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A B S T R A C T

Extended time-delayed feedback control (ETDF) has emerged as a promising control method for nonlinear
systems, with applications in diverse fields such as energy harvesting, vibration mitigation, and chaos control.
Whilst novel ETDF-based approaches incorporating multiple periods of a target orbit as time delays have been
explored, a comprehensive analysis of the underlying phenomena and limitations of ETDF with such delays is
lacking. In this study, we investigate the effects of various delays and the strength of the original instability
of the target unstable periodic orbit on ETDF control using experimental data from an impact oscillator.
Surprisingly, we observe that ETDF loses its ability to stabilize a target orbit when delays are even multiples
of the target orbit’s period. By combining Floquet theory, semi-analytical methods, experimental data, and
numerical simulations, we unveil the fundamental mechanisms responsible for this loss of efficacy. Specifically,
we demonstrate that stability cannot be achieved for delays that are even multiples of the target orbit period
due to a shift in the imaginary parts of Floquet exponents as controller gains approach infinity. In contrast,
by using odd multiples of the target orbit period as delays a more gradual degradation of stability is observed
as their multiplicity increases. Furthermore, we propose a method to predict the maximum instability of an
orbit that can be counterbalanced by ETDF. Our findings offer essential insights for the design of robust and
efficient control strategies based on ETDF, while advancing our understanding of the underlying mechanisms
governing such controllers.
1. Introduction

Time-delayed feedback control (TDF) [1] is a promising family of
methods that has the potential to become a widely used standard for
some classes of nonlinear systems. Due to their design, they can take
advantage of the system dynamics to reduce their energy consump-
tion and the system’s knowledge requirements. These attributes have
inspired researchers to use TDF to enhance effective range of sea wave
energy harvesters [2], to mitigate friction induced vibration [3], to
improve the accuracy of atomic force microscopes [4,5], to control
spatiotemporal chaos [6], to stabilize the power output of high power
lasers [7], to control cardiac rhythms [8] and even to control nonlinear
behaviour of agricultural tractors [9].

The origin of TDF can be traced to the seminal work of Pyragas [1,
10], where unstable periodic orbits (UPOs) embedded in a chaotic
attractor were stabilized for the first time by a continuous control.
Since this pioneering work, several researchers studied TDF control
to uncover its limitations and propose innovative modifications to
overcome them. A number of contributions has been made including
those by Socolar et al. [11] on the idea of using an infinite sum of
delayed states as feedback, Lehnert et al. [12,13] by suggesting an
adaptive modification through the introduction of controller gains’
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dynamics, Pyragas and Pyragas [14] proposing an adaptive delay to
the control and Pyragas [15] solving the limitations of the original TDF
control revealed in [16] by introducing an unstable state to the control.
Other modifications utilize periodically varying gains to avoid the same
limitation [17–21].

Although originally focused on chaos control, the use of TDF has
also expanded to several other scenarios. De Paula et al. [22,23]
uses TDF as a bifurcation control to extend the stabilization range
of an orbit. Other works focus on the use of TDF methods for the
synchronization of nonlinear systems [24,25]. Most recently, Costa
et al. [26] proposed to change controller time-delays to switch between
co-existing attractors and UPOs in a non-smooth system [27,28]. Their
results show that depending on the parity of the division, 𝑗 = 𝜏∕𝜏𝑠,
between the control delay, 𝜏, and orbit period, 𝜏𝑠, the stability of con-
trolled UPO drastically changes. They also proposed a new fractional
time-delayed feedback method to switch between a co-existing period-
𝑙 and period-𝑗𝑙 orbits. Other studies also try to explore TDF influence
in multi-stability, Zhang et al. [29] analyses TDF influence on basins
of attraction and the influence of small variations in delay on the
control effectiveness [30]. Although comprehensive in their analysis,
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these works are focused on applications of the TDF control and are
based on numerical simulations, without dipping into advanced tolls
of stability analysis to explain the origins of the observed phenomena.

Analytical studies of TDF methods and analysis of the complex
dynamics occurring during stabilization of controlled orbits is a chal-
lenging task. As such, only a few works try to use Lyapunov theory to
analyse TDF [31] due to the difficulty in the calculation of Lyapunov
exponents in delayed systems. In contrast, the use of Floquet theory to
analyse TDF was largely adopted. A series of works discuss the inability
of ETDF control to stabilize orbits with an odd number of positive
Floquet exponents [16,32,33]. Other work, used Floquet exponents to
analyse the influence of ETDF parameters on the target orbit stability in
numerical [34–38] and experimental [39,40] studies. Pyragas [41] re-
viwed several of these studies, and highlighted an equivalence between
Floquet exponents of an orbit stabilized by proportional gain control
and TDF [35]. However, despite the fact that delayed system usually
present multi-stability [42], to the authors’ knowledge, there are still
no analysis discussing the control effectiveness and underlying phe-
nomena when TDF delays are different from the target orbit. Only an
investigation [43] analysing bifurcation diagrams in a limited vicinity
of nominal delays was found. In their work, the authors investigate how
linear approximations of a parameter dependent period for a typical
Hopf bifurcation, influence the controller’s effectiveness when used as
control delays.

Most recently, the issue of TDF and multi-stability has been reported
by Friart et al. [44] discussing the creation of orbits with periods
equal to fractions of the delay, whilst Schöll et al. [45,46] analyse how
multistability seems to increase as the delay of the controller increases.
Another issue was raised by Huang [47] reporting a loss of stability of
an orbit after a maximum value of the delay. There is still a lack of
explanation for those limitations and how they can be addressed.

Aiming to fill the gap in the analysis of TDF with different delays, we
analyse the effects of multiples of the target orbit period as delays and
original instability of the target orbit on TDF control and explain the
underlying phenomena behind the controller’s inability to stabilize its
target when using even multiples of the orbit period as delays. We take
advantage of an impact oscillator rig capable of testing a wide range
of control methods [27,28]. This is crucial for the implementation and
understanding of control methods such as the ones proposed in [14,26]
and it also enables analysis of their robustness to noise. Our results
demonstrate that a sudden instability with even multiples of the target’s
orbit period as delay is generated by a shift in the imaginary parts
of Floquet exponents when gains tend to infinity. We also establish
that such shift does not happen for delays that are odd multiples of
the orbit period and that stability degrades more gradually for higher
multiples. Finally, we propose a novel method to predict the maximum
highest real valued Floquet exponent that an uncontrolled UPO can
present before the ETDF control is unable to stabilize it. We also
test whether the equivalence between proportional feedback and ETDF
initially proposed in [36] is also valid for a non-smooth system.

