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Abstract: The structure of coal indicates the degree of its fragmentation after tectonic movement, 

which affects the exploration and development of coalbed methane (CBM). Although coal core 

observations are the most convenient and intuitive way of identifying the coal structure, they are 

not applicable for use in unexplored coal seams without CBM wells, and they are also very 

time-consuming. In comparison, geophysical-logging interpretation of the coal structure is more 

efficient and economical. However, although qualitative methods, such as principal component 

analysis (PCA), can be used to identify the coal structure with geophysical logging, the 

interpretation is limited by the calculation ability, and improvements are required based on the 

structure of an empirical model. Multinomial logistic regression (MLR), random forest (RF), and 

deep fully connected neural network (DNN) are effective machine learning methods more 

accurate than the traditional method that with model-aided identification. In this respect, the MLR 

method is a classical method based on mathematical linear regression, and it has a low 

construction cost; RF is an ensemble learning algorithm based on a decision tree and use of a 

bagging algorithm; and DNN is a deep learning model based on self-built feature engineering that 

has high classification accuracy under a large amount of data training and provides obvious 

advantages in visual coal classification problems. In this work, the three machine learning 

methods, MLR, RF, and DNN, were used to identify the coal structure. Two sets of logging data 

comprising different quantities from the Anze Block of the southern Qinshui Basin, North China, 

were selected to quantitatively compare the accuracy of coal structure identification with partial 

coal core observation. The results showed that for 210 and 840 samples, respectively, the accuracy 

was 76% and 77% for MLR, 83% and 86% for RF, and 82% and 86% for DNN. These results 

show that the MLR and DNN methods are superior for use with minimal and maximum amounts 

of data, respectively, and the RF method provides overall accuracy. Furthermore, an algorithmic 

classification of the coal structure was established, and the geological factors controlling the 

predicted structure, such as geostress, coal seam thickness, and burial depth, were distinguished. 
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1. Introduction 

The structure of coal reflects the coal crushing degree (Fu et al., 2009; Liu et al., 2022) and can be 

classified as primary coal, cataclastic coal, granulated coal, and mylonitic coal (Gao et al., 2018; 

Lv et al., 2019). The coal structure differs in accordance with the regional geological structure, 

and differences in its pore structure and permeability relate to its petrophysical properties (Qin, 

2018; Huang, 2017; Wang et al., 2020). The structure is not only an indicator of the coalbed 

methane (CBM) reservoir properties, but it is also used to evaluate and design hydraulic fracturing 

operations with respect to CBM development (Mastalerz et al., 2008; Shi et al., 2020; Wang et al., 

2020). The traditional method used to determine the coal structure is by direct observation of the 

coal seam through a drilling coal core (Hoek et al.,1997). However, due to core sampling costs 

and the conditions involved in direct coal seam observations, coal seam evaluations are 

constrained to a limited sampling profile (Shi et al., 2020; Chen et al., 2021). 

Therefore, geophysical logging can be used as an alternative to enable the accurate and efficient 

determination of the coal structure. It is a low-cost and efficient method that enables effortless and 

continuous quantification of critical geophysical parameters and is widely used in reservoir 

classification and evaluation in the petroleum and coal industry. Several studies have used 

geophysical logging in this respect. For example, Raeesi (2012) used logging data to classify and 

identify hydrocarbon reservoir lithofacies and their heterogeneity. Hernandez-Martinez (2013) 

used the R/S method based on the fractal theory for facies recognition by determining the 

complexity of the logging signal. Additionally, Sharawy (2016) applied principal component 

analysis (PCA) and cluster analysis to raw and normalized logging data and used the conventional 

well logs of four boreholes and data from a traditional core analysis conducted in one of these 

wells to identify the electrofacies of the Kareem Formation. Several other studies have also been 

conducted to interpret the coal structure using logging data, and such methods have been directly 

applied to instruct the actual CBM production (Li et al., 2011; Kumar et al., 2022). However, 

although many coal structure prediction methods have used logging data, most of these methods 

have involved conducting a qualitative analysis based on empirical models or PCA (Fu et al., 2009; 

Teng et al., 2015; Ren et al., 2018). Statistical analysis methods, such as linear regression, have 

also been used, but the actual problem of predicting the structure of the coal body exhibits 

non-linearity (Wang et al., 2020; Cao et al., 2020; Shi et al., 2020; Chen et al., 2021). 

Traditional machine learning methods, including multinomial logistic regression (MLR), support 

vector machine (SVM), and random forests (RF), focus on strict and visible mathematical logic, 

and these methods can be used to conduct a quantitative analysis using mathematical methods 

under computer power (Guo et al., 2021). The essence of MLR is the superposition of multiple 
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linear regressions, and the essence of SVM is the distance formula from point to line. Empirical 

formula and other methods have thus been used to conduct quantitative analyses of the coal 

structure, and classical machine learning algorithms have been found to have a good calculation 

effect when inverting the coal structure using high fitting logging data (Fu et al., 2009; Teng et al., 

2015). Unlike SVM and MLR, RF is a machine learning method that has a strong ability to 

process tabular data using decision trees (DTs). It uses an optimized bagging algorithm for 

accuracy, which makes it applicable for use with classification problems in the coal field, and its 

dataset often provides a better classification accuracy than deep learning models (Gordon et al., 

2022; Wang et al., 2022). Maxwell (2019) compared RF, gradient boosted machines (GBM) and 

DNN for delineating altered and non altered coal from geophysical log data, and found that RF 

had the highest accuracy. With the continuous development of machine learning methods, deep 

learning methods (such as neural networks) have attracted attention and achieved good results in 

many disciplines and fields (Siregar et al., 2017). For example, they have been widely applied in 

predicting rock types and petrographic identification (Imamverdiyev and Sukhostat, 2019; Liu et 

al., 2021). In the coal research area, Chatterjee (2022) compared four machine learning algorithms 

and used SVM to build the best REY potential model classification scheme. Wojtecki (2022) 

employed machine learning algorithms to assess the rockburst hazard status of underground coal 

mine openings, and Wei (2022) integrated the synergistic effects of coal and biomass in pyrolysis 

to build a model of pyrolysis under the RF algorithm. Zhang (2022) presented a method for 

predicting the coal self-ignition tendency using MLP and RF machine learning methods based on 

204 sets of CPT experimental data. Deep learning has thus been widely applied in the field of 

image classification and intelligent recognition of coal (Wang et al., 2022; Xiao et al., 2022; 

Zhang et al., 2022). 

