi.org/10.1006/jcph.1998.5906.
[21] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 (1) (1999) 567–603, http:

//dx.doi.org/10.1146/annurev.fluid.31.1.567.
[22] J. Chessa, T. Belytschko, An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension, Internat. J. Numer.

Methods Engrg. 58 (13) (2003) 2041–2064, http://dx.doi.org/10.1002/nme.946.
[23] S. Claus, P. Kerfriden, A CutFEM method for two-phase flow problems, Comput. Methods Appl. Mech. Engrg. 348 (2019) 185–206, http://dx.doi.org/10.

1016/j.cma.2019.01.009.
[24] Z. Xie, T. Stoesser, S. Yan, Q. Ma, P. Lin, A Cartesian cut-cell based multiphase flow model for large-eddy simulation of three-dimensional wave-structure

interaction, Comput. & Fluids 213 (2020) 104747, http://dx.doi.org/10.1016/j.compfluid.2020.104747.
[25] D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech. 30 (1) (1998) 139–165, http:

//dx.doi.org/10.1146/annurev.fluid.30.1.139.
[26] H. Montazeri, S.H. Zandavi, A. Bazylak, Sharp interface models for two-phase flows: Insights towards new approaches, Comput. Methods Appl. Mech.

Engrg. 322 (2017) 238–261, http://dx.doi.org/10.1016/j.cma.2017.04.022.
[27] L. Via-Estrem, P. Salinas, Z. Xie, J. Xiang, J.-P. Latham, S. Douglas, I. Nistor, C.C. Pain, Robust control volume finite element methods for numerical wave

tanks using extreme adaptive anisotropic meshes, Internat. J. Numer. Methods Fluids 92 (12) (2020) 1707–1722, http://dx.doi.org/10.1002/fld.4845.
[28] R.H. Nochetto, A.J. Salgado, I. Tomas, A diffuse interface model for two-phase ferrofluid flows, Comput. Methods Appl. Mech. Engrg. 309 (2016) 497–531,

http://dx.doi.org/10.1016/j.cma.2016.06.011.
[29] A. Prosperetti, G. Tryggvason (Eds.), Computational Methods for Multiphase Flow, Cambridge University Press, 2007, http://dx.doi.org/10.1017/

CBO9780511607486.
[30] S. Elgeti, H. Sauerland, Deforming fluid domains within the finite element method: Five mesh-based tracking methods in comparison, Arch. Comput.

Methods Eng. 23 (2016) 323–361, http://dx.doi.org/10.1007/s11831-015-9143-2.
[31] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge University Press, 2011, http:

//dx.doi.org/10.1017/CBO9780511975264.
[32] D. Pavlidis, Z. Xie, J.R. Percival, J.L.M.A. Gomes, C.C. Pain, O.K. Matar, Two- and three-phase horizontal slug flow simulations using an interface-capturing

compositional approach, Int. J. Multiph. Flow 67 (2014) 85–91, http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.07.007.
[33] D. Pavlidis, J.L.M.A. Gomes, Z. Xie, J.R. Percival, C.C. Pain, O.K. Matar, Compressive advection and multi-component methods for interface-capturing,

Internat. J. Numer. Methods Fluids 80 (4) (2016) 256–282, http://dx.doi.org/10.1002/fld.4078.
[34] A. Obeysekara, P. Salinas, C.E. Heaney, L. Kahouadji, L. Via-Estrem, J. Xiang, N. Srinil, A. Nicolle, O.K. Matar, C.C. Pain, Prediction of multiphase flows

with sharp interfaces using anisotropic mesh optimisation, Adv. Eng. Softw. 160 (2021) 103044, http://dx.doi.org/10.1016/j.advengsoft.2021.103044.
[35] F. Banchelli, M. Garcia-Gasulla, G. Houzeaux, F. Mantovani, Benchmarking of state-of-the-art HPC clusters with a production CFD code, in: PASC 20:

Proceedings of the Platform for Advanced Scientific Computing Conference, 2020, pp. 88–92, http://dx.doi.org/10.1145/3394277.3401847.
[36] K.E. Niemeyer, C.J. Sung, Recent progress and challenges in exploiting graphics processors in computational fluid dynamics, J. Supercomput. 67 (2014)

528–564, http://dx.doi.org/10.1007/s11227-013-1015-7.
[37] A. Afzal, Z. Ansari, A.R. Faizabadi, M.K. Ramis, Parallelization strategies for computational fluid dynamics software: State of the art review, Arch. Comput.