This work is organized as follows. In Section 2, we introduce the
impact oscillator experimental setup and its corresponding mathemat-
ical model. Afterwards, we numerically explore the dynamics of the
model and identify relevant cases for our analysis. Next, we investigate
both numerically and experimentally the effects of different delays in
the control of an unstable period-1 orbit. In Section 3, we establish
the mathematical basis to analyse the control by utilizing Floquet
theory and an equivalence between proportional feedback and ETDF as
proposed in [36]. In Section 4, we analyse the impact oscillator with the
developed mathematical methods and perform a comprehensive para-
metric analysis between controlled UPO Floquet exponents, controller
delay and initial orbit instability. Finally, we summarize our findings
and draw conclusions in Section 5.
2

s

2. Control of an impact oscillator with multiple delays

The TDF method was originally proposed by Pyragas [1] and later
extended by Socolar [11] as the ETDF method. Its main idea is to
use a proportional feedback of delayed observations 𝐲 to control the
dynamical system responses. Thus, the control signal 𝐮 of the ETDF
method can be expressed as:

𝐮 = 𝐊
(

(1 − 𝑟)

( ∞
∑

𝑛=1
𝑟𝑛−1𝐲(𝑡 − 𝑛𝜏)

)

− 𝐲(𝑡)
)

, (1)

where 𝐊 is the gain matrix and 𝑟, ranging from 0 to 1, is a control
parameter.

Originally, the method only considered stabilization of UPOs, where
the delay 𝜏 should be equal to the target unstable orbit‘s period [1].
However, recent studies explored the use of different delays to switch
between co-existing attractors, e.g. [26]. Other work [23] highlights a
problem as it clains that ETDF can stabilize any orbit that satisfies the
equation 𝐲(𝑡) = 𝐲(𝑡 − 𝜏). In other words, ETDF can stabilize a period-

orbit, 𝑙 = 1, 2, 3..., different from the targetted period-𝑗𝑙 orbit, 𝑗 =
, 2, 3..., as system‘s observations would still obey, due to the periodicity
f the system:

(𝑡) = 𝐲(𝑡 − 𝑙𝜏1) = 𝐲(𝑡 − 2𝑙𝜏1) = 𝐲(𝑡 − 3𝑙𝜏1)... = 𝐲(𝑡 − 𝑗𝑙𝜏1), (2)

here 𝑙𝜏1 is the period of a period-𝑙 orbit and 𝜏1 is the period of a
eriod-1 orbit. In this example, 𝜏 is the delay of the controller and is
qual to the period of the target orbit 𝜏𝑠 = 𝑗𝑙𝜏1.

Motivated by these recent works, we tested both numerically and
xperimentally the ETDF method with different time-delays on an
mpact oscillator system described and studied in [27,28]. The current
hysical model is the same as the one used in [26], and it is depicted
n Fig. 1a. It consists of a rigid structure that is mounted on the base.
he mass, 𝑚, is connected to leaf springs, which are securely clamped
etween two beams and a grooved base. A permanent cylindrical
eodymium magnet is attached to one side of the primary mass using a
tainless steel rod and secured by two stainless steel nuts. The magnet
s positioned approximately at the centre of a custom-built coil. This
etup can provide a direct excitation to the system due to the magnetic
oupling. The inner diameter of the coil closely matches the diameter
f the cylindrical magnet to enhance the magnetic coupling between
he coil and the system, and to minimize nonlinear effects. The coil is
owered by a current amplifier, two power suppliers, and a National
nstruments board that provides the excitation signal. On either side
f the primary mass, there are beams that can be inserted to limit the
ass motion by inducing ipacts.

The schematics of the measuring and control system is depicted
n Fig. 1, where all signals are collected through a NI-PCI board. An
ddy current probe measures the mass displacement, which is then
ifferentiated to obtain velocity. The control signal is calculated by a
abview program and subsequently combined with to the excitation
ignal. Afterwards, both signals are fed into the coil. The control signal
pdated frequency is set up as a multiple of the excitation frequency
o ensure synchronization and avoid frequency mismatch, and is high
nough to justify the assumption of continuous control.

By assuming a linear behaviour of the springs and impact beam, the
cceleration 𝑋 of the mass can be described by Newton’s second law:

̈ = −
𝜅1
𝑚
𝑋 − 𝑐

𝑚
�̇� − 𝛩(𝑋 − 𝑑)

𝜅2
𝑚
(𝑋 − 𝑑) +

𝐹𝑐𝑜𝑖𝑙
𝑚

, (3)

where 𝑑 is the gap, 𝛩 is the Heaviside’s step function, 𝜅1 is the primary
stiffness, 𝜅2 is the secondary stiffness, 𝑐 is an equivalent linear damping
coefficient of the system, 𝐹𝑐𝑜𝑖𝑙 is the magnetic force applied by the coil
and dot represents derivatives in respect to time 𝑡.

The coil provides both excitation and actuation to the system.
ssuming that a sinusoidal excitation is applied to the system, the

̇
ystem’s state 𝐱 = [𝑋,𝑋] is the observable of the system, the control
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Fig. 1. (a) Schematics of the investigated impact oscillator where, 𝜅1 is the primary stiffness of the system, 𝜅2 is the stiffness of the impact beam, 𝑑 is the gap between the resting
position of the oscillator and impact beam, 𝑚 is the mass, 𝑋 is the displacement of the oscillator and 𝐹𝑐𝑜𝑖𝑙 is the coil force acting on the oscillator. (b) Block diagram of the
expermental setup with control.
Table 1
Main parameters of the experimental rig model extracted from [26].

Symbol Value Unit Symbol Value Unit

𝑚 1.325 kg 𝜅1 4331 N/m
𝜅2 87 125 N/m 𝜔 2𝜋8.18 rad/s
𝑑 0.74 10−3 m 𝐴 1.1739 N

is only proportional to velocity, and Eq. (1) is a fast converging series.
The coil provides a force given by:

𝐹𝑐𝑜𝑖𝑙 = 𝐴 sin (𝜔𝑡) + 𝑘𝑣

(

(1 − 𝑟)

( 10
∑

𝑛=1
𝑟𝑛−1�̇�(𝑡 − 𝑛𝜏)

)

− �̇�(𝑡)

)

, (4)

where 𝐴 is the amplitude of excitation, 𝜔 is the frequency of excitation
and 𝑘𝑣 is a proportional gain.

To test and analyse the ETDF, the dynamics of the system should
be known. Thus first, we numerically investigate the impact oscillator
dynamics without control force 𝐮. The parameters of the model used
are presented in Table 1 as obtained in [26].

