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ABSTRACT

Since the meta-learning recommendation’s quality depends on
the meta-features decision quality, a common problem in meta-
learning is establishing a (good) collection of meta-features that
best represent the dataset properties. Therefore, many meta-feature
measures/methods have been proposed during the last decade to
describe the characteristics of the data. However, little attention
has been paid to validating the meta-feature decisions in reflecting
the actual data properties. In particular, if the meta-feature analy-
sis is negatively affected by complex data characteristics, such as
class overlap due to the distortion imposed by the noisy features at
the decision boundary of the classes and thereby produces biased
meta-learning recommendations that do not match the actual data
characteristics (either by overestimating or underestimating the
complexity). Hence, this issue is crucial to ensure the success of
the meta-learning model since the learning algorithm selection
decision is based on meta-feature analysis. Based on that, in this
work, we aim to investigate this by assessing the performance of
Complexity Measures (global/data-level measures) & Instance Hard-
ness Measures (local/instance-level measures) as a meta-feature in
reflecting the actual data complexity associated with the high-class
overlapping problem. The reason for focusing on the overlapping
classes problem is that several studies have proven that this data
issue significantly contributes to degrading prediction accuracy,
with which most real-world datasets are associated. On the other
hand, the motivation for using the above measures among differ-
ent meta-feature methods proposed in the literature is that since
this study aims to focus on the overlapping classes problem, the
above measures are mainly proposed to estimate the data com-
plexity according to the geometrical descriptions focusing on the
class overlap imposed by feature values, in which match the data
problem that the study interested to investigate.
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1 INTRODUCTION

A common problem in meta-learning is establishing a (good) col-
lection of meta-features that best represent the dataset properties
[5]. In other words, the meta-learning recommendation’s quality
depends on the meta-features decision quality, and their ability
to reflect the actual data challenges for the given dataset. Hence,
the research question of this study is to what extent meta-features
can describe the actual data difficulty without being affected by
complex data challenges and thereby produced biased recommen-
dation? According to literature, this question has not been given
much attention but instead most of the works in this context focus
on validating the meta-learning recommendation by evaluating
the learning algorithms prediction performance (i.e., identifying
correlations between meta-learning outputs and learning algorithm
performance). From our study point of view, examining this correla-
tion is not a good independent indicator to validate the complexity
measure performance in estimating the actual data difficulty nor
for showing the causes of the poor prediction of the learning algo-
rithm’s performance, since the complex data characteristics might
also affect measures’ performance in not reflecting the actual data
difficulty and thereby produced biased meta-learning recommen-
dation. In addition to that, both perspectives (learning algorithm
and the Measures) adapt different assumptions and thereby react
differently based on their sensitivity to the different data challenges.
Accordingly, relying only on the learning algorithm performance
to validate the measure performance might produce misleading
information. Thus, in this work, the analysis of learning algorithm
performance will be omitted from this study.

However, as the meta-feature analysis is data dependent, this
study assumes that complex data characteristics such as class over-
lap might negatively affect the meta-feature decisions in not reflect-
ing/estimating the actual difficulties (either by overestimating or
underestimating the complexity), which in some cases would result
in biased meta-learning recommendations that do not reflect the
actual data properties. The reason for study to focus on the class
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overlap problem since this issue has long been recognised as one of
classification’s most challenging and pervasive problems. Accord-
ing to [6], 60-80% of overlapped samples are recognised as noise
by the noise filters. Moreover, in real-world problems, datasets can
have different geometrical class distributions and are usually asso-
ciated with several issues, such as high-class overlapping caused
by noisy features. In fact, several studies have concluded that class
overlap, and difficult border decisions are significant contributors
to degrading prediction accuracy [7], [8], [9], [10], [11]

Therefore, this study is interested in investigating this by using
Complexity Measures (global data level) & Instance Hardness Mea-
sures (local/instance level) as a meta-feature to describe the data
properties under varying data class overlap degrees. The motivation
of using these measures (among different meta-feature methods
proposed in the literature) is because these measures are mainly
proposed to estimate the data complexity according to the geomet-
rical descriptions of the shape and size of the decision boundaries,
specifically on the class overlap imposed by feature values, separa-
bility, and data distribution in which match the data problem that
this study interested to investigate.

