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Abstract: Signature, widely used in cloud environment, describes the work as readily 

identifying its creator. The existing signature schemes in the literature mostly rely on the 

Hardness assumption which can be easily solved by quantum algorithm. In this paper, we 

proposed an advanced quantum-resistant signature scheme for Cloud based on Eisenstein 

Ring (ETRUS) which ensures our signature scheme proceed in a lattice with higher 

density. We proved that ETRUS highly improve the performance of traditional lattice 

signature schemes. Moreover, the Norm of polynomials decreases significantly in 

ETRUS which can effectively reduce the amount of polynomials convolution calculation. 

Furthermore, storage complexity of ETRUS is smaller than classical ones. Finally, 

according to all convolution of ETRUS enjoy lower degree polynomials, our scheme 

appropriately accelerate 56.37% speed without reducing its security level. 
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1 Introduction 

In recent years, there is growing interest in cryptography based on hard lattice problems, 

classical signature schemes, such as discrete algorithm [ElGamal (1985)], security 

sensitive applications and encrypted searching, have been proved unsafe based on the 

quantum computing capacity [Gerjuoy (2005)], it is meaningful to research unbreakable 

signature schemes under quantum computer’s model. Lattice-based signature schemes’ 

construction hold a great promise for post-quantum cryptography, as they enjoy very 

strong security proofs based on worst-case hardness [Bi and Cheng (2014)]. Besides, 

lattice signature schemes’ calculation mostly relate to the polynomials convolution, so 

compared with some classical algorithm (like RSA-1024 ECDSA-163), Latticed based 

signature schemes need a smaller amount of calculations. In this way, lattice-based digital 

signature algorithm technologies are initially developed for resource-constrained devices 
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[Oder, Pöppelmann and Güneysu (2014)], for example, embedded devices and IC card. 

In 1997, Goldreich et al. [Goldreich, Goldwasser and Halevi (1997)] proposed the first 

lattice-based (GGH cryptography system) signature scheme which has no strict security 

proof. In 2001, Hoffstein et al. [Hoffstein, Pipher and Silverman (2001)] proposed NSS 

which security based on the closest vector problem (CVP), however, it was broken by 

[Mironov (2001)]. In 2002, a modified signature scheme R-NSS is proposed based on 

NSS which was proved unsafe by Stern [Stern (2001)] in the same year. In 2003, 

Hoffstein et al. [Hoffstein, Howgrave-Graham, Pipher et al. (2003)] proposed NTRUSIGN 

signature schemes which security are based on the approximate the closest vector problem 

(APPR-CVP) [Goldreich, Micciancio, Safra et al. (1999)]. Compared with the former 

signature schemes, NTRUSIGN enjoy higher security, and in recent years, many new 

signature schemes are being proposed based on NTRU-lattice. 

As a family of classical quantum-resist signature schemes, NTRUSIGN are worth being 

improved. In 2004, Min et al. [Min, Yamamoto and Kim (2004)] make the signing 

transformation one-to-one correspondent on a given secret key to improve security of 

NTRUSIGN. In 2005, Hoffstein et al. [Hoffstein, Howgrave-Graham and Pipheretal 

(2005)] provided a specific parameter generation algorithm to improve their performance. 

In 2009, Zhang et al. [Zhang and Ji (2009)] improved NTRUSign-based by anonymous 

multi-proxy signature scheme. In 2013, Stehle et al. [Stehlé and Steinfeld (2011)] 

improved their security over ideal lattice by extending it is provably category. In 2014, 

Melchor et al. [Melchor, Boyen, Deneuville et al. (2014)] gave a set of concrete 

parameters to gauge the efficiency of the signature scheme by sealing the leak on 

Classical NTRU Signatures. However, due to a large number of polynomials convolution 

calculation in each part of NTRUSIGN, the speed of them can still be improved. 

In this paper, we improve the performance of NTRUSIGN by replacing the integer ring Z 

with the ring of Eisenstein Z[ω] at the first time. In Section 2, we introduce some 

necessary properties of Eisenstein integer and ring. In Section 3, we introduce our 

advanced signature scheme ETRUS, re-choose parameters. In rest sections, we analyze 

the security, storage complexity, implement performance of ETRUS, and compare it with 

NTRUSIGN. 