Our aim is to identify an UPO that varies its stability characteristics
in a wide range of parameters, enabling us to assess ETDF’s effec-
tiveness under different scenarios while maintaining the same target.
To achieve this, using numerical simulations, we construct bifurcation
diagrams for varying damping, 𝑐, to identify a wide range of this
parameter where an UPO exists. The bifurcation diagram, shown in
Fig. 2a, displays the dynamical response of the system and the corre-
sponding values of 𝑐 chosen for testing the control. A period-1 solution
is observed at 𝑐 ranging from 4.3 kg/s to 10 kg/s. As 𝑐 decreases below
4.3 kg/s, the period-1 orbit, depicted in Fig. 2g, loses its stability as
a period-2 stable orbit emerges, shown in Fig. 2f, through a period-
doubling bifurcation. The coexistence persists until 𝑐 = 1.8 kg/s where a
strip of chaotic behaviour appears at 𝑐 = 0.9 kg/s. For even lower values
of 𝑐, windows of chaotic response can be seen up to 𝑐 = 0.26 kg/s.
Analysing the diagram, the unstable period-1 orbit, shown in Fig. 2g,
becomes a promising candidate to test the controller due to its existence
in the wide range of 𝑐 from 0.2 kg/s to 4.3 kg/s. We further analyse the
chaotic response at 𝑐 = 0.272 kg∕s, shown in Fig. 2b, to identify the
UPOs embedded in its attractor. This is performed by applying the close
return method [48] to the Poincaré time series of the system response.
Period-1, period-2 and period-5 UPOs, shown respectively in Fig. 2c,
Fig. 2d, and Fig. 2e, can be identified.

The damping coefficient of 𝑐 = 0.272 kg∕s corresponds to the
dissipation from the experimental apparatus [28]. Thus, we choose
this value of dissipation to perform our studies and allow comparisons
between experimental and numerical results.

Fig. 3 depicts the first performed test to stabilize the target period-
1 UPO. Initially, the system has a chaotic response. Subsequently, the
control is turned on with a proportional gain of 𝑘𝑣 = 10.8 kg/s and with
a delay equal to one period of the targetted orbit, 𝜏 = 𝜏 = 0.12225 s,
3

𝑠

stabilizing the target orbit within a small window of time. After the
period-1 is reached, the delay is changed to two periods of the target
orbit, 𝜏 = 2𝜏𝑠 = 0.2445 s. This moves the system away from the period-1
behaviour and stabilizes a period-2 UPO, indicating that the controller
cannot maintain the period-1 behaviour with 𝜏 = 2𝜏𝑠. Both numerical
and experimental results present the same behaviour and have very
similar control signals.

A second test is performed and the results are shown in Fig. 4.
Initially, the system exhibits a chaotic response and afterwards, the
period-1 response is stabilized. When the delay is changed to 𝜏 =
3𝜏𝑠 = 0.36675 s the period-1 UPO maintains its stability and the system
presents no change of behaviour. Finally, we change the control time
delay to 𝜏 = 5𝜏𝑠 = 0.61125 s, which moves the system away from the
period-1 orbit originating a chaotic-like behaviour. This indicates that
the controller is able to maintain the period-1 UPO stable for 𝜏 = 3𝜏𝑠,
but is unable to do so for 𝜏 = 5𝜏𝑠. As in the previous case, experimental
and numerical results are in close agreement with each other.

These two tests do not confirm ETDF’s ability to stabilize a periodic
response with 𝜏 = 𝑗𝜏𝑠 delay. In fact, they indicate two main depen-
dencies of the period-1 UPO stability with the time-delay. For even
multiples of the period as time delays, 𝑗 = 2𝑧 where 𝑧 is a positive
natural number, the ETDF method is not able to stabilize the period-1
UPO. For odd multiples of the period as time delay, 𝑗 = 2𝑧 − 1, the
controlled UPO stability is not lost straight away, but it degrades as
higher delays are employed. Going forward, we define time delays with
odd values of 𝑗 as odd delays and time delays with even values of 𝑗 as
even delays.

In the following sections, we provide the mathematical basis to
analyse this initially counter intuitive dependence of the UPO stability
on the control time-delay. To achieve this, we employ the Floquet
theory and an equivalence between time-delayed feedback control and
proportional control.

3. Analysis of time-delayed feedback methods

The general formulation of a time-delayed control method in a
system with state variables 𝐱 and an evolution function 𝐟 can be
described by:

�̇� = 𝐟 (𝐱, 𝑡) + 𝐮(𝐲(𝑡), 𝐲(𝑡 − 𝜏1), 𝐲(𝑡 − 𝜏2)...),with 𝐲(𝑡) = 𝐂(𝐱), (5)

where 𝐂(𝐱) is the function describing the observer of the system and 𝜏𝑖
are delays.

Since 𝐮 relies on delayed observations, Eq. (5) becomes a delayed
differential equation. Although the application of Lyapunov exponents
is very common to assess the stability of an orbit, in the case of delayed
systems, it typically involves additional steps and an increased compu-
tational effort due to the presence of delays. In comparison to the usual
Lyapunov based methods, Floquet theory provides a relation between
delayed and current states [49] by evaluating only one period of the
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Fig. 2. Dynamic repsonses using 𝑐 as a bifurcation parameter numerically computed using the parameters in Table 1; (a) numerical bifurcation diagram with varying 𝑐; (b) chaotic
attractor and Poincaré points of the identified (c) period-1, (d) period-2, and (e) period-5 UPOs at 𝑐 = 0.272 kg∕s; (f) trajectory of the stable period-2 orbit on the phase plane
at 𝑐 = 2 kg∕s; (g) trajectory of the period-1 UPO on the phase plane at 𝑐 = 2 kg∕s. Stable attractors are depicted in black while unstable solutions are coloured as period-1
red), period-2 (blue) and period-5 (magenta). The impact boundary is depicted as a dashed red line on phase planes. (For interpretation of the references to colour in this figure
aption, the reader is referred to the web version of this article.).
ystem response, enabling a more efficient and detailed description of
periodic orbit stability. Thus, we focus our analysis on calculating the
loquet exponents of a controlled orbit.

