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ABSTRACT 

 

In this work, we first design a series of oil bubbly flow experiments in a vertical testing pipe, and collected the fluid fluctuations as 

experimental observations. Then we establish a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) [1] from 4272 

fluid time-frequency features, which is used to detect anomalous fluctuations in the experimental oil bubbly flow signals. These 

anomalous fluctuations are then utilized to experimentally identify the non-uniform flow structures in oil-in-water bubbly flow. In 

addition, by analyzing the identified non-uniform flow structures in a vertical 20mm inner diameter pipe, we investigate the oil 

bubbles coalescence phenomenon under various flow conditions. The impacts of mixed fluid velocity and phase volume fraction 

on the bubble coalescence behaviors are also investigated. The proposed method not only serves as an efficient tool for flow 

anomaly detection, but also provides a novel way to characterize the evolutionary behaviors of diverse bubbly flow systems. 
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1. Introduction 

The oil-in-water bubbly flows are present in various fields such as petroleum, chemistry, biology, and others. The detection of 

occasional flow anomalies in oil bubbly flow, such as the non-uniform flow structures, is still an unsolved problem. And, 

understanding the dynamics of this kind of flow anomaly is of great importance in numerous multi-phase flow applications, such 

as pipeline pressure drop prediction and instrument design. Experimental tools, such as probe arrays [2], X-ray [3], microwave 

tomography [4], ultrasonic method [5], high frequency sensor [6], and PIV [7] have been employed to investigate behaviors of the 

oil bubbly flow. At the same time, the flow behaviors of oil bubbly flow are demonstrated with the experimental collected fluid 

conductance or pressure fluctuation signals. Time series analysis methods, including the joint time-frequency representation [8], 

wavelet analysis [9], recurrence plot [10], and complex network are [11] employed to reveal the bubbly flow evolutional dynamics 

[12], multi-scale features [13], and nonlinear characteristics [14]. 

Typically, the radial distribution of bubble flow is not homogeneous, neither the velocity nor the fraction profiles. Because of 

the oil bubble collision [15], some irregular non-uniform oil bubbles or bubble clusters are occasionally generated. This 

phenomenon, known as coalescence, is also observed and investigated in other multi-phase flow systems [16] [17]. In fact, the 

inhomogeneous velocity profile is thought to be one of the reasons for the formation of non-uniform bubbles, since the velocity 

gradient increases the bubble collision and the coalescence frequency. These non-uniform structures vary in shape, size, and 

evolutional dynamics, so that there are few objective criteria for identifying the non-uniform flow structures in oil-in-water bubbly 

flow. Especially, when these non-uniform flow bubbles are occasionally generated, it is difficult to model such a kind of flow 

anomaly, since most existing two-phase flow analysis models treat the oil bubbly flow as a stationary stochastic process. Therefore, 

developing a reliable and objective method to detect the non-uniform bubbles in oil-in-water bubbly flow, and further to model 

its evolutional dynamics becomes rather crucial and necessary. 

Recently, machine leaning techniques have already been used as an effective tool for modelling various types of multi-phase 

flow data, such as flow snapshots [18], conductance fluctuations [19], flow rate [20] pressure [21], and temperature [22]. It has 

also been used in a variety of multi-phase flow applications, including the hold-up prediction [23], flow rate measurement [24], 

flow regime prediction [25], and flow pattern identification [26]. In particular, the state-of-the-art deep learning theory, which has 

made great progress in various fields [27] [28] [29], provides a novel way to perform data-based modelling of multi-phase flow 

system. The most common application of deep learning models for multiphase flows is flow pattern recognition. Du et al. [30] 

investigate the flow pattern recognition accuracy of the Convolutional Neural Network (CNN). They show that the CNNs with much 

deeper structures are more efficient in identifying the flow patterns. Cerqueira et al. [31] propose a deep CNN-based algorithm to 

identify and reconstruct the bubble shapes in bubbly flow images under the situation of high bubble overlapping. Poletaev et al. 