2 Preliminaries 

In this paper, we proposed an advanced signature scheme based on Eisenstein ring in rest 

section, so in this section, we discuss some necessary properties of Eisenstein integer and 

Eisenstein ring to be used as lattice signature base. 

Eisenstein integer is an integer of complex, its basis are 1 and ,   is the non-real root 

of 
3 1 0x − = , all the element of it can be represented as ( , )a b a b+  . Eisenstein 

ring is denoted as [ ] , and some properties of Eisenstein integer and Eisenstein ring 

are presented as follow.  

Let a b+  and [ ]c d +  , it is easy to get some properties as follow. 

(1) Norm
2(a b+ ) = ( a b+ ) (

2a b+ ) =
2 2a ab b− + . 
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(2) [ ]  has greater density (has more points) than  in same dimension of space. 

Proof  

( / 2) 3 / 2a b a b b+ = − + , so the distance from the origin to the point a b+  

is
2 2a ab b− + , and

2 2 2 2a ab b a b− +  + , the inequality shows are more 

Eisenstein integer than integer within the same radius of a circle. 

It is obviously that Eisenstein integer have greater density than integer in 2-

Dimension, and it is easy to calculate that when r=20, Eisenstein integer=36295, 

integer=31417, Eisenstein space is “tighter” than integer space. 

(3) The amount of multiplication and addition between two Eisenstein integers. 

( )*( ) ( ) ( )( )a b c d ac bd b a c d ac   + + = − + − − +  

Wherein (3) shows that ( )( )a b c d + +  cost three multiplication and four 

addition, (4) is very important for reducing the amount of calculation in ETRUS, we 

will discuss it in Section 6. 

(4) Eisenstein ring is an Euclidean domain. 

Proof     

Eisenstein ring   , , , [ ]a b a b c d   +   +   

Norm( ) 1c d a b  + − −   

,c a d d  = =        it certainly established  

According to (4), we can easily have following property. 

(5) For any a b+  and c d+  , there exist t , r  such that 

( )a b t c d r + = + +  where either r=0 or Norm ( r ) <Norm(c+ d ). 

(6) 2N dimensional vectors in [ ]  can form a lattice. 

Proof 

According to the following signature scheme’s construction, 2N dimensional vector  

iV =
1 1 2 2

( , , , ,..., , )
N Ni i i i i ia b a b a b  in [ ]  is consist of N Eisenstein integers as 

1 1 2 2
, ,...,

N Ni i i i i ia b a b a b  + + +     (1) 

In order to form a 2N-dimensional lattice by these vectors, we choose 2N linearly 

independent vectors as 

1V , 2V ,..., iV ..., 2NV , iV = (0,0,...0,1,0,...,0) (i-th is 1, else are 0). 

We let iV =
1 1 2 2 0 1 0( 0, 0, 0, ,..., 1, ,..., , )

i i N Ni i i i i i i ia b a b a b a b= + == = = = . Therefore 

lattice L in [ ]  with 2N dimension can be expressed as  

L = 1 1xV +...+ i ixV +...+ 2 2N Nx V . ix  is integer. 

Indeed, [ ]  is isomorphism to [ ]x , it can easily form a 2N-dimensional lattice. 
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3 The proposed signature scheme on Eisenstein ring 

In this section, we introduce our advanced quantum-resistant signature scheme for Cloud 

Based on Eisenstein Ring, we named it for ETRUS. Compared with NTRUSIGN, we 

choose suitable parameters for our signature scheme.  

The steps to construct ETRUS are as follow. 

3.1 Public parameters selection 

(1) Select suitable integer N, [ ]q   = +  , NormBound . 

In ETRUS, we let / 2N N , || || / 2q q , we store all polynomials as 2N dimensional 

vector by following construction, it means all the calculation in ETRUS is in 

$2N$ dimensional lattice, when reference with Kouzmenko [Kouzmenko (2006)], we let 

N'=2N. By abstract algebra, it is not difficult to obtain that  [ ] / q  (ETRUS) has 

2( )Norm q  elements, / q  has q  elements, so each coefficient of polynomial in 

ETRUS mod q  has 
2( )Norm q  kinds of choice, it has q  kinds of choice in 

NTRUSIGN. In order to resist lattice reduction attack [Joux and Stern (1998)] and 

exhausting attack, we let 
2( )Norm q q . Besides ensure security on the choice of 

parameters, we let || || / 2q q  to simplify the calculation in the remaining sections, and 

we let ( )NormBound NormBound (compute in verification step). 