Machine learning is best suited to classification problems, and classification models that invert the 

structure of the coal body from logging data meet this requirement. In most studies, due to the 

overflow of computing power, the results of traditional machine learning algorithms are accurate, 

while neural networks waste computing costs (Xu et al., 2021). Previously, the DNN was used to 

classify coal macerals and the contact angle for differently ranked coals (Zhao et al., 2022; 

Ibrahim, 2022; Tiwary, 2020). However, fewer studies have focused on using the classical 

classification algorithm, and they have directly promoted the use of neural networks on a 

large-scale. Nevertheless, Tiwary (2020) used the RF model to classify different phases of coal 

macerals (organic constituents) and minerals (inorganic constituents), and the results reached an 

accuracy of 0.9, which is higher than most non-overfitting neural network models. Ibrahim (2022) 

applied function networks, support vector machine (SVM), and RF to predict the contact angle in 

coal, and the accuracy of all was found to be higher than 0.94. Such results clearly assist in 

assessing and learning about the effectiveness and norms of machine learning. 

A few machine learning methods have been selected for coal structure prediction (Shi et al., 2020; 

Chen et al., 2021). However, the best method for use in practice has not yet been identified, and 
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there is need to establish a comprehensive method for identifying coal structure, due to the limited 

amounts of coring data. Therefore, in this study, we compared the use of three algorithms in the 

prediction of coal structure: the MLR algorithm (representing classical machine learning), RF 

algorithm (representing ensemble learning) and the DNN algorithm (representing deep learning). 

In this paper, we first review the identification of the coal structure and then establish the MLR, 

RF, and DNN algorithm models for predicting coal structure using different-logging datasets from 

the Anze Block in the southern Qinshui Basin, North China. The performances of the methods are 

then compared in terms of prediction accuracy and using environment. Finally, the impacts on coal 

structure from geological controls, including geostress, coal thickness, and burial depth, are 

explored. 

 

2. Geological Background 

The Qinshui Basin is surrounded by the uplifts of the Taihang Mountains, Huo Mountains, Wutai 

Mountains, and Zhongtiao Mountains (Cai et al., 2011). There is a NE-SW main syncline in the 

Qinshui Basin that reflects the W-E extrusion. Combined with a series of normal faults in the area, 

the partial deflection of the syncline was first controlled by NW-SE compression in the 

Yanshanian orogeny. With the development of late NE-SW normal faults in the block, strike-slip 

shear occurred, and the faults correspond to the early Himalayan NW-SE extension. In relation to 

the strike-slip tectonic movements, the Qinshui Basin became a pull-apart basin (Teng et al., 2015; 

Ren et al., 2018). The Anze Block is located in the southern Qinshui Basin (Fig. 1), which 

experienced the superimposition of the Indosinian, Yanshanian, and Himalayan orogenies, and 

complex structural patterns resulted after coal seam formation (Cai et al., 2011; Wang et al., 2020). 

 

Fig. 1 Generalized map showing the location and structural outline of the Anze Block, southern Qinshui, North 

China 
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The No.3 coal seam in the Permian Shanxi Formation (P1s) and No.15 coal seam in the 

Carboniferous Taiyuan Formation (C3t) are the main target seams for CBM exploration and 

development (Cai et al., 2011; Wang et al., 2020). These seams are semi-anthracite to anthracite 

with Ro,max of 1.9%–2.7%. The coal structure of samples from the drilling coal core of the No. 3 

coal seam of the Shanxi Formation is shown in Fig. 2. The main burial depth of the No.3 coal 

seam varies from 850 m to 1250 m, and the thickness changes from 5 m to 8 m (with an average 

of 7 m). The coal seam gradually deepens and thickens from the northwest to southeast. The roof 

and floor lithology of the No. 3 coal seam is mainly dark to gray mudstone and tight sandstone 

with good sealing, which makes this the most continuous and stable coal seam in the region. 

Therefore, the No.3 seam was selected to investigate the coal structure in this study. 

 

Fig. 2 Stratigraphic section including targeted the No.3 coal seam of the Anze Block in the southern Qinshui Basin 
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3. Methodology 

3.1. Identifying coal structure by core observation 

The structure of coal can be classified into primary coal, cataclastic coal, granulated coal, and 

mylonitic coal (Gao et al., 2018). Primary coal is characterized by the development of endogenous 

butt and face cleats, the tectonic fissures are weakly developed, and bedding fissures are more 

common (Yang et al., 2021). Cataclastic (structured) coal normally has a macroscopic fragmented 

structure that is mainly characterized by a hard and mostly complete coal structure. The bedding 

and endogenous fractures clearly show slight deformation of the coal structure and multiple sets of 

structural fractures. Granulated (structured) coal generally has a granulated structure with loose 

granular powder particles and comparatively better overall sorting. The particle size is relatively 

uniform (with generally less than 5-mm crumb and crushed powder) and with sub-angular to 

sub-rounded larger blocks (Wang et al., 2022). From observations, the granulated block has 

roundness and wear, and the primary coal structure has almost disappeared. Mylonitic (structured) 

coal is generally characterized by its fine compact powder particles and fine fissures. The primary 

coal structure body is severely broken, maintaining the coal core integrity is difficult, and 

stratification and endogenous fissures are difficult to identify. 