The analysis will be conducted from both (global data level) and
(local/instance level) measures perspectives to investigate to what
extent these measures are able to describe the actual data diffi-
culty without being affected by complex data challenges through
addressing the following research questions:

o Are these measures able to reflect the actual data difficulty
imposed by: High-class overlapping caused by noise fea-
tures?

e Comparing global/local level measures, which one can best
represent the actual difficulty of the complex data character-
istics if any?

Answering the above questions can help to provide meaningful
insights for the practitioners and researchers to choose the correct
measures that are more appropriate for a particular dataset and give
confidence in the output provided by that measure and improve
the meta-learning recommendation at the end.

The paper is organized into five sections; Related Works section
discusses the recent work that applied these measures in the context
of meta-learning from both data-level (Data Complexity Measures)
and instance-level perspectives, along with other works done to
compare the performance of the measures from both perspectives.
Methodology section represents the study methodology explaining
the experimental setup designed for this work, followed by the
experimental results in Results and Discussion section. Finally,
the conclusion and future works will be presented in Conclusion
section.

2 RELATED WORK

During the last decade, many meta-feature measures/methods have
been proposed to describe the characteristics of the learning prob-
lems. Among these measures, there is a growing trend in the meta-
learning field to use Data Complexity Measures as meta-features
which act as descriptors of the spatial distribution of the data [1],
[7]. Complexity Measures have been widely used as pre-processing
steps to estimate the difficulty of the classification problem accord-
ing to the topological characteristics of the dataset in separating
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the data points into their expected classes [8], [12]. The Complex-
ity Measures analysis is conducted by extracting the geometrical
descriptions of the shape and size of the decision boundaries, fo-
cusing on the class overlap imposed by feature values, separability,
and data distribution [3], [13]. The popularity of these measures
comes from the fact that several studies have concluded that class
overlap, and difficult border decisions are significant contributors
to degrading prediction accuracy [7], [8], [9], [10], [11].

It is worth noting that Complexity Measures (global data-level)
were proposed by [14] and have a variety of uses for pre-processing
data tasks, such as noise identification [15] and exploring the do-
main competence of different machine learning algorithms, which
can help in hyperparameter optimisation [3]. Therefore, it is ex-
pected that these measures can play an essential role in improving
the recommendation of the meta-learning model [13]. Further en-
hancement has been added to these measures by [15] to understand
the difficulty of the imbalanced classification by considering each
class individually including the minority class which was neglected
by the original Complexity Measure as per [15] study.

In addition, Instance Hardness Measures (local/instance-level)
have been proposed by [9] since the original data Complexity Mea-
sures focus on characterising the overall complexity of the entire
dataset and fail to provide information at the local/instances level.
The authors emphasise that obtaining such information is important
to identify the misclassified instances and understand the causes
that lead the instance to misclassify [9]. Instance Hardness Measures
appear to have received less attention in the meta-learning context
in literature compared to global Complexity Measures, which might
be due to the latter’s seniority.

In terms of applying global Complexity Measures in the Meta-
learning context, a recent study conducted by [16] proposed a new
taxonomy focused on imbalanced and overlapped classes issues
and highlighted the current state of the Complexity Measures in
meta-learning with other research areas. Another study by [17]
established a meta-learning model using Complexity Measures as a
meta-feature to predict the a priori performance of the Customized
Naive Associative Classifier (CNAC) and the measures have shown
promising results in predicting (CNAC) performance. Furthermore,
[18] proposed a novel meta-learning system to decrease the com-
putational cost of data complexity measures while preserving their
descriptive ability. With similar motivation, [19] have used a meta-
learning approach to estimate the decomposed data Complexity
Measures computing cost. Their study results indicated that the
proposed approach is significantly faster yet more effective than
computing the original Complexity Measures. On the other hand,
[1] have provided an extensive list of meta-features and characteri-
sation tools, including Complexity Measures, which can be used as
a guide for the meta-learning practitioners.