3.2 Public key generation 

(1) Choose two polynomial f  and g  which is from ring [ ][ ] / 1NX X − . 

Compute
1   ( )h f g mod q− = , (

1f −
 is calculated like in Kouzmenko [Kouzmenko 

(2006)]). 

(2) Compute two small polynomials ( , )F G  satisfying * *f G g F q− = . Due to 

special structure of [ ] , we do not need to use Extended Euclidean algorithm 

[Brent (1976)] in this step which is explained as follow. 

In ETRUS, we let  || || || ||f g C N=   , || || || || / 6F G CN=  (compute in verification 

step). In Step 1, we let 
1

0 1 1* ... N

Nf f f x f X −

−= + + +  where ( )i i

i i if x a b x= + , and 

store f  and g  coefficients as 2N dimensional vector, according to above proof, these 

vectors are points in 2N dimensional lattice.  

In ETRUS, once we get 1 2fR x x = +  and 1 2gR y y = + , we let two Eisenstein integer 

1 2m   = + , 1 2n   = + . So when ( 1 2,  ) or 2 1( , )   are determined in advance, 

in order to get F , G  which satisfy f gmR nR q− = , we only need to solve two variable 

linear equation to get two Eisenstein integer ( , )m n , so we need not to use the Extended 

Euclidean Algorithm in our advance signature scheme to get F , G . However, in 
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NTRUSIGN, in order to get ( , )F G  , we need to use the Extended Euclidean Algorithm 

to get two important integers ( , )m n   [Hoffstein, Howgrave-Graham, Pipher et al. 

(2003)]. (We will have a detailed calculation in Speed comparison) in Section 5 of Public 

Key Generation. 

3.3 Signing 

(1) Hash the document to get two 2N dimensional vector ( 1 2,m m ), Denote
21 i im c= , 

and
2 11 i

m d
+
= , so

2 2 11 1 [ ]
i i

m m 
+

+  . Then m can be presented as follow 

2 2 1

1

0 1 1 1 2 1( ) ... ( ) ... ( )
i i

i N

N Nm m m m m x m m X
+

−

− −= + + + + + + + . 

(2) Compute B, b 

1 2 1 2* * * ,  * * *G m F m A q B g m f m a q b− = + − + = +   

A  and a  have coefficients e d+  in [ ] , ( 1 / 2,1 / 2)* , ( 1 / 2,1 / 2)*e d  −  − . 

(3) Signature is (mod )S f B F b q=  +   

We store document (after hash) as Eisenstein integer to accelerate signing and 

verification speed in Section 6. 

3.4 Verification 

(1) Compute  (mod )T S h q=  . 

(2) Verify if
2 2 2

1 2|| || || ||S m T m− + −  NormBound , if so, accept this signature, 

otherwise, reject it. 

Verification is
2 2 2

1 2|| || || ||S m T m− + −  NormBound . According to (1) and (2) 

1 2

/ /
(  ) (  ) ( , )

/ /

f g G q g q f g
S T B b m m

F G F q f q F G

−      
= =       

−      
  (2) 

Combine with (1), so we can easily obtain following expressions 

1 2( , ) ( , ) ( / / )
f g

m m S T A q a q
F G

 
− =  

 
                                                          

From (5), as our construction, A and a have coefficients e f+  in [ ] , and 

coefficients of /A q  and /a q  between ( 1/ 2− ,1 / 2 ). We can easily have following 

expression 

1 2,m S f F m T f F   − = + − = +    (3) 

Regard   as uniformly distributed variable, and then we let 0 1 1, ,..., N   − , let 

i = i ia b+ . ,i ia b  belong to (-1/2, 1/2). According to the above mentioned description, 
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We can compute Norm
2( i )=

2 2

i i i ia b a b+ − , in order to compute Norm
2( ), we should 

compute an estimated value of Norm
2( i ), which requires Norm

2( i ) expectations. 