If a deviation 𝜹𝐱 = 𝐱 − 𝐱𝐨 of a periodic orbit 𝐱𝐨 is considered, its
volution is given by:

�̇� = ▿𝐱𝐟𝜹𝐱, (6)

here ▿𝒙 is the gradient in respect to the 𝐱 variable.
As ▿𝐱𝐟 is calculated around the orbit 𝐱𝐨 of period 𝜏𝑠 it is also periodic

ollowing the equation ▿𝐱𝐟 (𝑡) = ▿𝐱𝐟 (𝑡− 𝜏𝑠). Hence, according to Floquet
theory, the solution for Eq. (6) is given by:

𝜹𝐱(𝑡) = Re
( 𝑁
∑

𝑖=1

(

𝜹𝐱(0) ⋅ 𝐩𝐢(0)
)

𝑒𝜇𝑖𝑡𝐩𝐢(𝑡)
)

, (7)

where, 𝑁 is the dimension of the system, 𝐩𝐢(𝑡) = 𝐩𝐢(𝑡 − 𝜏𝑠) is a periodic
function with the same period of the analysed orbit 𝜏𝑠 and 𝜇𝑖 is the
Floquet exponent associated with 𝐩𝐢.

Eq. (7) reveals how Floquet exponents are used to analyse the
stability of the orbit under consideration. If all real parts of Floquet
exponents are lower than zero, Re(𝜇𝑖) < 0, a deviation around the orbit
diminishes with time indicating that the orbit is stable. If any of the
Floquet exponents has a positive real part, they indicate an unstable
orbit.

The most common approach to analyse how the stability of an orbit
changes with a parameter, using Floquet exponents, is to plot the real
part of the maximum real-valued Floquet exponent, also called the
leading Floquet exponent 𝜇𝑚𝑎𝑥, versus the values of that parameter,
as demonstrated in Fig. 5. Whilst considering 𝑘 as a parameter, the
region where 𝑘 < 𝑘1 presents a positive Re(𝜇𝑚𝑎𝑥) indicating an unstable
solution, exemplified by Fig. 5b. Hence, the value 𝑘1 is the minimum
value of 𝑘 where the analysed orbit is stable. In the region from 𝑘 = 𝑘1
to 𝑘 = 𝑘2, the orbit is stable since Re(𝜇𝑚𝑎𝑥) ≤ 0, shown in Fig. 5c. For
values of 𝑘 > 𝑘2, the orbit is unstable, as exemplified in Fig. 5d. Hence,
the value 𝑘2 is the maximum value of 𝑘 where the analysed orbit is
stable. Finally, there is an important value of 𝑘 = 𝑘𝑜𝑝𝑡 where Re(𝜇𝑚𝑎𝑥)
reaches its minimum value 𝜇𝑜𝑝𝑡.

Whilst at Fig. 5 presents a simple and straightforward way to
analyse the stability of an orbit, it overlooks a significant amount of
4

information as it disregards most of the other Floquet exponents and
the imaginary part of 𝜇𝑚𝑎𝑥. A way to obtain a more comprehensive
understanding of the full spectrum of Floquet exponents is to track
their location in the complex plane as we vary the parameter 𝑘, as
shown in Fig. 6. In this figure, red crosses represent the values of
Floquet exponents at 𝑘 = 0, while black circles represent the values
of Floquet exponents at 𝑘 → ∞. The Floquet exponents evolve from the
red crosses to the black circles as 𝑘 varies, by following the black paths,
as depicted by arrows in Fig. 6b. In Fig. 6, the leading Floquet Exponent
starts at the rightmost cross and travels left, as 𝑘 increases, until it
crosses to the negative semi-plane, at this point 𝑘 = 𝑘1. Afterwards,
the leading Floquet exponent collides with another one on the real axis
when 𝑘 = 𝑘𝑜𝑝𝑡. Subsequently to this collision, the two Floquet exponents
move towards the positive semi-plane presenting opposite imaginary
parts. Finally, these two exponents cross to the positive semi-plane
again at 𝑘 = 𝑘2 and tend to the circles as 𝑘 → ∞. In this representation,
the imaginary part of the Floquet exponents is usually multiplied by the
delay of the orbit, 𝜏𝑠, to compare the shift in phase after a full cycle to
multiples of 𝜋. This facilitates to identify if a deviation will be in-phase,
in anti-phase or de-phased from the analysed orbit.

Following the methods developed by Pyragas et al. [36,41,50] and
assuming that 𝐂 is linear and has the same dimension as 𝐱, the Floquet
exponents of an ETDF controlled system can be calculated by obtaining
the evolution of 𝜹�̇� as one linearizes Eq. (5) around 𝑥𝑜 leading to:

𝜹�̇� =

(

▿𝐱𝐟 (𝐱𝐨) +𝐊▿𝐱𝐂▿𝒙

(

(1 − 𝑟)

( ∞
∑

𝑛=1
𝑟𝑛−1𝐱(𝑡 − 𝑛𝜏)

)

− 𝐱(𝑡)
))

𝜹𝐱. (8)

By using Eq. (7) one can write the delayed state as:

𝜹𝐱(𝑡 − 𝑛𝜏) = Re
( 𝑁
∑

𝑖=1

(

𝜹𝐱(0) ⋅ 𝐩𝐢(0)
)

𝑒𝜇𝑖(𝑡−𝑛𝜏)𝐩𝐢(𝑡 − 𝑛𝜏)

)

= 𝑒−𝐇𝝁𝑛𝜏𝜹𝐱(𝑡), (9)

and by using the periodicity property of 𝐩𝐢(𝑡) = 𝐩𝐢(𝑡 − 𝜏), a relation
between the present and delayed states can be obtained as:

𝜹𝐱(𝑡 − 𝑛𝜏) = Re
( 𝑁
∑

𝑖=1
𝑒−𝜇𝑖𝑛𝜏

(

𝜹𝐱(0) ⋅ 𝐩𝐢(0)
)

𝑒𝜇𝑖𝑡𝐩𝐢(𝑡)
)

= 𝑒−𝐇𝝁𝑛𝜏𝜹𝐱(𝑡), (10)

where, 𝐇𝝁 obeys:

𝑒−𝐇𝝁𝑛𝜏 = 𝐐−1𝑒−𝐇𝐝𝐢𝐚𝐠𝑛𝜏𝐐, (11)
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Fig. 3. Numerical and experimental control tests with different delays with a gain 𝑘𝑣 = 10.8 kg/s and 𝑟 = 0; (a), (b) Poincaré time series of displacement; (c), (e) stabilized target
eriod-1 UPO for 𝑗 = 1; (d), (f) stabilized period-2 UPO for 𝑗 = 2; (g), (h) time history of control current added to the coil. Dashed blue lines indicate when the delay of the control
hanges and dashed red lines indicate the impact boundary on phase planes. Note that the controller can stabilize the target period-1 UPO only with 𝑗 = 1. (For interpretation of
he references to colour in this figure caption, the reader is referred to the web version of this article.).
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here, 𝐐 is the transformation for the eigenbase constructed with 𝐩𝐢,
nd 𝐇𝐝𝐢𝐚𝐠 is a diagonal matrix with the Floquet exponents 𝜇𝑖 as its
iagonal elements. Then, by using Eq. (10) the gradient of delayed
tates can be calculated as:

𝒙𝐱(𝑡 − 𝑛𝜏) = ▿𝜹𝐱(𝐱𝟎(𝑡) + 𝜹𝐱(𝑡 − 𝑛𝜏)) = ▿𝜹𝐱(𝐱𝟎(𝑡) + 𝑒−𝐇𝝁𝑛𝜏𝜹𝐱(𝑡)) = 𝑒−𝐇𝝁𝑛𝜏 .