As mentioned earlier,
(instance/local-level measures) have received less attention
in the context of meta-learning than global level measures.
However, a recent interest has emerged in the research community
applying Instance Hardness Measures in the meta-learning context.
One of these studies [10] shows that the use of Instance Hardness
Measures as a meta-feature allows for a deeper analysis of the
relationship between instance hardness and classifier predictive
performance by providing measures that vary according to the

Instance Hardness Measures
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difficulty of each observation. Another study conducted by [20]
used Instance Hardness Measures in meta-learning strategies
to describe the key differences between easy-to-classify and
hard-to-classify observations in a dataset. According to their
study outcomes, this meta-knowledge can be used as a descriptor
for characterising a data set’s hardness profile and provided an
insight into the leading causes of the difficulties they represent
in the dataset. Furthermore, a comprehensive survey done by [7]
aims to review the applications of both Complexity Measures
and Instance Hardness Measures in different areas, including
the meta-learning field. Moreover, to overcome the limitation
of the global Complexity Measures in characterising the overall
complexity of the entire dataset, [12] have decomposed some of
the global measures into instance/ local-level measures, so the
analysis is conducted based on the individual contribution of each
instance instead of global complexity of the entire dataset from
the class prospective. Then, they compared the performance of the
proposed decomposed instance/local-level measures against the
global equivalents and concluded that the former provided better
performance than the latter.

Despite the advances shown in the recent work, an empiri-
cal comprehensive review of the ability of these measures (from
both global and local perspectives) to give an estimation of the
difficulty of a given data problem independent of the learning algo-
rithm has not yet been undertaken. Most of the works undertaken
in the literature are limited to examining the correlation between
the values of the measures with the learning algorithms’ prediction
accuracy performance. From our study point of view, examining
this correlation is not a good independent indicator to validate
the complexity measure performance in estimating the actual data
difficulty nor for showing the causes of the poor prediction of the
learning algorithm’s performance. Thus, in this work, the analysis
of learning algorithm performance will be omitted from this study.

3 METHODOLOGY

As mentioned earlier, real-world problem datasets have a com-
plex structure that usually suffers from several issues concurrently,
such as high-class overlapping, high data sparsity, and complex
decision boundaries. However, since most learning algorithms are
data-dependent, knowing the causes of poor prediction accuracy
is a nontrivial task, especially with the interactive effect of these
data challenges, making it hard to identify the actual causes/data
challenges that lead to poor performance of the learning algorithms.
Thus, to better understand the actual effects of the different data
challenges on measures performance, it is crucial to have a con-
trolled environment that enables us to assess the effect of each data
challenge on the measure’s behaviour individually, and therefore
synthetic datasets are used in this study. Furthermore, generating
synthetic datasets will enable us to control the data difficulty by
creating gradually increasing difficulty levels, starting from a man-
ageable level, and moving to more challenging levels. The aim of
using graded difficulty levels is to explore the interactive effect of
different data challenges on the measures performance and to cover
common real-world scenarios. Therefore, synthetic datasets are
created at three levels of difficulty starting from the an easy level
(Level One, linearly separable no overlap between the classes) to
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more challenging levels that are partially linearly separable (Level
Two), and ending at Level Three where the classes are non-linearly
separable as shown in Fig. 1. This will help us to investigate the
measure’s ability in reflecting the difficulty imposed by the class
overlap and gives a description visually and also in terms of noise
levels shown in Table 1 for the synthetic datasets constructed for
the experimental results presented later.

To control the classes overlapping degree, Gaussian noise has
been added to the classes’ distribution according to the gradually
increasing difficulty level, with the number of features remaining
constant at 6. The characteristics of generated datasets is shown in
Table 1 corresponding to each difficulty level.