We regard ia  and ib  as independent random variable uniformly distributions in the 

interval (-1/2, 1/2). Therefore we have following expressions 

( , ) 1, , ( 1 / 2,1 / 2)

( , ) 0,

i i i i

i i

p a b a b

p a b else

=  −


=
                                                                    (4) 

Therefore Norm
2( ) is calculated as follow 

1/2 1/2 1/2
2 2

0 1 0 1
1/2 1/2 1/2

1/2 1/2
2

1/2 1/2

... ( ( ) ... ( )) ...

( ) / 6

N N

i i

Norm Norm d d

N Norm d N

   

 

+ + +

− −
− − −

+ +

− −

+

= =

  

 
 

So
2|| || / 6N  . In the same way, we can obtain

2|| || / 6N  . 

We now can estimate norm of ( 1 2,S m T m− − ). 

2 2

1 2|| || || ||S m T m− + − = || ( , ) ||f F f F   + +  

In ETRUS, according to the above mentioned calculation, we would better let 

|| || || ||f g C N=   , and ( , )F G  satisfy  || || || || / 6F G CN=  . While in 

NTRUSIGN, || || || || / 12 / 3F G CN CN  =  = ,  || || || || 2f g C N C N=  = . 

In ETRUS, through above calculation. 

3 6
|| ( , ) || (1 )

18

N
f F f F

N
   + +  + . However, 

in NTRUSIGN. 

3 3
2 2

1 2

12 6
|| || || || (1 ) (1 )

72 8

N N
S m T m

N N


− + −  +  +


. So in ETRUS, 

signer should choose one suitable Appr-CVP 
2

NormBound   

3 6
(1 )

18

N

N
+ , the 

verifier calculate 
2 2

1 2|| || || ||S m T m− + − , if the result is smaller than 
2

NormBound , 

then the verification is succeed, otherwise failed. 

We can also use the new perturbation [Hu, Wang and He (2008)] in 2008 to avoid the 

flaw [Nguyen and Regev (2006)] found in 2006. 

According to the above construction, we proposed an advanced signature scheme ETRUS 

by replacing the ring Z in NTRUSIGN with the ring Z[ω]. Compared to NTRUSIGN, we 

can realize a simpler process for ETRUS by suitable parameters. 

4 Security analysis of ETRUS 

[ ]  is isomorphism to [ ]x . Our ETRUS signature scheme is secure under four   

typical  attacks, named Lattice Reduction Attack, Exhaustive Search Attack, GCD Lattice 
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Attack [Gentry and Szydlo (2002)], and Averaging Attack [Hoffstein, Kaliski Jr, Lieman 

et al. (2000)]. 

4.1 Lattice reduction attack 

Lattice reduction attack is to trying to find a very short non-zero vector in hL , since 

( , )f g  and rotations are probably the shortest such vectors. According to the above 

description in Section 3, lattice dimension is N’=2N, according to Gaussian heuristic 

[Gama, Nguyen and Regev (2010)], a general convolution modular lattice hL  has 

dimension $2N$ and determinant 
Nq , it is probable shortest vector and closest vectors 

have approximate size. 

( ) /
hGauss L Nq e =  In ETRUS, we take ( , )f g  as the probably shortest vectors, they 

have shortest vector approximately as 2Nr N r= , according to Hoffstein et al. 

[Hoffstein, Howgrave-Graham, Pipher et al. (2010)], the ratio of  ( ) /
hGauss L Nr  is 

proved small enough to resist Lattice reduction attack to find probably the shortest vector 

( , )f g . 

Forger can also use lattice reduction to directly locate signature ( , )S T , in signature 

scheme,
2 2 2

1 2|| || || ||S m T m− + −  NormBound , it indicates ( , )S T  is close to 

1 2( , )m m . From the Gaussian heuristic, we can find that potential forger select a random point 

in 2N dimensional lattice which distance to 1 2( , )m m  must no more than NormBound / 

( )hGauss L  times the expected distance to the actual closest point in lattice. In ETRUS, when 

we choose appropriate parameters satisfyNormBound / Nr  NormBound / ( )hGauss L . 