In this work, 830 coal core samples with corresponding logging data were collected from the 

Shanxi Formation No.3 coal seam. According to the above classification of coal core observations, 

208 primary coal samples, 504 cataclastic coal samples, and 118 granulated coal samples were 

identified. No mylonitic coals were observed. If we directly adopted this classification scheme, it 

would not have been possible to establish an adequate machine learning model, due to the 

imbalanced selection of sample types. Therefore, to ensure the credibility of the inversion of 

geophysical logging through machine learning, the granular structure and the mylonitic structure 

were classified into one category. The coal structure of the Anze Block can thus be roughly 

classified into three categories: Type 1 is primary coal and comprises 208 samples, Type Ⅱ is 

cataclastic coal with 504 samples, and Type III coal includes both granulated coal and mylonitic 

coal with118 samples. 

 

3.2. Correlation analysis and optimization of logging parameters 

3.2.1. Identifying coal structure using empirical methods with logging data 

To identify the coal structure using empirical methods and logging data (Fu et al., 2009; Teng et 

al., 2015), the well-logging curves of the natural gamma ray (GR), compensated neutron (CNL), 

density (RHOB), sonic (DT), caliper (CAL), shallow resistivity (RLLS), deep resistivity (RLLD), 

and spontaneous potential (SP) can usually be employed, as shown in Fig. 3. Due to the density 

difference between the coal seam and the clastic rock layer, the coal density curve shape shows a 

sudden decrease. With the increased coal fragmentation degree from primary coal to structured 

coal, pores and fractures developed, and the content of radioactive substances per unit volume was 

reduced. Therefore, low anomalies appear on the natural gamma curve. However, the ions in the 
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fluid enhance the conductivity and decrease the resistivity, and the resistivity curve thus shows a 

decline. When drilling coal seams, the strength of the structured coal is low, the structure is loose, 

and the well diameter must be increased because the wall of the CBM well is prone to collapse. 

 

Fig. 3 Coal structure by core observation and its logging curve characteristics of Well An 26 

 

The deep resistivity of the logging response is more obvious for the coal seam and microspherical 

focus logging (MSFL) is weakly sensitive to changes in the coal structure. Furthermore, after 

comparing the logging data of coals in all CBM wells with a structure type identified through a 

data visualization analysis (Fig. 4), the DT, CNL, CAL, GR, SP and RHOB were found to have 

correlations with the increasing fragmentation of the coal structure. Therefore, they were also used 

as input parameters to identify the coal structure. 
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Fig.4 Data visualization of CNL, RHOB, DT, GR, CAL, SP logging data and coal structure TPYE values 

 

3.2.2. Logging parameter correlation analysis and preferred parameters 

Based on the above analysis, CNL, CAL, DT, RLLD, GR, and RHOB were selected to identify the 

coal structure. Of the statistical classification schemes (the Pearson, Kendall, and Spearman 

(Rock., 1987)), the Pearson scheme is more commonly used in reservoir studies. Additionally, 

when two continuous variables are linearly correlated, it is preferable to use the Pearson product 

difference correlation coefficient for analysis, and the attribute is then selected after the linear 

correlation parameters are determined without the zero value or optimization of the 

low-correlation value. The Pearson correlation coefficient varies from −1 to 1. A coefficient with a 

value of 1 means that X and Y can be well described by the linear equation. All data points fall 

well on a straight line, and Y increases with increasing X. A coefficient with a value of −1 means 

that all data points fall on the straight line, and Y decreases with increasing in X. If the value of a 

coefficient is 0, it means that there is no linear relationship between the two variables (Pearson., 

1895). The calculation formula of the correlation coefficient can be expressed by Eq. (1), 

𝜌 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑖

√∑ (𝑥𝑖−𝑥̅)
2(𝑦𝑖−𝑦̅)

2
𝑖

.                                                       (1) 

The Python programming language was used to create a correlation matrix, as shown in Fig. 5. 
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Fig. 5 Correlation matrix heatmap for logging data and coal structure TYPE 

 

The correlation matrix and data visualization indicated that the values of the GR, RHOB, DT, and 

RLLD logging parameters were correlated with the coal structure type (TYPE), while the CNL 

values were poorly correlated. The correlation coefficient between CNL and TYPE had a low 

value of 0.041 from the correlation matrix, which means that there was no correlation between 

CNL and TYPE. 

3.3. Multinomial logistic Regression 

The essence of logistic regression is based on the classification under generalized linear regression, 

and it is a statistical method that takes the linear regression prediction boundary as the boundary, 

maps the data to be classified and the boundary relationship to the probability distribution by a 

function, and provides a classification according to the distribution. The steps involved include 

obtaining a generalized linear regression solution and designing and mapping the classification 

data function (Abrougui et al., 2019). The model used in linear regression solving can be 

expressed by Eq. (2), 

𝑓(𝑥) = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+ 𝑤𝑛𝑥𝑛 + 𝑏,                                        (2) 

where xi is an eigenvalue of the input, wi is the model parameter under regression, and inputs of 

multiple xi will train all wi values. The logic function is based on a successful linear regression 

solution, and a formula applied to the decision surface. The logic model under the binary 

classification of logic regression can be expressed by Eq. (3), 

𝑝(𝑦|𝑥(𝑖), 𝜃) = (ℎ𝜃(𝑥(𝑖)))𝑦(1 − ℎ𝜃(𝑥(𝑖)))1−𝑦.                                 (3) 

For a multi-classification problem, the main processing methods used are the multiple logistic 

regression binary classification method and the SoftMax processing method (Nazmi et al., 2020) 
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based on one-to-one, one-to-many, or multi-to-many. The SoftMax method is essentially an 

extension of the binary classification method, and its effect is better when there is more to classify. 