As the objectives of this study is to conduct a comprehensive em-
pirical study to compare the performance of Complexity Measures
(the global level) and Instance Hardness Measures (instance local
level), thus, the most widely used measures in the literature are
selected in the study experimental setup as listed in Table 2 and are
categorised based on the problems that they are designed to focus
on. The chosen of these measures are based on their popularity
with related to the global measures, and the increased performance
in local measures for some cases, both categories were included in
this study, resulting in 35 measures overall to be evaluated.

However, in order to be able to compare the outputs of all of
these measures, and since measures values are bounded between
0 representing manageable datasets and 1 for the most complex
problems, we have classified the measure values into the categories
described in Table 3.

4 RESULTS AND DISCUSSION

The experiments results are presented and discussed in this section.

4.1 Experiment Results:

The study results are presented in the below subsections in line with
the measure categories mentioned in Table 4 and thereby discussed
separately for their advantages and disadvantages.

4.1.1  Measures of Overlapping of Individual Feature Values. These
measures have been proposed to describe the data complexity
caused by class overlap through evaluating the features’ discrimi-
native power in separating the classes [7]. However, as the study
aims to compare the performance of the global and the local level
measures, thus, the Table 4 below represents the study results of
the global-level measures against the local-level. In general, the ex-
periment outcomes presented in Table 4 show that both global- and
local-levels of Overlapping Individual Features Values Measures can
differentiate the gradual difficulty levels imposed by different de-
gree of class overlaps as the measures have started with low values
at Level One (where the classes are linearly separable) and described
the dataset in very-easy category. Then , with increasing of the
noise level at upper levels, the measures’ values have increased
reflecting the additional complexity caused by the expansion of the
class-overlapped region.

However, despite the measure’s ability to differentiate the com-
plexity across the difficulty levels, the results showed consider-
able variation between the values of the global and local measures
at this measure’s category. Specifically, the Complexity Measures
(global-level) at Level Two, where the linearity assumption for class
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Table 1: Synthetic Datasets Characteristics for Scenario 1

Dataset Title DifficultyLevel Gaussian Noise Value Sample Size Feature Size ClassRatio
Blobs_1 Level One 1 1000 6 Balanced
Blobs_2 Level Two 25:25:25:25
Blobs_3 Level Three 8
Gaussian noise = 1 Gaussian noise = 4 Gaussian noise = 8
3 U
1 1 Classes
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Figure 1: Dataset visualisation of Blobs Datasets with varying amounts of noise

separation still holds see Fig. 1 (considered as an easy problem), the
global-level measures (F1, F2, F3 and F4) have produced high values
categorising the problem in the range of medium to very difficult
category (which is not the case) see Table 4 (Level Two column).
The high values of the global-level measures at upper levels reflect
that there is an overestimation of the problem’s difficulty, given
a relatively small amount of noise has been added at this level.
According to [6], these measures are influenced by the number of
features, the noise, and the sample size, which this study’s results
have also proven as the measures are heavily affected by the noise
imposed in these levels Two and Three. Regarding the high value
of F1 (the global level measure) and F1_HD (the local level mea-
sure), these measures estimate the difficulty using Fisher Linear
Discriminant Analysis [8], which is also sensitive to noise [21].

In contrast, local-level measures (F2_HD, F3_HD, F4_HD) have
provided a better representation of the problem at Levels Two and
Three, categorising the complexity of the datasets in these levels as
a medium category. However, as mentioned earlier, we excluded
F1_HD, which performs similarly to F1 (the global level).

To sum up, in the category of Overlapping of Individual Feature
Values Measures the study results indicate that despite the global-
level measures (Complexity Measures) appear to perform better
than the local measures in describing the underlying relationship
of Level One, however local-level measure performed better in
higher difficulty levels, specifically in F2_HD, F3_HD and F4_HD,
albeit whilst still overestimating the complexity of the class overlap
problem as the noise level increases.