In particular, we can choose N = / 2 251/ 2 126N =  , when r=2/3, the Gaussian 

heuristic of ETRUS is 2N r  approximately to 123. Hence setting NormBound =300 

means that forger needs to find a point is no more than 2.43 times the expected the 

shortest distance, when we choose NormBound =250, this ratio goes down to 2.03. 

When we choose satisfy small NormBound  in ETRUS close to 1. This appropriate 

closest vector problem (App-CVP) proved to be NP-hard [Dinur (2002)]. 

Therefore, in ETRUS, it is more difficult to get ( , )f g  than NTRUSIGN due to 

preliminaries. When we choose suitable NormBound  which discussed in verification. 

ETRUS can avoid this type adversary. So ETRUS can effectively resist Lattice reduction 

attack. 

4.2 Exhaustive search attack 

Exhaustive search attack is trying to find the other half  1 2( , )m S m T− −  . In Section 3, 
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we have discussed that || ||
2

q
q


 , in this situation, forger choose an integer point in hL  is 

|| || Nq −
 probability, so attack can easily create a lattice point (s, t). Therefore, half of 

1 2( , )m S m T− −  is being leaked, but the remaining work is too hard to finish, attack 

should find other half of vector y from || ||, || ||q q −    . Furthermore, they should 

satisfy verification inequality. We can calculate its probability as follow 

/2
2 2(|| || ) ( )

(1 / 2) || ||

N
NP Y

N q


 

 +

NormBound
NormBound  

In particular, compared with classical NTRUSIGN, we choose || ||
2

q
q


 =67, 

NormBound = 300. / 2 126N N=  .  

Therefore, we have
2 2 121.44(|| || ) 2P Y − NormBound . When we choose ( , )N q  , 

2(|| || )P Y which is small enough to prevent exhaustive search attack. 

4.3 GCD lattice attack 

GCD lattice attack is an effective way to break lattice signature scheme, like NSS. In 

ETRUS, attacker want use GCD lattice attack to get some if x  without mod q in , 

and if x  probably generate the closest vector in lattice. However, due to ETRUS 

signature scheme  (mod  q)S f B F b=  +  , it is difficult for attacker to get 

independent if x . Furthermore, even attacker can get ( ), ( )i jx x , (| |,| |)i jx x =1, he 

cannot break ETRUS down, as in ETRUS, | |,| | [ ]i jx x R  , (| |,| |) 1i jx x =  cannot get 

* * 1i ja x b x+ = , so attacker finally can't get GCD ( * , * ) ( )i jf x f x f= . 

Due to special structure of  [ ]R   and Eisenstein integer. ETRUS can effectively resist 

GCD lattice attack 

4.4 Averaging attack 

Averaging attack is trying to get *f f  through thousands of signatures, in ETRUS, 

adversary uses following average equation to get *f f  

1

lim(1 / ) ( * * )*( * * )
r

r
i

A r f B F b f B F b
→

=

= + +  

when r tends to  ,  *B B  and *b b  tends to constant, so attacker can only get *f f  

+ *g g  through Eq. (14), he doesn't have effective way to get  one of the *f f  and 

*g g . Therefore, ETRUS is safe under averaging attack. Through the above mentioned 



 

 

 

An Advanced Quantum-Resistant Signature Scheme for Cloud                                 27 

analysis, we know ETRUS resist averaging attack if and only if polynomials B and b are 

non-zero.  

According to the above mentioned analysis, ETRUS can effectively resist four typical 

attack with suitable parameters. 

              

5 Storage complexity analysis 

In this section, we analyze the storage complexity of ETRUS and NTRUSIGN under the 

same security level. In order to achieve this goal, we have presented the Public key size, 

Document size and Signature size of ETRUS and NTRUSIGN, and choose the 

parameters as discussed in previous sections
'2 ,|| || / 2N N q q=  . 

In the actual process of signature, computer store Eisenstein integer a b+  as a pair of 

integer ( , )a b , so in ETRUS, we store every Eisenstein integer ( ? )a b mod q+ size as 

22 (4 || || /3)log q    bits from Jarvis et al. [Jarvis and Nevins (2015)], in NTRUSIGN, we 

store every integer c ( ? )mod q  size as 2( )log q    bits. 