Methods Eng. 24 (2017) 337–363, http://dx.doi.org/10.1007/s11831-016-9165-4.
[38] S. Memeti, L. Li, S. Pllana, J. Kołodziej, C. Kessler, Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming productivity, performance, and

energy consumption, in: Proceedings of the 2017 Workshop on Adaptive Resource Management and Scheduling for Cloud Computing, in: ARMS-CC ’17,
Association for Computing Machinery, New York, NY, USA, 2017, pp. 1–6, http://dx.doi.org/10.1145/3110355.3110356.

[39] G. Araujo, D. Griebler, D.A. Rockenbach, M. Danelutto, L.G. Fernandes, NAS parallel benchmarks with CUDA and beyond, Softw. - Pract. Exp. 53 (1)
(2023) 53–80, http://dx.doi.org/10.1002/spe.3056.

[40] J. Lai, H. Yu, Z. Tian, H. Li, A.J. Peña, Hybrid MPI and CUDA parallelization for CFD applications on multi-GPU HPC clusters, Sci. Program. 2020 (2020)
http://dx.doi.org/10.1155/2020/8862123.

[41] A. Zhu, Q. Chang, J. Xu, W. Ge, A dynamic load balancing algorithm for CFD–DEM simulation with CPU-GPU heterogeneous computing, Powder Technol.
428 (2023) 118782, http://dx.doi.org/10.1016/j.powtec.2023.118782.

[42] J. Appleyard, D. Drikakis, Higher-order CFD and interface tracking methods on highly-parallel MPI and GPU systems, Comput. Fluids 46 (2011) 101–105,
http://dx.doi.org/10.1016/j.compfluid.2010.10.019.

[43] S.R. Codyer, M. Raessi, G. Khanna, Using graphics processing units to accelerate numerical simulations of interfacial incompressible flows, in: ASME
2012 Fluids Engineering Division Summer Meeting, in: Fluids Engineering Division Summer Meeting, 1: Symposia, Parts A and B, 2012, pp. 625–634,
http://dx.doi.org/10.1115/FEDSM2012-72176.

[44] M. Griebel, P. Zaspel, A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations, Comput. Sci. Res. Dev.
25 (2010) 65–73, http://dx.doi.org/10.1007/s00450-010-0111-7.

[45] S.H. Bryngelson, K. Schmidmayer, V. Coralic, J.C. Meng, K. Maeda, T. Colonius, MFC: An open-source high-order multi-component, multi-phase, and
multi-scale compressible flow solver, Comput. Phys. Comm. 266 (2021) 107396, http://dx.doi.org/10.1016/j.cpc.2020.107396.

[46] A. Radhakrishnan, H.L. Berre, B. Wilfong, J.-S. Spratt, M. Rodriguez Jr., T. Colonius, S.H. Bryngelson, Method for portable, scalable, and performant
GPU-accelerated simulation of multiphase compressible flow, 2023, http://dx.doi.org/10.48550/arXiv.2305.09163, arXiv preprint arXiv:2305.09163.

[47] X.-Z. Zhao, T.-Y. Xu, Z.-T. Ye, W.-J. Liu, A TensorFlow-based new high-performance computational framework for CFD, J. Hydrodyn. 32 (4) (2020)
735–746, http://dx.doi.org/10.1007/s42241-020-0050-0.

[48] Q. Wang, M. Ihme, Y.-F. Chen, J. Anderson, A TensorFlow simulation framework for scientific computing of fluid flows on tensor processing units, Comput.
Phys. Comm. 274 (2022) 108292, http://dx.doi.org/10.1016/j.cpc.2022.108292.

[49] B. Chen, C.E. Heaney, C.C. Pain, Using AI libraries for incompressible computational fluid dynamics, 2024, http://dx.doi.org/10.48550/arXiv.2402.17913,
arXiv preprint.

[50] T.R.F. Phillips, C.E. Heaney, B. Chen, A.G. Buchan, C.C. Pain, Solving the discretised neutron diffusion equations using neural networks, Internat. J. Numer.
Methods Engrg. 124 (21) (2023) 4659–4686, http://dx.doi.org/10.1002/nme.7321.

[51] T.R.F. Phillips, C.E. Heaney, B. Chen, A.G. Buchan, C.C. Pain, Solving the discretised Boltzmann transport equations using neural networks: Applications
in neutron transport, 2023, http://dx.doi.org/10.48550/arXiv.2301.09991, arXiv preprint arXiv:2301.09991.