4.1.2  Measures of Separability of Classes. The measures in this
category are proposed to quantify the complexity according to the
class separability by analysing the distance between the samples
[22]. However, the study results in Table 4 show that all measures
in this category can distinguish the complexity of the difficulty
levels performing better than Overlapping of Individual Feature
Values Measures in estimating the actual difficulty. In comparison

between the global and the local-level measures of this measure’s
category, the results indicate that both global and local measures
have shown very similar performance in describing the complex-
ity across the difficulty levels. It is worth noting that N1, N2 and
N3 (the global-level measures) aim to evaluate to what extent the
classes are separable by examining the existence and shape of the
class boundary. To estimate the complexity of the separability, N1
uses Minimum Spanning Tree (MST) method, while the remaining
measures follow the nearest neighbour concept [23].

Regarding L1 and L2, the experiment results indicate that both
measures can distinguish the gradually increasing difficulty lev-
els and provide good estimation aligned with the difficulty levels.
However, L1 has produced lower values than other measures in
this category, classifying the dataset at Level Three within the easy
range. The cause for such behaviour is that L1 does not check
whether a linearly separable problem is more straightforward than
another that is also linearly separable [7]. It is worth noting that
both measures try to quantify to what extent the classes are linearly
separable by creating a hyperplane to separate the classes using
a linear classifier (usually SVM). For L1, it computes the sum of
the distances of incorrectly classified samples to a linear boundary,
whereas L2 computes the error rate of the linear SVM classifier.
Therefore, both assume that a linearly separable problem can be con-
sidered simpler than a problem with a non-linear decision boundary

[7].

4.1.3 Measures of Geometry, Topology and Density of Manifolds.
The measures in this category try to capture the geometry of the
manifolds covering each class by extracting information from the
geometry (local) and topology (global) structure of the data to mea-
sure the class separability [8]. The results indicate that all measures
can identify the simplicity of the datasets in Level One see Table
4. However, as the classes begin to overlap at the upper levels, the
measures have responded differently. For example, in levels One
and Two, N4 assigned almost identical values characterising the
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Table 2: List of The Measures Used in This Study

Measure Categories The Measures Min Max Ref.
Overlapping of Individual Global Level F1: Maximum fisher’s discriminant ratio Ho &Basu
Features Values F2: Volume of overlap region (2002)

F3: Maximum feature efficiency
F4: Collective feature efficiency

Local Level ~ Flgp : Frac. feature values overlapping Arruda et al.

F2pp : Volume of overlap region (2020)
F3pgp : Maximum feature efficiency
F4yp : Collective feature efficiency

Separability of Classes Global Level N1: Fraction of points on the class boundary Ho &Basu
N2: Ratio of inter/intra class nearest neighbour distance (2002)

N3: Leave-one-out error rate of the INN
L1: Sum of the error distance by linear programming
L2: Error rate of linear classifier

Local Level =~ Nlpgp : Fraction of points on the class boundary Arruda et al.

S O OO OO OO O OO OO OO O OO0 O oo oo
e e e e e e e e T e T T e T e T T N S S e R S R

N2gp :Ratio of Inter/Intra class nearest neighbor distance (2020)
Geometry, Topology and ~ Global Level ~N4: Nonlinearity of a 1-NN classifier Ho & Basu
Density of Manifolds N5/T1: Fraction of hyperspheres covering data (2002)
L3: Nonlinearity of the linear classifier
Local Level ~ LSC: Local set cardinality Leyva et al.
LSR: Local set radius (2015)
H: Harmfulness Leyva et al.
U: Usefulness (2014)
Data Sparsity & Global Level =~ T2: Average number of features per points Ho &
Dimensionality Basu
(2002)
T3: Average number of PCA dimensions per points 0 1 Lorena, A.C.
T4: Ratio of the PCA dimension to the original dimension 0 1 et al. (2012)
Structural Representation Density: Average density of network 0 1 Garcia, et al.,
ClsCoef: Clustering coefficient 0 1 (2015)
Hubs: Average hub score 0 1
Instance Hardness MeasuresLocal Level ~ kDN : k-disagreeing neighbors 0 1 Smith et al.
DS: Disjunct size 0 1 (2014)
DCP: Disjunct class percentage 0 1
TDP: Tree depth pruned 0 1
TDU: Tree depth unpruned 0 1
CL: Class likelihood 0 1
CLD: Class likelihood difference 0 1
Table 3: Measure Complexity Range thus, it has assigned an identical value to Level One. Worth noting,
this measure was initially proposed by [25] as a nonlinear measure
Complexity Category Complexity Range to investigate the nonlinearity behaviour of pattern classifiers to