(12)

Substituting this gradient into Eq. (8) and using the formula for a
onverging infinite sum of a geometric series:
∞

𝑛=1
𝑟𝑛−1𝑒−𝐇𝝁𝑛𝜏 = 𝑒−𝐇𝝁𝜏 (I − 𝑟𝑒−𝐇𝝁𝜏 )−1, (13)

t is obtained:

�̇� =
(

▿𝐱𝐟 (𝐱𝐨) +𝐊▿𝐱𝐂
(

𝑒−𝐇𝝁𝜏 − I
)(

I − 𝑟𝑒−𝐇𝝁𝜏
)−1

)

⋅ 𝜹𝐱, (14)

here I is the identity matrix.
After acquiring the evolution of 𝜹𝐱, one way to calculate the Floquet

xponents is to evaluate the fundamental matrix of the system Ψ that
s defined as:

𝐱(𝑡) = Ψ(𝑡) ⋅ 𝜹𝐱(0), (15)

here Ψ(0) = I. In sequence, by substituting Eq. (15) into Eq. (14), the
volution of the fundamental matrix is obtained:

̇ =
(

▿𝑓 (𝐱𝐨) +𝐊▿𝐱𝐂
(

𝑒−𝐇𝝁𝜏 − I
)(

I − 𝑟𝑒−𝐇𝝁𝜏
)−1

)

Ψ. (16)
5

𝐮

The Floquet exponents are extracted by the diagonalization of the
undamental matrix at 𝜏𝑠 (one period of the analysed orbit). In other
ords, they are the solution for the equation:

Ψ(𝜏𝑠) − 𝑒−𝜇𝑖𝜏𝑠I) ⋅ 𝐯𝑖 = 𝟎, (17)

here 𝐯𝑖 are the eigenvectors of Ψ(𝜏𝑠).
Several details of Eq. (17) needs to be discussed over as it is

ranscendental; the function Ψ(𝜏𝑠) depends on the Floquet exponents
hemselves. Hence, to solve and obtain the Floquet exponents one needs
o use an optimization method. Secondly, Eq. (17) has infinitely many
olutions on the complex plane, which poses an additional challenge to
btain specific solutions. These difficulties can be minimized if only the
tability of the orbit is of concern. In such cases, it is possible to obtain
nly the leading Floquet exponent, as it dictates stability, and disregard
he rest. However, for a full analysis of the control, the remaining FEs
annot be ignored.

Pyragas in [36,41], aiming to circumvent the optimization chal-
enges of Eq. (17), proposed an equivalence between ETDF and pro-
ortional gain control. His idea is to assume that an orbit controlled by
proportional gain method has the same Floquet Exponents of an orbit

ontrolled by the ETDF method if the Floquet Exponents are close to the
oundary of the first Brillouin zone [41]. To exemplify this equivalence,
et us consider the calculation of a deviation 𝜹𝐱 of an orbit controlled
y a proportional gain method with a control signal:

= 𝐆(𝐲 − 𝐲 ), (18)
𝐨
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Fig. 4. Numerical and experimental control tests with different delays with a gain 𝑘𝑣 = 10.8 kg/s and 𝑟 = 0; (a), (b) Poincaré time series of displacement. (c), (e) stabilized
target period-1 UPO for 𝑗 = 1, 3; (d), (f) system phase plane for 𝑗 = 5; (g), (h) time history of control current added to the coil. Dashed blue lines indicate when the delay of the
control changes and dashed red lines indicate the impact boundary on phase planes. Note that the controller can stabilize the target period-1 UPO only with 𝑗 = 1 and 𝑗 = 3. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.).
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𝐆

𝐊

𝐇

where 𝐆 is the proportional gain matrix.
In this case, the evolution of the deviation is given by:

𝜹�̇� =
(

▿𝐱𝐟 (𝐱𝐨) −𝐆▿𝐱𝐂
)

𝜹𝐱. (19)

Thus, the fundamental matrix evolution equation can have the follow-
ing form:

Ψ̇ =
(

▿𝐱𝐟 (𝐱𝐨) −𝐆▿𝐱𝐂
)

Ψ. (20)

By using Eq. (20), the Floquet Exponents of the controlled orbit can
than be presented as a function of the proportional gains 𝑠𝑖(𝐆). Ac-
ordingly, in the following discussion, we denote the Floquet exponents
elated to proportional gain control as 𝑠𝑖, while those associated with
TDF control are denoted as 𝜇𝑖.

If Eqs. (16) and (20) are compared, their only difference is that the
econd term of the former is real while in the latter it can be complex.
ence, if it is assumed that the terms in both equations are real, in
ther words:
(

𝐊▿𝐱𝐂
(

𝑒−𝐇𝝁𝜏 − I
)(

I − 𝑟𝑒−𝐇𝝁𝜏
)−1

)

= 𝟎, (21)

here ℑ is an operator that extracts the imaginary part of a complex
umber. Then, both equations are equivalent and the Floquet Exponent
f the orbit controlled by the proportional gain will be the same for
he orbit controlled by the ETDF, 𝑠𝑖(𝐆) = 𝜇𝑖. As such, one can equalize
he second term Eqs. (16) and (20) establishing a relation between the
6

𝑠

TDF gains 𝐊 that result in the same FE of a given proportional gain
.

▿𝐱𝐂
(

𝑒−𝐇𝝁𝜏 − I
)(

I − 𝑟𝑒−𝐇𝝁𝜏
)−1

= −𝐆▿𝐱𝐂. (22)

As the Floquet exponents can be assumed to be the same, we replace
𝝁 with the matrix 𝐇𝐬 that is related to the Floquet Exponents of the

given proportional gains 𝑠𝑖(𝐆). Then, by rearranging the equation one
obtains,

𝐊 = −𝐆▿𝐱𝐂
(

I − 𝑟𝑒−𝐇𝐬𝜏
) (

𝑒−𝐇𝐬𝜏 − I
)−1 (

▿𝐱𝐂
)−1 . (23)

Eq. (23) can then be used to relate the Floquet exponents, 𝑟 and the
ETDF gain. To illustrate this, let us assume that the observations are
performed directly into one state, so 𝐂 can be considered as a scalar
𝐶 = 𝑥𝑖, and that feedback is only performed on one state variable so
that 𝐊 and 𝐆 become a scalar 𝑘 and 𝑔, respectively.