(1) Public Key Size 

Public key is
1 (mod  q)h f g− = . 

In ETRUS, according to the above mentioned discussion, it is easy to calculate the 

size as 22 (4 || || /3)
EhSize N log q=    = 22 (2 / 3)N log q    bits. 

In NTRUSIGN, 2 )(
NhSize N log q

=    = 22 ( )N log q    bits. 

E Nh hSize Size  . Therefore, ETRUS have smaller public key size than NTRUSIGN. 

(2) Document Size 

In this comparison, as we described in Section 3, document size is the size stored in 

computer after Hash. 

In ETRUS, we have a transform of document 1 2( , )mH m m= , so document size is 

1 2Edocument m mSize Size Size= + = 24 (2 / 3)N log q   bits. 

In NTRUSIGN, 24 ( )
NdocumentSize N log q=    bits. 

E Ndocument documentSize Size , therefore, ETRUS have smaller document size than 

NTRUSIGN. 

(3) Signature Size 

The signature is  (mod  q)S f B F b=  +  . 

In ETRUS, we can easily obtain 2( ) 4 (2 / 3)ESize siganature N log q=    bits. 

In NTRUSIGN, 2( ) 4 ( )NSize siganature N log q=     bits. 
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( ) ( )E NSize siganature Size siganature . Therefore, ETRUS have smaller 

signature size than NTRUSIGN. 

When we combine lattice dimension with document size, it is surprising means that when 

lattice dimension have a linear extension, the number of signature points in lattice also 

increase at linear level. 

In particular, when we compared to classical NTRUSIGN with 251, 128N q = = , and 

we choose ETRUS almost at same security level with 127N = , 67 0,  67q = + = (in 

order to simplify calculation Process, we let q=67), then we have appropriate comparison 

Tab. 1 as follow. 

Table 1: Size of Classical NTRUSIGN and ETRUS 

Signature Scheme NTRUSIGN ETRUS 

Public Key Size(bits)  1764  1615 

Document Size(bits)  3528  3230 

Signature Size(bits)  3528  3230 

According to the above Tab. 1. Document and Signature size almost double times than 

Public Key size, and it is bigger than current signature schemes (RSA, DSA) to resist 

quantum computer's attack. 

Through above analysis, ETRUS need smaller computer storage space than NTRUSIGN, 

and size of each part reduce 2 2(3 / 2) / (2 / 3)log log q      %. 

6 Performance analysis 

In this section, we presented the performance analysis of ETRUS and NTRUSIGN. 

Without affecting the safety of the two signature schemes, we compare ETRUS, for 

parameters ( N , q , NormBound ) with NTRUSIGN, for parameters( N '=2 N , 'q , 

NormBound ’). 

There are many different ways to get the complexity of implement performance of 

NTRUSIGN and ETRUS. Obviously, it closely relies on the hardware platform and the 

implementation details, so if we only implement this algorithm on a computer, our results 

do not have the universality and persuasiveness, hence the main purpose of this section is 

to give a universality and persuasiveness implement performance comparison between 

NTRUSIGN and ETRUS. 

We split the entire implement performance into three part: Key Generation, Signing and 

Verification, convert the implement performance comparison to speed comparison of Key 

Generation，Signing, Verification. We simplify the algorithmic process into elementary 

operations like addition, subtraction, multiplication, or division integers. 

The more advanced the CPU use internal microinstruction fast multiplication algorithm, 

for example, in reg32, addition(A) consume 1 to 3 clock cycles, multiplying(M) 
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consumption 13 to 26 clock cycles, and according to Jarvis et al. [Jarvis and Nevins 

(2015)], module(D) in [ ]  consumed almost the 27 times than multiplying, in , 

module(D)=multiplying(M). In order to obtain a uniform result, we unify all the 

operation time as approximately multiplying time, so M=5A, M=D’ in NTRUSIGN and 

27M=D in ETRUS, and computation in the array to store large Number is also ignored. 