In contrast, the multiple logic binary classification method is adopted owing to its superior 

accuracy in multi-classification when there are fewer categories. The corresponding logic model 

can be expressed by Eq. (4), 

𝑝(𝑦 = 𝑘|𝑋, 𝜃) = ℎ𝜃(𝑘)(𝑋).                                               (4) 

To obtain a multiline logistic regression model parameter estimation with a given training data set, 

T = {(x1, y1), (x2, y2),..., (xn, yn)}, where xj ∈ Rn, yj ∈ {1, 2,...,k}, the maximum likelihood 

estimation method can be used to estimate the model parameters and thus obtain a multiline 

logistic regression model. 

3.4. Random Forest 

Random Forest (RF) is based on a decision tree (DT) and is a type of ensemble analysis (Breiman, 

1996). It requires minimal input parameters and little hyperparemeter tuning. The DT has a tree 

structure that describes the classification of instances, as shown in Fig. 6. 

 

Fig. 6 Decision tree visualization for coal structure prediction 

 

The DT consists of nodes and directs edges. Internal nodes represent a feature in each, and leaf 

nodes represent a class in each; therefore, there are two types of nodes in the tree (Hashemizadeh 

et al., 2021). The essence of a DT is to solve a set of conditional statements. Each internal node 

represents the condition associated with the tree model logic, and each leaf node provides the 

conclusion associated with tree model logic. After each sample enters the DT, there are and only 

one path can pass. 

Based on a set of multiple DTs, the RF first extracts training samples from the training set with 

replacement randomly. By using the new training set, the sub-models are trained. For the 

classification problem, a voting method is used, and the classification category of the submodel 

with the most votes is the final category (Breiman, 1996). Approximately 63.2% of the samples in 

the final initial training set appear in the sampled set. The advantage is that each learner uses only 

63.2% of the samples, and the remaining 36.8% can be used for conducting an out-of-bag 

estimation (Breiman, 1996). The formula for the out-of-wrap estimation is expressed by Eq. (5), 
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𝐻𝑜𝑜𝑏(𝑥) = argmax𝑦∈𝛾 ∑ Ⅱ𝑇
𝑡=1 (ℎ𝑡(𝑥) = 𝑦) ∙Ⅱ(𝑥 ≠ 𝐷𝑡),                          (5)                                    

where 𝐷𝑡  is the actual sample set used by ℎ𝑡 , and Hoob(x) is the out-of-wrap error on sample 

set x. The out-of-bag estimation formula for the generalization error of bagging is expressed by Eq. 

(6), 

∈𝑜𝑜𝑏=
1

|𝐷|
∑ Ⅱ(𝐻𝑜𝑜𝑏(𝑥) ≠ 𝑦)(𝑥,𝑦)∈𝐷 .                                        (6) 

The training set of each tree is different, and it contains repeated training samples. Another feature 

is that compared with the DT, each split process of the tree in the RF does not use all the features 

to be selected. However, it randomly selects certain features from all the features to be selected, 

and then selects the optimal feature from the randomly selected features. Therefore, RFs do not 

easily result in overfitting and they have a good anti-noise ability. Additionally, the main control 

parameters of RF include correlations between any two trees in the forest, the ability to classify 

each tree in the forest, and the number of feature selection.  

3.5. Deep fully connected neural network 

3.5.1. Algorithm preprocessing 

Neural networks essentially comprise a combination of single neurons. The trained neural network 

usually triggers one-to-many and many-to-many signals between neurons to simulate the trigger 

form of a biological nerve. The trigger form (trigger, non-trigger) can be directly indicated by the 

machine signal 0/1, and its logical significance directly corresponds to the step function under the 

ideal (Abdul-Majeed et al., 2021; Xu et al., 2021). Neurons are combined according to a certain 

layered structure, and a neural network is thus created. In practice, as an activation function is 

required to satisfy the firing from neurons, the traditional sigmoid gradient function is prone to 

gradient disappearance (Welper, 2022), which makes it difficult to optimize important gradients. 

The Relu function is often selected as an alternative. In this respect, there is a direct 0 indication 

on activation, and the gradient function has only simple 0 and 1 values, which are beneficial for 

the gradient. 

3.5.2. Neural network structure 

Based on the Graphviz library under Python for visualizing the output neural network framework 

graph, the neural network framework diagram was redrawn as shown (Fig. 7). 
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Fig. 7 The logic structure of deep fully connected neural network for coal structure identification 

 

The number of hidden layer nodes affects the neural network performance, and it can thus be 

determined using an empirical formula. An intermediate calculation is automatically released at 

the end of a gradient, and the specific formula is expressed by Eq. (7), 

ℎ = √𝑚 + 𝑛 + 𝑎,                                                      (7) 

where h is the number of hidden layer nodes, m is the number of input layer nodes, n is the 

number of output layer nodes, and a is the adjustment constant between 1 and 10. In this work, we 

established a scale (6-30-3) of neural networks under 20 neurons. For the intrinsic calculation of 

neural networks, back propagation is required to calculate the gradient correlation. However, due 

to the dependence of back propagation on memory and the consideration of overfitting, a direct 

error report is avoided (Welper, 2022), and an intermediate calculation is automatically released at 

the end of a gradient. The classification results for the coal structure can be obtained by inputting 

logging data through this training model. 