If we also assume that delay is a multiple of the target orbit period,
𝜏 = 𝑗𝜏𝑠, Eq. (23) can be rewritten as:

𝑘 = −𝑔
(

1 − 𝑟𝑒−𝑠𝑖(𝑔)𝑗𝜏𝑠
) (

𝑒−𝑠𝑖(𝑔)𝑗𝜏𝑠 − 1
)−1 . (24)

As Eq. (24) is assumed to yield a real value, the Floquet Exponents
can be written as:

𝑠𝑖(𝑔)𝜏𝑠 = 𝑠𝑟𝑖(𝑔)𝜏𝑠 + 𝑖𝜋, (25)

where 𝑠𝑟𝑖 is the real part of 𝑠𝑖. If a linear dependence is assumed for
𝑠𝑟𝑖(𝑔):
𝑟𝑖(𝑔) = 𝜇0(1 − 𝑔∕𝑔1), (26)
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Fig. 5. Evaluation of the periodic orbit stability; (a) real part of the maximum real valued Floquet exponent, with the limit of stability depicted by a dashed red line. Phase planes
examples depicting the considered periodic orbit (blue) and obtained response (light grey) with different values of 𝑘; (b) divergence of the analysed orbit for lower values 𝑘 < 𝑘1;
c) convergence to the orbit for 𝑘 ∈ [𝑘1 , 𝑘2]; (d) divergence of the analysed orbit for higher values 𝑘 > 𝑘2. (For interpretation of the references to colour in this figure caption, the
eader is referred to the web version of this article.).
Fig. 6. Example analysis of ETDF using Floquet theory; (a) Floquet exponents in the complex plane and their path as a parameter 𝑘 is varied; (b) path directions of Floquet
exponents in the complex plane highlighted by arrows. The exponents migrate from the red crosses were 𝑘 = 0, (×) to the circles as 𝑘 → ∞, (○).
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leading to:

𝑔 =
𝑔1
𝜇0

(𝜇0 − 𝑠𝑟𝑖(𝑔)), (27)

here 𝜇0 is the orbit Floquet Exponent real part without control,
lso referenced as the original instability of the orbit, and 𝑔1 is the
ritical gain where the orbit becomes stable. Subsequently, the relation
etween the ETDF gain and Floquet Exponents can be obtained by
ubstituting Eqs. (25) and (27) into (24),

=
𝑔1
𝜇0

(𝜇0 − 𝑠𝑟𝑖)
1 + 𝑟(−1)𝑗+1𝑒−𝑠𝑟𝑖𝑗𝜏𝑠
(−1)𝑗+1𝑒−𝑠𝑟𝑖𝑗𝜏𝑠 + 1

. (28)

Finally, by solving Eq. (28) for a given 𝑘, the controlled orbit full
pectrum of Floquet exponents can be obtained. It is also highlighted
hat the term

𝑔1
𝜇0

(𝜇0 − 𝑠𝑟𝑖) of Eq. (28) gives the Floquet exponent
elated to the system itself as it contains the orbits Floquet Exponent
ithout control 𝜇0 and the critical gain 𝑔1. Whilst the rest of the

quation generates the Floquet Exponents related to the control and
he introduction of delayed states.
7

t

Eq. (28) can also be used to predict some features of ETDF. For the
ake of simplicity, let us analyse the system on the first boundary of
tability, such as 𝑠𝑟𝑖 = 0. In this case, the first critical gain 𝑘1 for ETDF

can be calculated by:

𝑘1
𝑔1

=
1 + 𝑟(−1)𝑗+1

(−1)𝑗+1 + 1
. (29)

Note that the Eq. (29) has only a solution when 𝑗 = 2𝑛 − 1, 𝑛 ∈ N.
his already indicates that a critical gain only exists for odd multiples
f the time-delay. It also implies that the critical gain 𝑘1 is unaffected
y changes in odd delays. Finally, it also shows that ETDF’s critical gain
1 is directly proportional to the proportional feedback critical gain 𝑔1
y a factor 0.5+𝑟∕2. This indicates that increases in 𝑟 increase the value
f critical gain 𝑘1.

Having established the mathematical framework of our analysis, we
roceed to the next session, where we conduct a parametric investiga-
ion of ETDF by calculating the full spectrum of Floquet exponents of
he controlled period-1 orbit of the impact oscillator system.
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Fig. 7. Floquet exponents of the period-1 orbit with proportional gain. The leading
FE is depicted in black and minimum in red. A linear approximation of the leading
FE dependency is given in blue. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this article.).

4. Parametric analysis of ETDF applied to the impact oscillator

In this section, we analyse the period-1 UPO of the impact oscillator
and aim to provide an explanation for the results presented in Section 2
by utilizing the mathematical methods introduced previously.

The first task performed was to obtain the function 𝑠𝑟𝑖(𝑔) for the
orbit controlled by a proportional control by directly solving Eq. (20).
This is done by assuming a control signal given by:

𝐮 =
[

0
𝑢

]

=
[

0
𝑔(�̇�𝑜 − �̇�)

]

. (30)

The results presented in Fig. 7 demonstrate a linear relationship
between the leading Floquet exponent (black line) and the proportional
gain 𝑔. This confirms the previous assumptions made in Eq. (27). Thus,
by fitting a linear approximation near zero (blue line), we can obtain
the initial leading Floquet exponent real part 𝜇0 = 1.73876 s−1 and
the critical gain 𝑔1 = 3.94 s−1. Furthermore, the secondary Floquet
exponent, shown in red, also presents a linear behaviour for small 𝑔.

4.1. Influence of different delays

With the identified parameters, we can utilize Eq. (28) to examine
the paths of the Floquet exponent in the complex plane as the propor-
tional gain in the impact oscillator control 𝑘𝑣 is varied. Fig. 8 shows
these paths for the delays used in Section 2 and 𝑟 = 0. It is important to
highlight that the crosses located in the negative semi-plane are not
shown in the figure. This is because, when 𝑟 = 0, the real part of
Floquet exponents related to the control tends to −∞. Also, as a delayed
system has an infinite number of Floquet exponents, only the four (five)
Floquet exponents with the smallest imaginary parts are displayed in
the figure.