[32] use neural networks to recognize the bubble patterns in a turbulent bubbly jet. The deep learning methods have also been 

reported for predicting and measuring multi-phase flow parameters. Dang et al. [33] propose a flow parameter prediction model 

with deep CNN-LSTM network; the proposed model is utilized to measure the water-cut and mixture velocity of vertical oil-in-

water two-phase flow. Zhao et al. [34] employ a deep neural network with eight layers to establish the mapping between the 

permittivity and water content of oil-water two-phase flow. Lin et al. [35] train a deep neural network with the phase velocity and 

pipe inclination angles, which is used to predict the flow regimes of the gas-liquid two-phase flow. Wang et al. [36] estimate the 

phase velocities of oil-gas-water three-phase flow with three models, which are deep neural network (DNN), convolutional neural 
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network (CNN), and support vector machine (SVM). They find that DNN and SVM models are more suitable for the multi-phase 

flow rate prediction. Other applications of deep learning methods to the multi-phase flow system involve bubble location [37], 

flow image super resolution [38], flow tomography [39], computational fluid dynamics (CFD) models [40], and micro-fluid dynamics 

[41]. The advantages of using machine learning methods to solve multi-phase flow problems are manifold. It ignores the complex 

multi-phase flow dynamics, which is quite difficult to model theoretically, and the established data-driven model-free method is 

regarded as an alternative tool for characterizing the multi-phase flow behaviors.  

However, most of these applications focus mainly on the long-range statistical characteristics of the two-phase flow system, 

and a large quantity of prior labeled data is needed for establishing the machine learning (deep learning) model. Note that, the oil 

bubbly flow systems typically exhibit long-range stable and stochastic characteristics, making it difficult for most data-driven 

methods to capture the sparsely unpredictable anomalies, such as the generation of non-uniform bubble clusters. The novelty and 

goal of this research is to develop an efficient tool that can identify the non-uniform flow structures in vertical oil bubbly flow using 

a smaller training data set. In this paper, we employ the generating adversarial framework and establish a VAE-GAN based deep 

learning model, which can serve as a novel tool for detecting non-uniform flow structures from the stochastic bubble flow. 

Furthermore, we experimentally investigate the oil bubble coalescence dynamics by analyzing the flow behaviors of the detected 

non-uniform flow structures. 

The remainder of this paper is organized as follows. In the next section, we describe our oil-in-water bubbly flow experiment 

in a vertical 20mm inner diameter pipe. The collected oil bubbly fluctuation signals are also presented. In Section 3, we present a 

Variational Autoencoder-Generative Adversarial Network (VAE-GAN) based machine framework, which is applied to identify the 

non-uniform flow structures in the oil bubbly flow experimental system. Section 4 presents the homogeneous flow structure 

identification results. Also, the oil bubble coalescence behaviors are analyzed in this Section. The conclusions are in Section 5. 

 

2. The Oil-in-Water Bubbly Flow Experiment 

We carry out a flow loop experiment to collect the fluid fluctuation signals, which are used as observations to investigate the 

dynamical flow behaviors of discrete oil bubbles. As shown in Fig. 1, the flow loop consists of a water tank, an oil tank, a mixing 

tank, two metering pumps, and a section of a 20mm inner diameter vertical plastic testing pipe. In the experiment, we use the 

pre-calibrated metering pumps to control the phase velocity of oil and water. The experiment schedule is as follows: we first adjust 

the flow rate of the two phases to reach a preset volume fraction and mixture velocity. Once the oil and water are well mixed, the 

fluid conductance fluctuation signals are collected. This measuring procedure is repeated under various flow conditions, with the 

mixture velocity set at 0.073m/s, 0.11m/s, 0.147m/s, 0.184m/s, 0.221m/s, and 0.258m/s. The water phase volume fraction is varied 

in the range of 70-100%, with a step of 2% increment. 