4. Results and Discussion 

4.1. Comparison of methods used to identify coal structure (MLR, RF, and DNN) 

Shi (2020) discussed the importance of overfitting and solved it by using set training data and 

testing data at a ratio of 7:3. However, overfitting also occurs in relation to factors such as the 

number of training sessions used. Therefore, as the data sets were divided using the ratio of 7:3, it 
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was important to determine the optimum number of training steps in neural network model to 

avoid overfitting. In comparing the results of different methods, overfitting should be avoided by 

setting an aborted training accuracy or by reflecting the accuracy that varies with the amount of 

data. Due to the influence of difference in samples number, the accuracy of machine learning 

algorithms is different (Cao et al., 2020). Compared with an artificial weighting method, such as 

PCA, different sample numbers and combinations are conducive to comparing inversions and 

evaluating the coal structure (Chen et al., 2021). In this work, 107 data and 830 data of two orders 

of magnitude were selected for multi-attribute and multi-label classification. Each classification 

corresponded to six labels, and the sample training under permutation and the combination had a 

sufficient magnitude difference. Of these, 107 data sets for training included 18 samples of Type I, 

75 samples of Type Ⅱ, and 13 samples of Type Ⅲ, and the 830 data sets included 208 samples of 

Type I, 504 samples of Type Ⅱ, and 118 samples of Type Ⅲ. 

4.1.1 Data preprocessing and model initialization 

The selected data samples were obtained from the same logging data of the same company in the 

block. However, as data noise can have a large impact on the training results, and random samples 

have a large data imbalance, the data and parameters still need to be preprocessed. The specific 

steps used include data cleaning, missing value supplement, and hyperparameter optimization 

(Wang et al., 2022). 

The logging data were preliminarily cleaned using a triple standard deviation as the boundary of 

abnormal values. According to the condition of a normal distribution, the probability of taking 

values in the interval (u ± 3σ) was 99.73%, while the probability of taking values outside the 

interval was less than 0.3% and could be deemed as a minimum probability event (Froncisz et al., 

2020). A function of screening out small probability event data was realized through a subset, 

which was used as the low probability value boundary for further data cleaning. Before adding 

missing values, the logging data were normalized to 0–100. Due to the unevenness of the three 

label samples in the dataset, the SMOTE interpolation method was used to supplement the labels 

with less data (Sinha et al., 2019). The visualization model after data preprocessing is shown in 

Fig. 8. Jo
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Fig.8 Data visualization of CAL, RHOB, DT, GR, CAL, SP logging data and coal structure TPYE values 

 

For the MLR algorithm under the Sklearn framework, the function is not usually expanded for 

hyperparameter optimization but only for manual tuning of the random number seeds. Therefore, 

the function Gridsearchcv in the Sklearn library was used for RF, and empirical formula 

adjustment parameters and manual adjustment parameters were combined for DNN. 

4.1.2 Multinomial logistic Regression 

Python was used to establish and test the multi-classification logic model. For the selected 300 

data set, 70% of the data were extracted as training data to establish the model, and 30% was used 

to test the model accuracy. The specific processing was conducted using the Sklearn framework of 

Python (Bizhani and Kuru, 2022). After splitting the 300 and 1200 sample data sets, there were 

210 and 840 training sets and 90 and 360 test set samples, respectively. After normalization and 

mapping of the classification data, the accuracy of the MLR training set reached 93%, and the 

accuracy of the MLR test set was 91%. The same method processes were used for the 1200 data 

set. The final accuracy of the MLR training set was 84%, and the accuracy of the MLR test set 

was 76%. Two trained models were used to predict the coal structure for the 150 data set, and a 

confusion matrix of each was created. The classification result is shown in Table 1. 
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Table 1 Multiline logistic regression (MLR) model test confusion matrix 

   210 training data 840 training data 

  Prediction Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅰ Type Ⅱ Type Ⅲ 

A
ct

u
al

 
Type Ⅰ 15 3 0 15 3 0 

Type Ⅱ 22 86 8 20 86 10 

Type Ⅲ 2 1 13 2 0 14 

  Accuracy 0.76 0.77 

 Precision 0.65 0.65 

 Recall 0.80 0.82 

 F1 0.69 0.69 

4.1.3 Random Forest 

Hyperparameter optimization is effective for the RF algorithm (Gordon et al., 2022), and the 

GridSearchCV function was used in RF hyperparameter optimization to obtain a maximum tree 

depth of 150, a maximum number of separated features of 12, a minimum number of separated 

samples of 2 and a total number of trees of 34. RF and MLR are distinguished from DNNs as a 

machine learning algorithm. However, unlike MLR and the basic building block of a RF (the DT), 

RFs are an ensemble learning algorithm. RFs and DT models were established and compared in 

Python’s Sklearn framework, which is based on tuned parameters, and a cross-validation method 

was used to produce the results shown in Fig. 9. The classification results are shown in Table 2. 

 

Fig. 9 Test accuracy of RF and DT under cross-validation. a. The relationship between the accuracy of RF and DT 

in cross-validation for 300 sample data set; b. The relationship between the accuracy of RF and DT in 

cross-validation for 1200sample data set. 

 

 

 

 

 

 

 

 

Table 2 Radom Forest (RF) model test confusion matrix 
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   210 training data 840 training data 

  Prediction Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅰ Type Ⅱ Type Ⅲ 

A
ct

u
al

 

Type Ⅰ 8 10 0 7 11 0 

Type Ⅱ 5 105 6 0 113 3 

Type Ⅲ 2 1 13 1 6 9 

  Accuracy 0.83 0.86 

 Precision 0.72 0.83 

 Recall 0.70 0.64 

 F1 0.71 0.70 

4.1.4 Deep fully connected neural network (DNN) 

The neural network model is established under the Pytorch framework in Python (Hussain et al., 

2021). Based on the neural network model parameters determined by an empirical formula, the 

model was trained in a loop using the abort accuracy rate, which was preset using the conditional 

statements in the model training function written by the author of this paper, and an optimal 

learning rate parameter of lr = 0.01 was finally obtained. The same data set of 300 samples was 

selected, and 70% of the data were extracted as training labels and the remaining 30% were used 

as test data. In the DNN training process, the loss function value converged after 300 training 

steps, and the test accuracy of the verification set was 0.97. To test the accuracy of the DNN 

model, the same method was used to process the 1200 data set, where 70% of the data were 

extracted as training data and 30% of the data was used as test data. The classification result is 

shown in Table 3. After 1200 training steps, the overall accuracy of both trained models in the test 

set reached 97%, as shown in Fig. 10. 