a given data set by creating a new example interpolation of the

;:/ery easy 0.00-0.10 training set. Then, it was used by [14] as one of the Neighbour-
asy 0.11-0.30 hood Measures that aim to characterise the shapes of the manifolds
Medium 0.31 - 0.50 db hel
Difficult 051 - 0.70 spanned by each class.
ey’ ’ : However, N4 shares the same strategy as L3 in estimating the
Very difficult 0.71- 1.00

complexity, but instead of using a linear classifier (SVM) like L3,
the measure uses a nonlinear classifier, usually 1-NN [14]. Con-
cerning L3 performance, the results show that L3 provides a better
representation in estimating the difficulty levels.

In contrast, the local-level measures, LSC, LSR, H and U share the
same behaviour of Overlapping of Individual Features Measures

dataset in both difficulty levels to be at the same complexity range
which is very easy. The interpretation for such behaviour is that
since this measure does not describe separability by design [24]
and the classes at Level Two are still partially linearly separable,
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Table 4: Experiment Results

Measure Categories Measures Level One Level Level Three
Two
Measures of Overlapping of Individual Features Values = Global Level F1 0.10 0.53 0.78
F2 0.10 0.57 0.76
F3 0.09 0.83 0.97
F4 0.09 0.83 0.97
Local Level F1_HD 0.27 0.81 0.94
F2_HD 0.15 0.3 0.36
F3_HD 0.25 0.39 0.42
F4_HD 0.37 0.45 0.47
Measures of Separability of Classes Global Level N1 0 0.23 0.61
N2 0.11 0.39 0.48
N3 0.00 0.15 0.47
L1 0.00 0.13 0.29
L2 0.00 0.23 0.53
Local Level N1_HD 0.00 0.15 0.46
N2_HD 0.11 0.39 0.49
Measures of Geometry, Topology and Density of ManifoldsGlobal Level N4 0.00 0.03 0.20
N5/T1 0.00 0.45 0.843
L3 0.00 0.22 0.50
Local Level LSC 0.00 0.92 0.99
LSR 0.01 0.7 0.80
H 0.00 0.00 0.00
U 0.00 0.92 0.99
Measures of Data Sparsity and Dimensionality Global Level T2 0.00 0.00 0.00
T3 0.00 0.00 0.00
T4 0.5 1 1
Measures of Structural Representation Global Level Density 0.81 0.87 0.91
CIsCoef 0.22 0.33 0.45
Hubs 0.80 0.818 0.87
Instance Hardness Measures Local Level kDN 0.00 0.17 0.49
DS 0.00 0.60 0.82
DCP 0.00 0.13 0.47
TDP 0.00 0.34 0.4
TDU 0.00 0.49 0.5
CL 0.00 0.13 0.45
CLD 0.00 0.12 0.37

in overestimating the complexity in Levels Two and Three and
describing the problem in both levels as difficult and very difficult.
On the other hand, the H measure has produced identical values
across different difficulty levels describing the complexity of the
dataset in these levels as very easy. However, [26] have stated in
their study that these measures are seriously affected by noise and
class overlapping, which this study result has also proven.

N5/T1 has shown similar performance to the local-level mea-
sures of this category, particularly in Level Three, where it describes
the dataset in this level as very difficult; however, it is better in
differentiating the difficulty between Level Two and Three as it cat-
egorises the datasets in Level Two to be at the medium complexity
range.