(1) Key Generation Speed 

Firstly, Key Generation need signer to compute public key
1 (mod  q)h f g− = . In 

ETRUS scheme, the convolution of two polynomial with degree 1N − cost 

3
2N M  multiplication, and each coefficient of polynomial h  cost 4 ( 1)N A−   

addition, so totally cost 
2(4 4 )N N A−   addition, and N D  modular. In 

NTRUSIGN scheme, the convolution of two polynomial of degree ' 1N − cost 
2N M   =4

2N M  multiplication, ( 1)N N A  −  =
2(4 2 )N N A−   addition, 

and N D   modular. 

Secondly, in ETRUS, signer should calculate two small polynomials as previously 

mentioned ( , ) [ ][ ] / 1NF G X X −  satisfying f G g F q −  = , the process of 

its implementation in the need for hundreds of large numbers of operation, because 

of this, secret key generation rate is greatly reduced. In order to find suitable ( , )F G , 

we should find 1F  and 1 [ ][ ] / 1NG X X −  satisfy the following equation 

1 1

f g
q

F G

 
=  
 

   (5) 

In order to find 1F  and 1G , we should find two polynomial u  and v   satisfy 

1

2

* *( 1)

* *( 1)

N

f

N

g

f v k x R

g u k x R

+ − =

+ − =





   (6) 

Where fR  and gR  are the (integer) resultants of ( , 1Nf x − ) and ( , 1Ng x − ), and 

we know that ( , 1Nf x − ) equal to 
1

1

( )
N

i

i

f x
−

=

  mod
2 1(1 ... )Nx x x −+ + + + . In order 

to get fR  and gR . In ETRUS, we need 2 ( 1)n N N  −  times convolution (where 

n is non-zero coefficient number of f ) to compute fR  and gR , so it 

costs 6 ( 1)n N N M  −   multiplication, and 8 ( 1)n N N A  −   addition, same 

in NTRUSIGN, it cost 4 (2 1)n N N M −   multiplication (where n’ is non-zero 

coefficient number of f’) and 2 ( 1)n N N A  −   addition. We use fR  and gR  to 

solve Eqs. (4) and (5). In order to get polynomial u  and v . We need to solve the 

following linear equation 
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0 1 1 0

1 0 2 1

1 2 0 1

...

... 0

... 0

N f

N N N

f f f u R

f f f u

f f f u

−

− − −

    
    
    =
    
    

   

   (7) 

Where 0 1 1, ,..., Nf f f −  are coefficients of f  and 0 1 1, ,..., Nu u u −  are coefficient of v . 

In ETRUS and NTRUSIGN, we solve this equation with Gauss-Jordan algorithm 

[Dekker and Hoffmann (1989)] which need a small amount of multiplication. In ETRUS, 

we let ( ) / ( ) ( )( ) /a b c d a b c d R   + + = + + , then we can know that it costs 

36n M  multiplication and 
3 2(12 8 4 )n n n A− +   addition to get u and v . In 

NTRUSIGN, it costs 
36 *n M  multiplication, and 

22 ( (( 1) )n n A   −  = addition to 

get u', v'. 

Then in NTRUSIGN, we should use Extended Euclidean algorithm to get m’, n’ 

satisfy f gm R n R q 
  − = , and according to Stark [Stark (2005)], algorithm complexity of 

Extended Euclidean algorithm is 2 2( ( )* ( ))f gO log R log R  . According to Section 3 

verification step, in ETRUS, the time of this step can be ignored. 

In order to have a more intuitive expression, we let n=N/4, n'=N'/4=N/2, then we have 

appropriate Key Generation Speed of NTRUSIGN and ETRUS as following Tab. 2 

(Unify all operations as multiplication in verification step). 

Table 2: Key Generation Speed of NTRUSIGN and ETRUS 

Signature Scheme Key Generation Speed 

NTRUSIGN 
3 2

2 2(800 264 288 ) /160 ( ( )* ( ))f gN N N C log R log R +  

ETRUS 3528 

C is a constant in NTRUSIGN. 

According to the Tab. 2, we can easily find that ETRUS costs much less time than 

NTRUSIGN in Public Key Generation. 