Analysing the variations due to delay, Figs. 8a, 8c and 8d show that,
for odd multiples of the delay, the Floquet exponents collide with each
other on the real axis defining 𝜇𝑜𝑝𝑡. Afterwards, the colliding leading
Floquet exponents become complex conjugates and migrate towards
the circles at the imaginary axis. Analysing the effect of altering odd
delays, the figures show that higher values of delay bring the circles in
the imaginary axis closer together, which brings the Floquet exponents
collision closer to the positive semi-plane. As a consequence, the value
of 𝜇𝑜𝑝𝑡 increases and the value of 𝑘2 decreases as the Floquet exponents
paths start crossing to the positive semi-plane before reaching the black
circles. The same does not happen for even multiples of delay, as the
path‘s structures change completely from their odd counterpart. Fig. 8b
shows that even multiples of delay shift the circles along the complex
axis creating a blockade in the imaginary axis. A circle, shifted to the
origin of the graph, does not allow the leading Floquet exponent to
8

cross to the negative semi-plane eliminating the control’s ability to
stabilize the orbit. Furthermore, multiples of even delay have the effect
of bringing the circles on the imaginary axis close together in the same
way as seen for odd delays, however, they all present a circle at the
origin which does not allow the leading Floquet exponent to migrate
to the negative semi-plane.

We validate our calculations by comparing the predicted Re(𝜇𝑚𝑎𝑥)
with 𝑘𝑣 by Eq. (28) with the values obtained by solving numerically
qs. (16) and (17). An optimization algorithm presented in [28] is used
o solve the full set of these equations. Fig. 9 shows a comparison of
oth results for various values of delay. As expected, only odd multiples
f delay present negative values of 𝜇𝑚𝑎𝑥 while for 𝜏 = 2𝜏𝑠 there were no

values of 𝑘𝑣 that could control the orbit. Also, both odd delay curves
become negative at the same value of 𝑘𝑣, showing that 𝑘1 does not
change with the increase in delay as predicted by Eq. (29).

When comparing both calculations (dashed–dotted and solid lines),
we observe a close agreement between them. Only a small difference
can be seen when the Floquet exponents reach 𝜇𝑜𝑝𝑡, however, this
difference diminishes as 𝑘𝑣 increases. This is also consistent with our
assumptions. The Floquet exponents near 𝜇𝑜𝑝𝑡 deviate from the real axis

aking our assumption that ℑ𝜇𝑖 = 𝑛𝜋 invalid, which produces the
aximum absolute difference between the methods, shown in Fig. 9b.

ubsequently, as 𝑘𝑣 increases the Floquet exponents come closer to our
ssumption ℑ𝜇𝑖 = 𝑛𝜋 which reduces the approximation error.

Finally, if the value of 𝑘𝑣 = 10.8 kg/s is considered (dashed vertical
blue line) an agreement with the results in Section 2 can be obtained.
Fig. 9 shows that the only multiple delays that can stabilize the orbit
for this gain is 𝜏 = 3𝜏𝑠, while 𝜏 = 2𝜏𝑠 and 𝜏 = 5𝜏𝑠 have a positive 𝜇𝑚𝑎𝑥
indicating that the orbit would be unstable. This perfectly agrees with
the experimental and numerical results obtained previously.

We further investigate the influence of odd delays on the Floquet
exponents for 𝑟 = 0.1 to see how it can affect their values for 𝑘𝑣 ≈ 0 (red
crosses). When 𝑟 ≠ 0, crosses on the negative semi-plane assume finite
values, as shown in Fig. 10. There are two collisions of Floquet expo-
nents located on the real axis. The first collision, happening at a lower
real value, involves Floquet exponents related to the ETDF control. The
second collision, at a higher real value, involves the leading Floquet
exponent and another related to the control and defines 𝜇𝑜𝑝𝑡. If we
compare both panels, the effect of changing the delay brings the crosses
and circles together and pushes the second collision to the positive
semi-plane making the orbit uncontrollable in this scenario. Thus,
changing the delays not only changed the imaginary part of crosses
but also their real value, bringing them closer to the positive semi-
plane. Finally, we can conclude that raising the value of 𝑟 increases
the influence of odd delays on the Floquet exponents.

In summary, a ETDF control that has even multiples of an orbit
as delay cannot stabilize this orbit. This proves that there is no risk of
inadvertently stabilizing, for example, a period-1 UPO while targetting
a period-2 UPO and explains also previous results obtained for other
systems [51]. However, although there is deterioration of stability, it
is possible to stabilize an orbit when using odd delays, for instance,
stabilizing a period-1 UPO while targetting a period-3 UPO.

4.2. Effect of original instability

In addition to the influence of delays, the methods presented can
also be used to analyse the effect of the original instability 𝜇0 on the
control effectiveness. This is accomplished by analysing an unstable
period-1 orbit existing in the range of damping coefficient depicted
in Fig. 2. More specifically, we choose the values of 𝑐 = 10−6, 2,
and 4 kg∕s corresponding to the initial instabilities values of 𝜇0 =
1.833, 1.002, 0.138 s−1, respectively. We follow the same procedure as
in Fig. 7 to obtain 𝑔1 and 𝜇0 for these values of 𝑐 and consequently
solve Eq. (28).

Fig. 11 shows the paths of the Floquet exponents in the complex
plane for the three aforementioned cases. For this analysis, it is useful

to consider crosses as sources and circles as sinks. In Fig. 11a, the red
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Fig. 8. Floquet exponents paths in the complex plane for the period-1 UPO, 𝑟 = 0; (a) 𝑗 = 1; (b) even delay 𝑗 = 2; (c) 𝑗 = 3 and (d) 𝑗 = 5. Red crosses (×) indicate when 𝑘 = 0
and black circles (○) indicates when 𝑘 → ∞. Note that because 𝑟 = 0 the crosses related to the control are at Re(𝜇) = ∞ s−1 and not depicted in the figure. Some paths in (a) and
(b) do not reach the circles as calculations were made up to a maximum value of 𝑘𝑣 = 𝑘𝑙𝑖𝑚.

Fig. 9. (a) Comparison between the leading Floquet exponents of the period-1 UPO calculated by the proportional gain approximation (dashed dotted lines) and by original
transcendental Eqs. (16) and (17) (solid lines) for several values of delay: 𝑗 = 2 in black, 𝑗 = 3 in green, and 𝑗 = 5 in navy. The experiment gain value is highlighted with a
vertical dashed blue line; (b) absolute difference between both methods. Note that the maximum absolute difference occurs when 𝑅𝑒(𝜇𝑚𝑎𝑥) is minimum. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version of this article.).