We employ the four-ring conductance sensor [42], which was first designed to measure the water-cut of the two-phase flow 

under high water phase volume fraction conditions. As shown in Fig. 1, the conductance sensor consists of four stainless steel 

conductance rings, which are axially separated and fixed on the inside wall of the testing pipe. E1 and E2 are the excitation 

electrodes that are connected to a 100 kHz sinusoidal signal. M1 and M2 are the measuring electrodes that the conductance 

fluctuating signals measured from M1 and M2 are mainly correlated with the fluid fluctuations and dynamics. The fluid conductance 

fluctuations measured from the conductance sensor are commonly used as experimental observations to quantitively characterize 

the multi-phase flow behaviors. In this study, the training and testing data set of the proposed VAE-GAN based machine learning 

framework both come from the experimental measured fluid fluctuations. Anomaly fluctuation segments are identified by the 

well-trained VAE-GAN network, and further analyzed to characterize the oil bubble coalescence behaviors. 

 

 

Fig. 1: The schematic of the oil-in-water bubbly flow loop. 



 

In the experiment, we have observed two types of typical oil-in-water bubbly flow patterns [43], they are the discrete Oil Bubble 

Flow and Very Fine Dispersed (VFD) Oil Bubble Flow. As shown in figure 1, i) Oil bubble flow: observed under lower mixture flow 

rate, discrete and visible oil bubbles uniformly distributed in the continuous water phase; ii) VFD Oil bubble flow: observed at 

higher mixture flow rate, the oil bubbles are broken into invisible small droplets, which are also uniformly distributed in water. 

The flow behaviors of the oil-in-water bubbly flow are characterized with the collected fluid conductance fluctuation signals. 

In most situations, these fluctuation signals are noise like, which reveals the stochastic flow behavior of the dispersed oil phase. 

However, in our experiment, we occasionally observe anomalous fluctuations in the collected signals that do not appear to be part 

of the stochastic background. These anomalous fluctuations are thought to be related to the non-uniform flow structures in the 

oil bubbly flow, as the presence of large bubbles or bubble clusters cause a sudden change in the conductivity of the fluid mixture. 

Figure 2 shows some of the fluid fluctuation signal segments containing anomalous fluctuations. We find that the background of 

these fluctuation signals is noisy like, indicating the stochastic flow behaviors of the oil bubbles/droplets. However, the amplitude 

and frequency of the anomalous fluctuations are different from the background signals due to the coalesced oil bubble clusters. 

 

 

Fig.2: The experimental oil bubbly flow fluctuation signals containing anomaly fluctuations. 

 

Traditional fluid fluctuation analysis methods are inefficient for identifying the non-uniform structures in oil-in-water bubbly 

flow. Because the uniform bubbles and bubble clusters vary with size and morphology, and there are no objective criteria for 

distinguishing the anomalous fluctuation from the stochastic background. In this regard, we turn to a semi-supervised data-driven 

framework, which we introduce in the next section, to investigate the dynamical behaviors of non-uniform flow structures in oil 

bubble flow. 

3. VAE-GAN based framework for identifying the non-uniform flow structures 

The oil bubble coalescence [15], which is attributed to the collisions, is thought to be the main reason for the generation of the 

non-uniform flow structures in bubbly flow system. Normally, the bubble flow can be considered as a stationary stochastic process 

in which the fluid fluctuations are noisy-like random signals. However, the fluctuations, which correspond to the non-uniform flow 

structures, are distinguished from the noisy signal background. In this respect, we can treat these non-uniform fluctuations as 

anomalies, and locate these anomalies in the noisy like fluid fluctuation signals as an effective way to detect the non-uniform 

structures in the oil bubble flow. 

Inspired by this, we developed a machine learning model for the flow anomaly detection. We employ the structure of VAE-GAN 

and trained the model with empirically selected stochastic background signals. This allows the model to learn the noise features 

and describe the stochastic characteristics of the bubbles. When testing, we reconstruct the test signal segments with our designed 

model, and we deem it anomalous if the reconstruction error is higher than a predetermined threshold, indicating a significant 

deviation of the test signal from the stochastic background. 
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Fig. 3: The schematic of VAE-GAN based model for non-uniform flow structure identification. 