  % lim 56.37%NTRUSIGN ETRUS
Key

N
NTRUSIGN

M M
Acceleraterate

M→

−
   

Compared with the NTRUSIGN, Key Generation Speed approximately accelerate 

56.37\% in ETRUS when N trends to  , according to algorithm of ETRUS, Key 

Generation needs much less polynomial convolution at each step than NTRUSIGN, and 

due to special properties of Eisenstein integer, it also eliminate a number of time-

consuming steps (like Extended Euclidean algorithm), so ETRUS’s speed has been 

improved a lot. 
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(2) Signing and Verification Speed

According the same analysis method as the above Key Generation Speed, we can

easily have the comparison of Signing and Verification in following Tab. 3.

Table 3: Signing Speed of NTRUSIGN and ETRUS 

Signature Scheme Signing Speed Verification Speed 

NTRUSIGN 
2(144 28 ) / 5N N+ 2(24 52 ) / 5N N+

ETRUS 
2(114 159 ) / 5N N+ 2(19 165 ) / 5N N+

Compared with NTRUSIGN, Signing and Verification Speed approximately 

accelerate 20.83\% and 22.73\% when N trends to , respectively. 

(3) Total Comparison

According to the above analysis and calculation, it is not difficult to have a total

speed comparison between NTRUSIGN and ETRUS by combining Key Generation

speed, signing speed, and Verification speed.

Table 4: Speed Comparision of NTRUSIGN and ETRUS 

Scheme Speed Comparison 

NTRUSIGN 
3 2

2 2(800 5112 2048 ) /160 ( ( )* ( ))f gN N N C log R log R + + +

ETRUS 
3 2(349 264 164 ) /160N N N+ +

  % lim 56.37%NTRUSIGN ETRUS
Total

N
NTRUSIGN

M M
Acceleraterate

M→

−
 

It is not surprising that whole signature scheme and Public Key Generation speed 

accelerate almost the same percentage at 56.37\% when N trends to  , because in 

ETRUS and NTRUSIGN, 99.51\% of the calculation is occupied by Public Key 

Generation when N’=251, and this ratio will increase when N becomes bigger. 

When we implemented the ETRUS ( 127, 67)N q= = , NTRUSIGN ( 251, 128)N q= =

(appropriate parameters) in practice for average time, we have following Tab. 5. 

Table 5: Comparision with concrete parameters 

Signature Scheme NTRUSIGN-251 ETRUS-127 

Key Generation Speed 

(ms) 
183.7 113.46 

Signing Speed 1.41 1.24 

Verification Speed 1.32 1.146 
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Tab. 5 shows that Key Generation Speed, Signing Speed, and Verification Speed 

accelerate significantly in practice. We can easily calculate that Key Generation Speed 

appropriately accelerate 38.18\%, Signing Speed appropriately accelerate 12.06\%, 

Verification Speed appropriately accelerate 12.42\%, growth rate of Key Generation, 

Signing, and Verification speed consistent with the theoretical result. However, due to 

N   in practice, accelerate rate is smaller than the theoretical value. 

6 Conclusion 

With the surprising development of quantum computer, lattice-based signature schemes, 

which are constructed to resist quantum attack, become more and more attractive. In this 

paper, we introduce an advanced signature scheme, namely ETRUS. By discussing the 

essential properties of [ ]  to be used as signature base, selecting appropriate 

parameters and complex polynomials convolution, we have reduced. Norm of ( , )f g  

from 2C N  to C N  , Norm of ( , )F G  from / 3CN  to / 6CN . Furthermore, 

we have proved that ETRUS is secure under four typical attacks: Lattice Reduction attack, 

Exhausting attack, GCD attack, and averaging attack. When compared with NTRUSIGN 

at same security level, ETRUS has smaller storage complexity, whole size 

reduces 210 (3 / 2)N log   . Besides, by theoretical analysis and performance 

comparison, compared with NTRUSIGN, ETRUS has 56.37\% speed improvement. 

(Public key Generation 56.37%, signing and verification 20.83%). Therefore, the 

proposed scheme on Eisenstein lattice is proved to be a secure signature scheme based on 

NTRU-lattice, with less storage complexity and higher speed than classical lattice-based 

signature scheme.  
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