Fig. 10. Floquet exponents paths in the complex plane for the period-1 UPO, 𝑟 = 0.1; (a) 𝑗 = 1 stabilization of the target orbit is achieved with appropriate value of 𝑘𝑣; (b) 𝑗 = 3
stabilization of the target orbit cannot be achieved for all values of 𝑘𝑣. Note that the increase in 𝑟 makes the orbit unstable for 𝑗 = 3. Red crosses (×) indicate when 𝑘 = 0 and
black circles (○) indicates when 𝑘 → ∞.
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Fig. 11. Floquet exponents paths in the complex plane for the period-1 UPO, 𝑟 = 0.2 and several values of 𝜇0. The initial instability of the orbit is changed by adjusting the
damping coefficient in the existence range of the UPO from 𝑐 = 10−6 kg∕s to 𝑐 = 4 kg∕s as depicted in Fig. 2; (a) 𝑐 = 4 kg∕s, 𝜇0 = 0.138 s−1; (b) 𝑐 = 2 kg∕s, 𝜇0 = 1.002 s−1; (c)
= 10−6 kg∕s, 𝜇0 = 1.833 s−1. Red crosses (×) indicate when 𝑘 = 0 and black circles (○) indicates when 𝑘 → ∞. Arrows indicate the movement of the Floquet exponent paths as

he initial instability increases.
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ross located on the positive semi-plane corresponding to the Floquet
xponent related to the system, repels the other Floquet exponents from
he real axis. As 𝜇0 increases, Fig. 11b, the cross moves further away,
etting the paths on each side of the real axis to approach one another.
urther increases in 𝜇0, make the paths on each side of the real axis
erge with the path on the real axis creating two collisions of Floquet

xponents, as seen in Fig. 11c.
Due to the relatively narrow range of 𝜇0 in which identified period-1

POs are present, all the phenomena in Eq. (28) cannot be verified. To
rovide a more comprehensive analysis of the presented method, we
onsider values of 𝜇0 unrelated to the impact oscillator system. Fig. 12
hows the Floquet exponents paths in the complex plane for a broader
ange of initial instabilities. It depicts the same behaviour described
reviously in Fig. 11 until the final panel, where the initial instability is
ufficiently high to move the collision defining 𝜇𝑜𝑝𝑡 to the positive semi-
lane. This indicates that the ETDF method is not be able to control the
rbit regardless of the gains, which puts a limit on initial instability for
he orbit to be effectively controlled.

We also analyse the effects of 𝜇0 in the dependence of 𝜇𝑚𝑎𝑥 on
in Fig. 13. As 𝜇0 increases it shifts the curves to the right and

pwards while flattening variations of the Floquet exponents after the
inimum value of the curves, 𝜇𝑜𝑝𝑡. With these observations in mind,
e extract the values of 𝑘1 and 𝑘𝑜𝑝𝑡 from the curves and graph them
gainst the values of 𝜇0 in Fig. 13b. Notably, we observe that there
s a linear dependence of 𝑘1 with 𝜇0 which enables us to predict the
aximum initial instability for the ETDF method to be effective, 𝜇∗

0 .
his is performed by calculating the value of 𝜇0 at the crossing between
he values of 𝑘𝑜𝑝𝑡 and the line defining the values of 𝑘1.

In summary, a linear dependence of the initial gain 𝑘1 with the
riginal instability of an orbit 𝜇0 can be confirmed and used to predict
he maximum 𝜇0 of an orbit that the ETDF method can be effective.
his valuable insight enables to design a ETDF controller with fewer
alculations of Floquet exponents and also to facilitate an evaluation
f the ETDF’s robustness to orbit instabilities due to variations in the
ystem parameters.
10
. Conclusions

In this study, we provided insights into applications of the ETDF
ith delays that are multiples of the targetted orbit’s period and its
ffects on the Floquet exponents of a controlled orbit. In particular, this
as done for the counter-intuitive ETDF’s inability to stabilize its target
rbit when using a delay that is even multiple of the targetted orbit’s
eriod. Specifically, we characterize the dynamics of an impact oscilla-
or and perform the numerical and experimental control of an identified
eriod-1 UPO. After performing the tests, we observed an unexpected
oss of ETDF’s effectiveness when using that are even multiples or high
dd multiples of the orbit’s period. To further analyse this phenomenon,
e present a methodology to calculate an ETDF controlled orbit Floquet
xponents by utilizing an equivalence between ETDF and proportional
ontrol. Furthermore, we validated these assumptions for a non-smooth
ynamical system.

Additionally, we conducted a comprehensive parametric analysis of
ifferent delays. Our findings reveal that ETDF fails to stabilize an orbit
sing even multiples of its delay due to the shift in the imaginary part of
loquet exponents when 𝑘 → ∞. Moreover, we analysed odd multiples
f delay and discover that increases in the multiplicity of the delay
eteriorate the controlled orbit stability up to a critical point at which
TDF loses its ability to successfully stabilize the orbit. Furthermore,
e explored the influence of the orbit‘s initial instability on the efficacy
f ETDF, and then proposed a simple method to predict the maximum
nstability in which ETDF becomes ineffective in stabilizing the orbit.

The analysis conducted in this work provides insights into the
nderlying phenomena of time-delayed methods and lays foundations
or further developments of time-delayed control methods. It also pro-
ide a mathematical basis for the analysis of the ETDF with different
ime-delays which can help control designs for nonlinear systems.
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Fig. 12. Initial orbit instability effect on Floquet exponents for 𝑟 = 0.2 and 𝜏𝑠 = 1 s; (a) 𝜇0 = 0.5 s−1 the exponents paths do not collide; (b) 𝜇0 = 1.5 s−1 is high enough to allow
aths to collide; (c) 𝜇0 = 2.5 s−1 the point where collision happens gets pulled to the right as initial instability increases; (d) 𝜇0 = 4 s−1 Floquet exponents paths collide with each
ther on the positive semi-plane indicating that there is no value of 𝑘 that can stabilize the orbit. Red crosses (×) indicate when 𝑘 = 0 and black circles (○) indicates when 𝑘 → ∞.
Fig. 13. Prediction of the maximum controllable instability 𝜇∗
0 ; (a) analysis of 𝜇𝑚𝑎𝑥 dependence of 𝑘 for several initial instabilities 𝜇0 and 𝑟 = 0.2; (b) values of 𝑘1, black circles

○) and 𝑘𝑜𝑝𝑡 (×) for several values of 𝜇0. The black line indicates a linear fit of the dependence of 𝑘1 with initial instability 𝜇0.
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