Figure 3 shows the schematic of our established machine learning model, which is used for identifying the non-uniform flow 

structures in oil bubbly flow system. First, the experimental collected conductance signals are segmented with a window to obtain 

the training data set 𝑠�𝑖�. Then, we calculate the quadric time-frequency spectra 𝑋�𝑖� of each signal segment in 𝑠�𝑖�, which are 

employed as the input of a VAE-GAN. The calculated time-frequency spectra are encoded by the VAE-Encoder to generate a 

sampled latent representation 𝑍�, and reconstructed from the VAE-GAN’s generator by combining the generated latent vector 𝑍� 

with a Gaussian distribution 𝑍�𝑝�. The discriminator of VAE-GAN evaluates the reconstructed time-frequency spectrum and 

guarantees the resemblance of the generated time-frequency spectrum to the input data. When testing, we calculate the 

reconstruction error of the generated time-frequency representation and the input spectrum, which is defined as, 

Δ = √(𝑋𝑖 − 𝑋𝑖
′)2                                                                                                  (1) 

where 𝑋�𝑖� refers to the input time-frequency spectrum, and 𝑋�𝑖� is the reconstructed spectrum. If the reconstructed error Δ is 

larger than a preset threshold, we conclude that the input is distinguishable from most of the noisy like background. In this work, 

we choose the maximum reconstruction error (𝛥′ = 𝑚𝑎𝑥 𝛥) of the training data set as the threshold for identifying the actual 

anomalous fluctuation signals. In this way, the anomaly fluctuations, which indicate the existence of non-uniform flow structure in 

the oil bubbly flow, are identified. Additionally, it is noted that the proposed network is trained semi-supervised, and the training 

data are manually labeled, which limits the size of the training data set. We can address this issue by turning to an unsupervised 

framework, however, this involves extensive experiment data preparation. Another limitation of using the proposed method is the 

restriction to the experimental data, which requires that the anomaly be sparsely generated. Experimental observations that 

include frequent anomalies are not suitable for use as training data. 

In this work, we use the Wigner-Ville representation method [44] [45] to calculate the joint quadric time-frequency spectrum 

of the training data. We employ the time-frequency spectrum as the VAE-GAN’s input instead of the original fluid fluctuation signal 

for the following reasons. Firstly, the time-frequency spectrum is a powerful two-phase flow characterizing tool [46] [47], and the 

joint time-frequency representations are rich in fluid dynamic information, such as the complexity [48], the motion frequency of 

discrete bubbles [49], the flow pattern transition [50], and the fluctuation energy of the fluid [51]. This makes the time-frequency 

spectra to offer clear and efficient features of the flowing oil bubbles. Secondly, we use the quadratic time-frequency distribution, 

which involves a quadratic component in its computation. This enlarges the gap between the spectrum of anomalous fluctuations 

and the background noise, which makes it easier to identify non-uniform flow structures. Note that, as typical generative 

adversarial model, the VAE-GAN has demonstrated excellent performance and gained significant achievements in the field of 

anomaly detection [52][53][54]. The discriminator, which we employ a convolutional neural network architecture, identifies the 

generated time-frequency representation and improves the accuracy of the reconstructed time-frequency representations with 

iterative corrections. 

When testing, in order to capture the features of the non-uniform flow structures in oil bubbly flow, the window, which is 

utilized to segment the testing fluctuation signals, needs to be long enough to enclose an entire anomalous fluctuation. In the 

experiment, we find that most anomalous fluctuations last no longer than 2 second. Therefore, we choose the length of the 

segmentation window to be last 2 second. We empirically select in total of 4272 training segments, which correspond to the 

fluctuation background from the collected fluctuation signals. Figure 4 shows typical signals segments, which are utilized for 

training the non-uniform flow structure detecting model. 

 



 

 

Fig. 4: The fluctuation signals used for training the VAE-GAN model (2 seconds) 

 

Table 1 show the comparisons of the input and the reconstructed time-frequency spectra under uniform and non-uniform flow 

conditions, respectively. As shown in the first column, under the uniform flow condition, the input time-frequency spectra are 

lower in energy, indicating a stable flow behavior of the bubble flow. We also notice that the energy distributions in the spectrum 

are uniformly distributed, which characterize the stochastic flow behavior of the uniform bubbles. The reconstructed time-

frequency spectra of uniform fluctuations are shown in the second column in Table 1. The stable and stochastic characteristics of 

the uniform flow are retained in the reconstructed time-frequency spectrum. The reconstructed time-frequency representations 

also have lower energy and show a uniform distribution. 