 

Fig. 10 Loss function value and test accuracy. a. The relationship between training times and accuracy for 300 

sample data set; b. The relationship between training times and accuracy for 1200 sample data set. 

 

 

Table 3 Neural network model (DNN) test confusion matrix 

   210 training data 840 training data 

  Prediction Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅰ Type Ⅱ Type Ⅲ 
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A
ct

u
al

 

Type Ⅰ 9 9 0 11 7 0 

Type Ⅱ 4 109 3 5 108 3 

Type Ⅲ 0 11 5 0 6 10 

  Accuracy 0.82 0.86 

 Precision 0.72 0.78 

 Recall 0.58 0.72 

 F1 0.62 0.74 

4.2. Effectiveness and evaluation of MLR, RF, and DNN 

Accuracy is based on the proportion of correct values among all samples, precision is based on the 

proportion of predicted correct values among all predicted values, recall is based on the proportion 

of predicted correct values among all correct values, and F1 is based on the average value of 

precision and recall (Ye et al., 2021). In the evaluation, metrics such as precision and recall can be 

used to assist the classification under conditions where the predicted values are close, and the 

classification sample is less balanced. When used in practical classification, precision focuses on 

how correct the prediction results are for the prediction set, and recall relates to how correct the 

prediction results are for the sample set. In practice, different indicators are used for data sets with 

relatively uneven samples, and comparisons can be made between different sample size models 

within a single algorithm. However, no cross comparisons should be made between different 

predictors. The accuracy, precision, recall, and F1 of MLR, RF, and the neural network algorithms 

using different samples are shown in Fig. 11. 

 

Fig. 11 Accuracy, precision, recall and F1 values of the classifiers at 300 and 1200 samples. 

 

The overall accuracy of the MLR algorithms was low: 76% for 300 samples and 77% for 1200 

samples. Unlike the other two classification methods used in coal structure logging data inversion, 

a maximum sample size is beneficial for the inversion process and ensuring the correctness of the 

data (Pino-Mejías et al., 2017). Both the DNN and RF algorithms showed higher prediction 

accuracies of 82% for 1200 samples. As both algorithms follow the effect of information gain, the 

prediction accuracy of both methods improved with an increasing number of samples. However, a 
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comparison of the accuracy, recall, and F1 of the models showed that the RF algorithm was 

superior when applied to 300 samples. The MLR algorithm does not provide the effect of 

information gain, but it is advantageous with respect to its computational cost. At the same 

random extraction scale, the difference arises from the underlying operation logic (Onifade et al., 

2021). Its accuracy of over 76% makes it largely adequate for coal structure prediction in small 

sample sets, and it can be used in a combination of preprocessing algorithms with the other 

algorithms in large sample set predictions, to reduce the subsequent workload and allow for 

comparative validation. In cases where there are more information points and the available test set 

and training set are larger, the RF algorithm and deep learning approach are superior, and they are 

also beneficial for building a combination of deep learning algorithms, such as those involved in 

image recognition. 

4.3. Single and multi-well discrimination results and evaluation 

For the classified data, the scaling method was used to normalize the multi-attribute and different 

data sets, and a parallel coordinate system diagram was then compiled based on the classification 

(Type I, II, and III) under the group of 1200 sample data, as shown in Fig. 12. 

 

Fig. 12 Parallel coordinate system diagram of relationship between coal structure and logging data. A. Parallel 

Coordinate System under multinomial logistic regression; B. Parallel coordinate system under neural network; C. 

Parallel coordinate system under random forest. 

 

For MLR classification, there were peaks with good relative discrimination for Types I, II, and III. 

However, the peaks for CAL and GR were obviously interlaced for different coal structure types 

and the correlation between them was not high. For RHOB, Type III had relatively high peak 

values, low-value areas, and a general classification effect. The distribution of the parallel 
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coordinate system of the DNN was relatively good. RLLD, GR, DT, RHOB were associated with 

different Type I, II, and II distributions, and the CAL peak under obvious scaling was relatively 

well distinguished between the Types I, II, and III categories; therefore, it had an overall good 

classification effect. The RF model provided the best classification and many large striped 

distributions were visible in the parallel coordinate system. The banded distribution reflected the 

consistency and high accuracy of the classification. 

All of the models were used to identify the coal structure against the logging data from Well An22, 

as shown in Fig. 13. The classification accuracy of MLR was greater than 90%; although the 

classification error was very low, it can be further improved through the use of more samples. For 

the coal structure classification of Well A22, MLR may provide a small probability error, but it 

still determined the coal structure in different coal seams. The results of RF and DNN were 100% 

accurate in this test. However, compared with MLR, neural network classification has a relatively 

high training cost; however, high accuracy is assumed when data numbers are high enough. The 

RF algorithm not only showed the highest accuracy with 1200 samples, but it was also 100% 

accurate when predicting the coal structure of the An22 well using multiple 300 sample 

predictions. 