[52] B. Dong, Q. Jiang, Z. Shen, Image restoration: Wavelet frame shrinkage, nonlinear evolution PDEs, and beyond, Multiscale Model. Simul. 15 (1) (2017)
606–660, http://dx.doi.org/10.1137/15M1037457.
26

http://dx.doi.org/10.1016/j.cpc.2022.108602
http://dx.doi.org/10.1007/s12206-017-0322-y
http://dx.doi.org/10.1016/j.jcp.2018.01.010
http://dx.doi.org/10.1006/jcph.1998.5906
http://dx.doi.org/10.1146/annurev.fluid.31.1.567
http://dx.doi.org/10.1146/annurev.fluid.31.1.567
http://dx.doi.org/10.1146/annurev.fluid.31.1.567
http://dx.doi.org/10.1002/nme.946
http://dx.doi.org/10.1016/j.cma.2019.01.009
http://dx.doi.org/10.1016/j.cma.2019.01.009
http://dx.doi.org/10.1016/j.cma.2019.01.009
http://dx.doi.org/10.1016/j.compfluid.2020.104747
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/10.1016/j.cma.2017.04.022
http://dx.doi.org/10.1002/fld.4845
http://dx.doi.org/10.1016/j.cma.2016.06.011
http://dx.doi.org/10.1017/CBO9780511607486
http://dx.doi.org/10.1017/CBO9780511607486
http://dx.doi.org/10.1017/CBO9780511607486
http://dx.doi.org/10.1007/s11831-015-9143-2
http://dx.doi.org/10.1017/CBO9780511975264
http://dx.doi.org/10.1017/CBO9780511975264
http://dx.doi.org/10.1017/CBO9780511975264
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.07.007
http://dx.doi.org/10.1002/fld.4078
http://dx.doi.org/10.1016/j.advengsoft.2021.103044
http://dx.doi.org/10.1145/3394277.3401847
http://dx.doi.org/10.1007/s11227-013-1015-7
http://dx.doi.org/10.1007/s11831-016-9165-4
http://dx.doi.org/10.1145/3110355.3110356
http://dx.doi.org/10.1002/spe.3056
http://dx.doi.org/10.1155/2020/8862123
http://dx.doi.org/10.1016/j.powtec.2023.118782
http://dx.doi.org/10.1016/j.compfluid.2010.10.019
http://dx.doi.org/10.1115/FEDSM2012-72176
http://dx.doi.org/10.1007/s00450-010-0111-7
http://dx.doi.org/10.1016/j.cpc.2020.107396
http://dx.doi.org/10.48550/arXiv.2305.09163
http://arxiv.org/abs/2305.09163
http://dx.doi.org/10.1007/s42241-020-0050-0
http://dx.doi.org/10.1016/j.cpc.2022.108292
http://dx.doi.org/10.48550/arXiv.2402.17913
http://dx.doi.org/10.1002/nme.7321
http://dx.doi.org/10.48550/arXiv.2301.09991
http://arxiv.org/abs/2301.09991
http://dx.doi.org/10.1137/15M1037457

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116974B. Chen et al.
[53] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-net: Learning PDEs from data, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th International Conference on
Machine Learning, in: Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 3208–3216.

[54] R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, Convolutional neural networks: an overview and application in radiology, Insights Imaging 9 (2018)
611–629, http://dx.doi.org/10.1007/s13244-018-0639-9.

[55] S. Indolia, A.K. Goswami, S. Mishra, P. Asopa, Conceptual understanding of convolutional neural network- A deep learning approach, Procedia Comput.
Sci. 132 (2018) 679–688, http://dx.doi.org/10.1016/j.procs.2018.05.069.

[56] M. Mishra, Convolutional neural networks explained, 2022, https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939.
Accessed: 14-11-2023.

[57] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted
Intervention, MICCAI, in: LNCS, vol. 9351, Springer, 2015, pp. 234–241, http://dx.doi.org/10.48550/arXiv.1505.04597.

[58] M. Woo, T. Jordan, T. Nandi, J.F. Dietiker, C. Guenther, D. van Essendelft, Development of an equation-based parallelization method for multiphase
particle-in-cell simulations, Eng. Comput. 39 (2023) 3577–3591, http://dx.doi.org/10.1007/s00366-022-01768-6.

[59] L. Li, J. Xiang, B. Chen, C.E. Heaney, S. Dargaville, C.C. Pain, Implementing the discontinuous-Galerkin finite element method using graph neural networks,
2024, http://dx.doi.org/10.2139/ssrn.4698813, SSRN preprint.

[60] M. Abadi, Agarwal, P. Aand Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G.
Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B.
Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from www.tensorflow.org.