As for the non-uniform flow, the input time-frequency spectra, which are shown in the third Colum of Table 1, display as higher 

energy and non-uniform energy distribution, indicating the unstable and non-uniform flow behaviors of the occasionally generated 

non-uniform bubbles and bubble clusters. However, as shown in the fourth column in Table 1, the reconstructed time-frequency 

spectra of non-uniform flow are uniform distributed with lower energy. This implies that the unstable flow behaviors of non-

uniform bubble flow are not well reconstructed from the input time-frequency representations. In this respect, the reconstruction 

error Δ defined in Eq. (1) can serve as a criterion for identifying the non-uniform flow structures. 
Table 1 

The comparisons of the input and the reconstructed time-frequency spectra 
Segments under uniform flow Segments under non-uniform flow 

Input time-frequency 

spectrum 
Reconstructed time-frequency 

spectrum 
Input time-frequency 

spectrum 
Reconstructed time-frequency 

spectrum 

    

    

    

    
 



 

4. Non-uniform Flow behaviors and the Oil Bubble Coalescence Dynamics in Vertical Pipe 

It is thought that the generation of non-uniform flow structures in the bubbly flow system is attributed to bubble coalescence. 

However, the mechanism of coalescence in a bubble flow system is very complex due to Wake effects [55], turbulence [56], 

buoyancy [57], and pipe wall friction [58], these being some of the reasons. To characterize the non-uniform flow behaviors of 

bubbly flow system and further investigate the bubble coalescence dynamics, we in this work analyze the correlation between the 

number of detected non-uniform flow structures and the flow conditions, such as flow rate, water-cut, and the flow patterns. 

The non-uniform flow structures in our bubbly flow system are identified with the proposed VAE-GAN based framework, and 

we count the number of detected non-uniform flow structures from the testing fluctuation signals under different flow conditions. 

The duration of each testing signal is set as the same length, which is 30 seconds. Figure 5 shows the number of detected non-

uniform flow structures under different mixed fluid velocities. In the low velocity region, where the mixture velocity 𝑈�𝑚� is in the 

range of 0.073𝑚�∕𝑠�−0.184𝑚�∕𝑠�, the number of generated non-uniform flow structures grows with increasing the mixed fluid 

velocity. However, under high mixed velocities (the mixture velocity 𝑈�𝑚� in the range of 0.221𝑚�∕𝑠�−0.258𝑚�∕𝑠�), the number of 

generated non-uniform flow structures in oil bubbly flow gradually decreases with increasing the mixed fluid velocity. 

Note that there exists flow pattern transition from the low velocity region to the high velocity region, i.e., the flow patterns 

change from the oil bubble flow to the very fine dispersed oil bubble flow. One of the fluid dynamics that we have found in this 

study is that the oil bubble coalescence behaviors are not only related to the mixture velocity, but also related to the flow pattern. 

When the flow pattern changes from bubble to dispersed droplets (VFD oil bubble flow), as shown in Fig. 5, there exists obvious 

reversal of the dominant bubble interaction dynamics, i.e., from coalescence to break up. For the oil bubble flow pattern in our 

vertical oil-in-water flow system, when increasing the mixed fluid velocity, the intensity of fluid turbulence is enhanced, resulting 

in more frequent collisions and the consequent coalescence in the oil bubbly flow. In addition, the velocity gradient in the radial 

direction is enlarged with increasing mixed fluid velocity, which also increases the frequency of bubble coalescence in the radial 

direction. Therefore, in the low velocity region of Fig. 5, where the flow pattern is oil bubble flow, a larger number of non-uniform 

flow structures are generated with increasing the mixed fluid velocity. However, when the mixed fluid velocity reaches up a 

relatively high range (high velocity regime in Fig. 5, 𝑈�𝑚� = 0.221𝑚�∕𝑠� − 0.258𝑚�∕𝑠�), the turbulence of the fluid is strong enough 

to break up the oil bubbles into smaller oil droplets, which is known as the very fine dispersed oil bubble flow. Under this flow 

pattern, the fluid turbulence intensity is high enough to break the oil phase into dispersed and uniform distributed oil droplets. 