 

Fig. 13 Prediction chart of single well coal structure in Well An22. A. Prediction diagram of coal structure under 

neural network and random forest; B. Prediction diagram of coal structure under multiple logistic regression 

 

The results of the comparison between coal structure predictions in multiple wells are shown in 

Fig. 14. The MLR algorithm results varied the most, and classification was biased toward a coal 

structure with greater fragmentation. There were only small differences between the results when 

using the DNN and RF algorithms. A single classifier can have varying degrees of error in the 
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classification predictions depending on the algorithm. The specific selection of classifiers for 

different situations can meet the needs of multi-well coal structure prediction. 

 

Fig. 14 Predicted charts of multiple well coal structure for wells An34, An219, An26, An24 and An17 under 

multiple classifiers. 

 

4.4 Coal structure distribution and its geological controls 

4.4.1 Coal structure distribution 

Based on the scalability and the high accuracy of using the DNN algorithm, it was chosen as the 

algorithm to predict the coal structure in this region. Fig.15 shows that the Type Ⅲ coal structure 

mainly occurs in areas with high structural strength, including folds and normal faults. Type Ⅰ and 

Type Ⅱ coal structures are distributed throughout the Anze area. Overall, the degree of coal 

fragmentation is higher as it approaches the area where the structural strength is the highest near 

the faults and folds (Danesh et al., 2022). In the Anze Block, 80% of the predicted Type Ⅲ coal 

structure is developed within the near-fault zone. There are both rupture zones at faults and gentle 

zones inside graben barriers, which are mixed zones of high stress and low stress (Oliveira et al., 

2022), and the accompanying coal structure thus differs. There are over 40 faults in the Anze 

Block, and only three of these are reverse faults. The fault distances range from 35 m to 130 m, 

which indicates that a strike-slip process occurs in this region. Other high angle normal faults are 

related to the graben barriers (Qiu et al., 2022). A comparison between two wells shows that the 

Type Ⅰ coal structure in Well An219 has a thickness of 3 m, and that of Well An38 is less than 0.5 

m, which are located at the lower plates of the fault. Two models have been established for coal 

structure development in these regional graben barriers. The main structural model of the uplift 

barrier is a strike-slip pull-apart basin that developed in the northern part of the Anze Block, and 

the other is the regional early widespread development of normal faults. The latter model is known 

as the restricted graben-barrier model, and this model development is consistent with normal fault 

formation where the graben is the active plate. Normally, the relative active plate in the graben 
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barrier is greatly affected by geostress, and this causes a higher broken plate. Therefore, for Well 

An219, much of the Type III coal structure developed due to the presence of the graben as an 

active plate. 

 

Fig.15 Profile of geological structure and coal structure distribution by DNN algorithm. A. No.3 coal burial depth 

contour map; B. Well An34 – Well An17 geological structure and burial depth; C. Well An58 – Well An12 

geological structure and burial depth 

 

4.4.2 Geostress 

A series of tectonic models associated with the graben-barrier model have been developed to 

reflect the combined stresses in the deep and shallow parts (Liu et al., 2009; Li et al., 2021; 

Oliveira et al., 2022). However, fewer studies have focused on combining specific geological 

structural units, such as the graben barrier, with an evaluation of coal or CBM. Previous work 

(Kayseri-Özer et al., 2022) demonstrated that coal-bearing sediments can be used to interpret the 

paleogeography and paleoclimate under the graben unit. However, the graben only provides the 

structural features, and there has been less in-depth analysis of the relationship. Recently, Danesh 

et al., (2022) conducted an experimental investigation, established a relationship between the 

geological structure unit and CBM production under the graben barrier, and focused on the fault 

structure unit. In this study, we attempt to understand the geological controls on coal structure 

development in the Anze Block in relation to the graben-horst model and local faults and folds. 

The relationship between the regional geostress distribution and the distribution and location of 

wells is shown in Table 4. 

Table 4 Maximum and minimum principal stresses in wells of different burial depths 

Well Depth(m Max. stress (MPa) Min. stress Vertical Lateral pressure 
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) (MPa) stress 

(MPa) 

coefficient 

An34 739 18.8 11.78 14.78 1.04 

An24 780 19.82 12.51 15.6 1.04 

An26 826 20.92 13.34 16.52 1.04 

An21

9 

910 21.23 13.57 18.2 0.96 

An58 915 23.06 14.94 18.3 1.04 

An10

3 

980 24.62 16.11 19.6 1.04 

An38 1070 26.78 17.73 21.4 1.04 

An22 1098 27.45 18.24 21.96 1.04 

An17 1265 31.46 21.24 25.3 1.04 

An12 1280 31.82 21.51 25.6 1.04 

As shown in Table 4, there is a clear positive correlation between the magnitude of the geostress 

(measured in both directions of the wells) and the depth. However, as shown in Fig.15, highly 

fragmented coal is noted to occur at the shallowest depths and in areas such as in the core of the 

fold where there was low geostress in the late period. This shows that development of the coal 

structure originates from the destruction of a high fragmentation zone via stresses relating to fold 

formation. The later geostress was less developed and modified throughout the region. The area of 

coal fragmentation is located near the fault fragmentation zone, which was also the zone of high 

fault fragmentation when early stresses formed the fault. The control of the coal structure shows 

that the early geostress formed the structure and directly controlled the development of coal 

structure in the area, while the later geostress had a weaker influence on the development of 

highly fractured coal. 

Coals in the strong geostress area generally have a severely fragmented structure. Of the logging 

data points, 14 in Well An34 were predicted to be Type III coal developed in the axial zones of the 

fold, and 15 in Well An219 were predicted to be Type III coal situated near the fold and fault. Due 

to the existence of two graben-barrier models, differences occur in coal structure. However, in 

areas of high geostress, such as in the axial of the fold, the fold slip zone of the near fault contains 

over 95% of the predicted Type III coal structure, which shows a high correlation with geostress. 