[61] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep learning library, in:
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 32, Curran
Associates, Inc., 2019, URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[62] R. Frostig, M. Johnson, C. Leary, Compiling machine learning programs via high-level tracing, 2018, URL: https://mlsys.org/Conferences/doc/2018/146.pdf.
[63] Graphcore, Intelligence processing units, 2022, https://www.graphcore.ai/products/ipu. Accessed: 30-10-2023.
[64] Cerebras, CS-2: A revolution in AI infrastructure, 2022, https://www.cerebras.net/product-system/. Accessed: 30-10-2023.
[65] H. Carter Edwards, C.R. Trott, D. Sunderland, Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, J. Parallel

Distrib. Comput. 74 (12) (2014) 3202–3216, http://dx.doi.org/10.1016/j.jpdc.2014.07.003.
[66] W. Verdier, P. Kestener, A. Cartalade, Performance portability of lattice Boltzmann methods for two-phase flows with phase change, Comput. Methods

Appl. Mech. Engrg. 370 (2020) 113266, http://dx.doi.org/10.1016/j.cma.2020.113266.
[67] A. Chattopadhyay, V.M.K. Kotteda, V. Kumar, W. Spotz, Next generation exascale capable mutliphase solver with trilinos, in: Proceedings of the ASME

2016 International Mechanical Engineering Congress & Exposition, Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering
and Risk Analysis, 2016, V014T07A025, http://dx.doi.org/10.1115/IMECE2016-67962.

[68] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707, http://dx.doi.org/10.1016/j.jcp.2018.10.045.

[69] A.B. Buhendwa, S. Adami, N.A. Adams, Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks,
Mach. Learn. Appl. 4 (2021) 100029, http://dx.doi.org/10.1016/j.mlwa.2021.100029.

[70] B.v. Merriënboer, O. Breuleux, A. Bergeron, P. Lamblin, Automatic differentiation in ML: Where we are and where we should be going, in: Proceedings
of the 32nd International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, 2018, pp. 8771–8781.

[71] A. Guenes Baydin, B.A. Pearlmutter, A.A. Radul, S.J. M., Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res. 18 (2018) 1–43.
[72] Y. Li, et al., An AI-based integrated framework for anisotropic electrical resistivity imaging, 2024, in preparation.
[73] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, vol. 1, Springer, 1998, http://dx.doi.org/10.1007/978-3-642-58229-5_7.
[74] S. Linge, H.P. Langtangen, Finite Difference Computing with PDEs: A Modern Software Approach, Springer, 2017, pp. 207–322, http://dx.doi.org/10.1007/

978-3-319-55456-3_3.
[75] L.N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations, 1996, unpublished text, available at http:

//people.maths.ox.ac.uk/trefethen/pdetext.html. (visited 01-03-2024).
[76] C.M. Bishop, H. Bishop, Deep Learning: Foundations and Concepts, Springer, 2024, pp. 287–324, http://dx.doi.org/10.1007/978-3-031-45468-4.
[77] T.R.F. Phillips, Neural network transport solver, 2022, https://github.com/trfphillips/Neural-Network-Transport-Solver.
[78] J. Donéa, A. Huerta, Finite Element Methods for Flow Problems, John Wiley & Sons, 2003, http://dx.doi.org/10.1002/0470013826.
[79] V. Inguva, E.Y. Kenig, J. Blair Perot, A front-tracking method for two-phase flow simulation with no spurious currents, J. Comput. Phys. 456 (2022)

111006, http://dx.doi.org/10.1016/j.jcp.2022.111006.
[80] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, Berlin, 2001.
[81] R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl.

Mech. Engrg. 110 (3) (1993) 325–342, http://dx.doi.org/10.1016/0045-7825(93)90213-H.
[82] P. Hansbo, C. Johnson, Adaptive streamline diffusion methods for compressible flow using conservation variables, Comput. Methods Appl. Mech. Engrg.

87 (2) (1991) 267–280, http://dx.doi.org/10.1016/0045-7825(91)90008-T.
[83] D.M. Greaves, Simulation of viscous water column collapse using adapting hierarchical grids, Internat. J. Numer. Methods Fluids 50 (6) (2006) 693–711.
[84] V.-T. Nguyen, N.T. Nguyen, T.-H. Phan, W.-G. Park, Efficient three-equation two-phase model for free surface and water impact flows on a general

curvilinear body-fitted grid, Comput. & Fluids 196 (2020) 104324.
[85] V.-T. Nguyen, V.-D. Thang, W.-G. Park, A novel sharp interface-capturing method for two-and three-phase incompressible flows, Comput. & Fluids 172