Under this situation, the bubble breakup becomes the dominant phenomenon in the mixed fluid, and the breakup behavior gets 

more prevalent as the mixing velocity increases, resulting that the number of generated non-uniform flow structures begins to 

decrease gradually with increasing the mixed fluid velocity. 

 

Fig. 5: The number of detected non-uniform flow structures in oil bubbly flow under different mixed fluid velocities. 

 

We also investigate the coalescence behaviors of the oil-in-water bubbly flow under different phase volume fractions. We find 

that the bubble density is also a factor that impacts the coalescence behaviors in the vertical oil bubble flow system. As shown in 

Fig. 6, there exist more non-uniform flow structures in area I than that in high water phase volume fraction conditions (area II). In 

the experiment, under lower water phase volume fraction (area I), the oil bubbles show denser characteristics, which means more 

coalescence is happening under such flow conditions. With gradually increasing the water phase volume fraction, once a critical 

point (around 85%) is reached, the oil bubbles begin to show scattered distributions. The number of generated non-uniform flow 

structures gradually decreases with increasing the water phase volume fraction, indicating that the frequency of oil bubble 

collisions and coalescence are gradually reduced at higher water-ratio conditions. 
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Fig. 6: The number of detected non-uniform flow structures in oil bubbly flow under different water phase volume fraction. 

 

5. Conclusions 

In this paper, we design a two-phase flow experiment in a vertical testing pipe to generate the desired oil-in-water bubble flow 

patterns: the oil bubble flow, and the very fine dispersed oil bubble flow. In the experiment, we also collect the oil bubble flow 

fluctuation signals with a conductance sensor. These experimental fluid fluctuation signals are then used as observations for 

analyzing the flow behaviors of oil bubbles. We propose a semi-supervised machine learning model for detecting the non-uniform 

structures in oil bubbly flow. We first calculate the quadric time-frequency spectra of the experimentally measured oil-in-water 

bubble flow fluctuation signals. Then the obtained time-frequency representations are fed in to a VAE-GAN as input, and the 

reconstruction error of the time-frequency representation are then used as criteria for identifying the non-uniform flow structures. 

Testing results of our experimental data set show that the proposed machine learning framework is efficient in detecting the non-

uniform flow structures in the vertical oil bubbly flow system. 

Furthermore, with the identified non-uniform flow structures, we investigate bubble flow behaviors and the oil bubble 

coalescence dynamics. We find that the coalescence behaviors in the vertical oil bubbly flow system depend on both the mixed 

fluid velocity and phase volume fraction. We also use the number of detected non-uniform flow structures to quantitatively 

indicate the bubble coalescence behaviors. Within the velocity range in our experiment (from 0.073m/s to 0.258m/s), the number 

of the generated non-uniform flow structures first increases from 59 to 69, and then gradually decreases to 53, which indicates 

the reversal of the dominant bubble interaction dynamics, i.e., from coalescence to break up. Also, we find that as the water phase 

volume fraction increases to around 85%, the number of generated non-uniform flow structures begins to decrease, indicating 

that bubble collisions and coalescence in an oil bubbly flow system are closely related to the density of the discrete phase. 

The machine learning models are effective tools for interpreting the observations from physical systems and further discovering 

the underlying dynamics. The proposed semi-supervised network provides a novel way for analyzing the flow pattern evolutionary 

dynamics in multi-phase flow systems. Furthermore, this machine learning based method could have broader applications in other 

physical systems that are impacted by unknown anomalies. Unpredictable anomalies are identified with the well-trained network, 

and then the intrinsic mechanisms of the anomaly can be investigated. 
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