As shown in Fig. 15, the cumulative thickness of the coal structure reveals the graben and barrier 

models and the relationship between the coal structure and the regional structure. The local 

stress-strain characteristics show that folds and faults are areas of strong structural stress, are 

related to the Type III coal structure, and their deformation also has strong impacts on the coal 

structure type (Fig. 16). For example, the coal structure is severely broken at the fold axial, fault 

fracture zone, and in relation to the graben structure, where Type Ⅲ coal is mostly developed. 

Additionally, the coal structure is more stable at the fold wing, fault plate, and barrier structure, 

where thicker Types Ⅰ and Ⅱ coal structures exist. 
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Fig. 16 Development pattern diagram of high strain zone and coal structure under structural control. A. 

Development pattern diagram of fold high strain zone and coal structure; B. Development pattern of fault high 

strain zone and coal structure 

 

4.4.3 Coal thickness and burial depth 

Several studies (Huang et al., 2017; Zhang et al., 2017) have investigated the relationship between 

coal thickness, coal burial depth, coal structure, and thermal movement. Fig. 17 shows that the 

Type II coal structure mostly appears in thick coal seams, and Type I structure coal occurs in 

seams found at larger burial depths. Jo
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Fig. 17 Coal structure distribution with burial depth and coal seam thickness by DNN algorithm. A. Comparison 

chart of coal thickness and coal structure; B. Comparison chart of burial depth and coal structure 

 

The thickness and burial depth of coal seams are closely related to geological structures. The 

thickest Type Ⅲ coal structure is developed in the targeted No.3 coal seam of Well An34, which 

has the lowest structural coal thickness, and 60% of the coal has a Type Ⅲ structure. However, the 

second thickest Type Ⅲ coal structure is predicted in Well An12, where the second coal seam 

thickness is 6.5 m. From the perspective of burial depth, the Type I coal structure predominates 

from 800 m to 1100 m. However, changes in the Type Ⅲ coal structure in Well An 103 do not 

follow the law of coal seam thickness and burial depth. Therefore, it is necessary to further 

explore the relationship between the coal structure and the structural unit. 

In the Anze Block, the coal structure distribution is segmented into the three categories in 

accordance with the geological structure unit, coal seam thickness, and burial depth, as shown in 

Fig.18. The distribution mainly relates to the continuous deformation behavior from the fold hinge 

zone and the graben barrier fault zone to the tensile stress strong action zone. In a simple 

geological structure unit, this geological structure effect is not obvious. From Well An26 to Well 

An58, the thickness changes from 6 m to 8 m. The thickness of Type Ⅱ coal structure changes 

from 70% to 90% in total, and Type Ⅲ coal structure occurs in Well An58, reflecting the transition 

from stable zone to fracture zone. The same in Well An17 and An12, which Type Ⅱ coal structure 

changes from 20% to 90%. 
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 Fig. 18 Coal structure segment of CBM well with burial depth, coal seam thickness, and structure unit by DNN 

algorithm 

 

The coal thickness is highly correlated with the geological structure in the Anze Block, and the 

effects of coal thickness on the coal structure can be directly evaluated. Additionally, the burial 

depth has a good correlation with the coal structure. For a simple geological structure, such as that 

of the graben barrier, the proportion of coal with a different structure has a good relationship with 

the burial depth. From a depth of 750 m to 1300 m, the thickness of the predicted Type Ⅱ coal 

structure changes from 20% to 80% continuously in the stress zone of the graben barrier. Besides, 

it is also because the main fracture zone of the graben is the boundary fault zone, which causes a 

good development of coal seam thickness in the interior. That is, the structure unit can be simply 

deemed as the fracture development along the fault. The relationship between burial depth, coal 

thickness and coal structure is closely related to the geological structure. The combination of the 

above two parameters can determine the coal structure distribution. The higher the burial depth is, 

the higher the proportion of primary coal is. It is anticipated that the results of this study will assist 

in guiding the exploration and exploitation of CBM in deep coal seams. 

5 Conclusions 

In this study, the machine learning algorithms of MLR, RF, and DNN were used to interpret the 

coal structure based on multisource-logging data, with the aim of evaluating their use and 

optimizing the coal structure interpretation method when using different data set conditions. The 

effects of geological controls on the predicted coal structure were also explored. The following 

main conclusions can be drawn: 

1) The MLR, RF, and DNN algorithms all provided good coal structure predictions, but the 

sensitivity of the three algorithms differed when applied to different datasets. The MLR algorithm 
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had weaker overall accuracy and was least sensitive to information gain and least resistant to noise; 

the DNN algorithm had better accuracy and a strong information gain; the RF had the best overall 

accuracy and strong noise resistance. For a sample group of 300, the accuracies of the MLR, RF, 

and DNN methods were 76%, 83%, and 82%, respectively, but for a group of 1200 samples, their 

accuracies were 77%, 86%, and 86%, respectively. 

2) There is generally a high degree of coal fragmentation in the western part of the Anze Block, 

due to the existence of folds. Over 60% of the coal in Well A34 in the western part is Type Ⅲ coal, 

and nearly 80% of coal in Well An17 in the eastern part is Type Ⅰ. From north to south, the coal 

structure is mainly controlled by the active plate in the graben barrier. Although it is out of the 

control of folds, only a small amount of Type Ⅲ coal exists in Wells An38 and An22, due to the 

high geostress near the active plate. 

3) The main geological controlling factors of coal structure in the Anze Block are geostress, coal 

thickness, and buried depth. The control of geostress and coal seam thickness on the coal structure 

is reflected by the effect of tectonics on the coal structure. Type III coal is mainly developed near 

the strong geostress unit (the active plate of the graben barrier), and coals buried at different 

depths have generally the same structure. The higher the burial depth of targeted coal, the better 

the coal structure is preserved, and proportion of primary coal is larger. 
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