(2018) 147–161.
[86] P. Kiely, NVIDIA A10 vs A100 GPUs for LLM and stable diffusion inference, 2023, https://www.baseten.co/blog/nvidia-a10-vs-a100-gpus-for-llm-and-

stable-diffusion-inference/. Accessed: 01-03-2024.
[87] G.H. Yeoh, T. Barber, Assessment of interface-capturing methods in computational fluid dynamics (CFD) codes—A case study, J. Comput. Multip. Flows

1 (2) (2009) 201–215, http://dx.doi.org/10.1260/175748209789563946.
[88] J.C. Martin, W.J. Moyce, J. Martin, W. Moyce, W.G. Penney, A. Price, C. Thornhill, Part IV. An experimental study of the collapse of liquid columns on

a rigid horizontal plane, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 244 (882) (1952) 312–324, http://dx.doi.org/10.1098/rsta.1952.0006.
[89] P. Duineveld, The rise velocity and shape of bubbles in pure water at high Reynolds number, J. Fluid Mech. 292 (1995) 325–332, http://dx.doi.org/10.

1017/S0022112095001546.
[90] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Courier Corporation, 2005.
27

http://refhub.elsevier.com/S0045-7825(24)00230-5/sb53
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb53
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb53
http://dx.doi.org/10.1007/s13244-018-0639-9
http://dx.doi.org/10.1016/j.procs.2018.05.069
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
http://dx.doi.org/10.48550/arXiv.1505.04597
http://dx.doi.org/10.1007/s00366-022-01768-6
http://dx.doi.org/10.2139/ssrn.4698813
http://www.tensorflow.org
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://mlsys.org/Conferences/doc/2018/146.pdf
https://www.graphcore.ai/products/ipu
https://www.cerebras.net/product-system/
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.cma.2020.113266
http://dx.doi.org/10.1115/IMECE2016-67962
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.mlwa.2021.100029
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb70
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb70
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb70
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb71
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb72
http://dx.doi.org/10.1007/978-3-642-58229-5_7
http://dx.doi.org/10.1007/978-3-319-55456-3_3
http://dx.doi.org/10.1007/978-3-319-55456-3_3
http://dx.doi.org/10.1007/978-3-319-55456-3_3
http://people.maths.ox.ac.uk/trefethen/pdetext.html
http://people.maths.ox.ac.uk/trefethen/pdetext.html
http://people.maths.ox.ac.uk/trefethen/pdetext.html
http://dx.doi.org/10.1007/978-3-031-45468-4
https://github.com/trfphillips/Neural-Network-Transport-Solver
http://dx.doi.org/10.1002/0470013826
http://dx.doi.org/10.1016/j.jcp.2022.111006
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb80
http://dx.doi.org/10.1016/0045-7825(93)90213-H
http://dx.doi.org/10.1016/0045-7825(91)90008-T
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb83
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb84
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb84
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb84
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb85
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb85
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb85
https://www.baseten.co/blog/nvidia-a10-vs-a100-gpus-for-llm-and-stable-diffusion-inference/
https://www.baseten.co/blog/nvidia-a10-vs-a100-gpus-for-llm-and-stable-diffusion-inference/
https://www.baseten.co/blog/nvidia-a10-vs-a100-gpus-for-llm-and-stable-diffusion-inference/
http://dx.doi.org/10.1260/175748209789563946
http://dx.doi.org/10.1098/rsta.1952.0006
http://dx.doi.org/10.1017/S0022112095001546
http://dx.doi.org/10.1017/S0022112095001546
http://dx.doi.org/10.1017/S0022112095001546
http://refhub.elsevier.com/S0045-7825(24)00230-5/sb90

	Solving the discretised multiphase flow equations with interface capturing on structured grids using machine learning libraries
	Introduction
	Motivation
	Background
	Contribution

	Methodology
	Governing equations
	Advection equation for the volume fraction field
	Navier–Stokes equations

	Discretisation using convolutional layers
	Equivalence between numerical discretisations and discrete convolutions
	Notation
	Finite element discretisation of first-order derivatives
	Finite-element based discretisation of second-order derivatives

	Discretisation of the governing equations using convolutional layers
	Advection equation for the volume fraction field
	Navier–Stokes equations
	Application of boundary conditions
	Isotropic non-linear Petrov–Galerkin method
	Compressive advection for interface-capturing with Petrov–Galerkin and extrema detecting for the volume fraction field

	Solution method for the multiphase flow equations
	Computational speed of the approach

	Results
	Collapsing water column
	2D collapsing water column
	3D collapsing water column

	Rising bubble in water

	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