It is worth noting that LSC, LSR, H and U measures were pro-
posed initially by [23] and have been used as instance local measure

of the N5/T1 by [12] since they follow the same concept in charac-
terising the data complexity through building hyperspheres centred
at each instance and bounded by its nearest neighbour (instance
from a different class). However, the main difference between the
global- and local-levels measures is that the global measure (N5/T1)
focuses only on the large hyperspheres that include samples from
the same class. In contrast, the local measures estimate the diffi-
culty according to the cluster from the same class and its nearest
neighbour [8].

4.1.4 Measures of Data Sparsity and Dimensionality. These mea-
sures have been proposed to measure the data sparsity caused by
the high dimensionality, which resulted in difficulty to extract mean-
ingful information because of the low-density areas imposed by
data sparsity. Here we examine the performance of these measures
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in the class overlap problem; according to [7], this category has
three global-level measures, which are T2, T3 and T4.

The experiment outcomes show that these measures cannot cap-
ture the complexity caused by the class overlap. The cause for such
performance is that these measures estimate the data complexity
according to the number of features the dataset has. Hence, since
the datasets in this scenario include only six features (which are
all relevant), T1 and T2 have produced low values across all dif-
ferent difficulty levels indicating that the problem is simple. It is
worth noting that T2 is proposed by [14] which divides the number
of samples in the dataset by their dimensionality. In contrast, T3
proposed by [27] estimates the complexity according to the data
variability using Principal Component Analysis.

Regarding T4, this measure was proposed by [27], to provide
an approximation of the ratio of the relevant features needed in
the dataset by calculating the ratio of the PCA dimension to the
original dimension. The larger T4 values mean more relevant fea-
tures are needed to describe data variability in these datasets [7].
However, since the underlying relationship of the features at upper
levels is affected by noise, T4 has overestimated the complexity
across all difficulty levels describing the dataset at Level One as
medium complexity and in Levels Two and Three as very difficult,
reflecting that more relevant features are needed to describe the
data variability due to small feature size (6 features) compared to
the number of samples (1000 samples).

4.1.5 Measures of Structural Representation. These measures have
been proposed by [22] to characterise the data complexity according
to the structural representation of the data set using graphs. This
category has three measures, which are Density, ClsCoef and Hubs
that applies transformation techniques to model the dataset into
a graph in which each sample corresponds to a node/vertex [22].
However, to estimate the complexity, the relationship between the
samples is modelled by preserving the similarity between sample
pairs, in which their edges are connected and weighted by the
distances between the samples [7].

The study outcomes indicate that Density and Hubs have as-
signed high values to all difficulty levels, denoting a very difficult
problem, as shown in Table 4. In contrast, ClsCoef has a better
representation of the class’s overlapping problem as it can capture
the gradually increasing difficulty levels.

4.1.6 Instance Hardness Measures. As mentioned earlier, Instance
Hardness Measures (local level)were proposed by [9] to overcome
the limitation of the global Complexity Measures (global level) in
which they estimate the data complexity at the sample level by
identifying which samples are frequently misclassified in a dataset
using various learning algorithms.

The experiment results show that all measures in this category
can distinguish the gradual class overlapping degree across three
difficulty levels Table 4 shows that kDN, DCP, CL and CLD per-
form better than other measures in this category in differentiating
between Levels Two and Three. On the other hand, TDU charac-
terises the datasets in Levels Two and Three at the same complexity
range which is medium. The reason for the measures’ inability to
distinguish between both levels is that TDP and TDU estimate the
difficulty by building a decision tree using the C4.5 Classifier which
is well-known as being sensitive to noisy features [28]. However, as
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TDP is the pruned version, therefore, it is more robust to the noise
than the unpruned version TDU, where the former has described the
complexity better than the latter with TDU giving almost identical
values in both levels. It is worth noting that both measures estimate
the hardness of a sample by measuring the length of the tree depth,
in which samples that are difficult to classify are typically placed at
lower tree levels and have higher TD values [10].

Concerning DS and DCP, these methods adopt the disjunctive
learning concept using the same C4.5 Classifier, which divides the
task space to measure the overlap of samples; the measure DS is an
unpruned method while DCP is a pruned method. In comparison,
DCP is better at describing the actual difficulty than DS (for the
same reason mentioned above). The result indicates that DS has
overestimated the complexity in both levels Two and Three and
classified the datasets at these levels to range from difficult to very
difficult problem.

4.1.7 Summary. The aim of this study is to investigate the per-
formance of the measures under different degrees of noise which
correspond to increasing levels of overlapping classes; the results
indicate that most measures can correctly describe the underly-
ing relationship of the relevant features in Level One. However, in
Levels Two and Three, when the degree of noise increases, some
measures have overestimated the complexity while a few have un-
derestimated it, as shown in Table 5 which gives a summary of
the performance of the metrics, identifying their level of perfor-
mance across the three Levels of problem difficulty. In contrast, all
Separability of Classes Measures, and Instance-Hardness Measures
(apart from DS) show good performance in estimating the actual
data challenges aligned with the difficulty levels.

5 CONCLUSION

In this study, we aimed to investigate to what extent meta-features
can reflect the actual data difficulty without being affected by com-
plex data challenges and produce values that either overestimate or
underestimate data complexity. Highlighting this point is crucial
to ensure the success of the meta-learning model since the meta-
learning recommendation’s quality depends on the meta-features
decision quality. In real-world problems, the most common issues
that are significant contributors to degrading prediction accuracy
are high-class overlapping caused by noisy features. Accordingly,
the Complexity Measures as global-level and Instance/local level
measures are evaluated in this study as a meta-feature that act as
descriptors of the spatial distribution of the data, for the problem
of class overlapping caused by increased noise.

Since the meta-feature analysis is data-dependent, the study
methodology has been designed to include the above data issue
under gradually increasing difficulty levels starting from an easy
problem and adding challenges at the upper levels. This has allowed
the precise identification of how much the measure performance
reflect the actual complexity and provides meaningful insights for
the practitioners and researchers to choose the measures that are
more appropriate for a particular dataset — and which ones not to
use.

According to the research questions, the study results indicate
that the measures responded differently to the above data issue.
Some measures have overestimated the complexity while others
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Table 5: Summary of the Measures’ Performance Outcomes

Measure’s Category Good Estimate Overestimate Underestimate
Measures of Overlapping of Individual Features F2_HD & F3_HD F1,F2,F3,F4,F1 HD & -
Values F4 HD
Measures of Separability of Classes N1, N2, N3, L1, L2, - -
N1_HD & N2_HD
Measures of Geometry, Topology and Density of L3 N5/T1,LSC,LSR,U N4 & H
Manifolds

Measures of Data Sparsity and Dimensionality - T4 T2 & T3
Measures of Structural Representation CIsCoef Density & Hubs -
Instance Hardness Measures kDN, DCP, TDP , DS -

TDU, CL & CLD

have underestimated it due to the different assumptions that the
measures adapt and their sensitivity to the different data challenges.
Based on the study result, and as described in the summary table,
the measures that have provided good complexity estimation for
the class overlap problem are F2_HD & F3_HD (the local-level mea-
sure from Overlapping of Individual Features Values Measures), all
Separability of Classes Measures (global- & local-level), L3 from
Geometry of Manifolds category, CIsCoef from Structural Repre-
sentation Measures and all of the Instance Hardness Measures apart
from DS.

This study has concluded that some measures do not perform
well for the class overlapping problem and further work is required
in order to determine how well the measures perform for different
types of data problem such as data sparsity and more complex
data relationships, and which previous studies have identified as
affecting the complexity of a classification problem and the results
obtained [7], [14].

Related to the research question in comparing the global- and
local-level performance, the study outcomes have not provided a
clear view as to which is the better approach. Future work will
aim to investigate the measures’ performance under different types
of problems such as imbalanced classes, data sparsity and small
sample sizes. A further conclusion to be drawn from this study
is that Complexity Measures should be used with caution since
they can be affected by different issues for the given dataset, which
in the case of real-world data means they may easily under or
overestimate the actual difficulty of the underlying data problem.
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